
Silent Compute
Technical Overview: Open Finance

Silence Laboratories
info@silencelaboratories.com

November 15, 2024

Abstract

This document serves as a companion to the whitepaper Open Finance
Revisited: Strengthening Data Governance with Cryptographic Privacy
and Auditability. Technical specifications of the Multiparty Computation
(MPC) protocols referenced in that whitepaper were omitted in the in-
terest of accessibility to non-expert readers. This document provides an
overview of those protocols for interested expert readers, although com-
plete protocol descriptions are deferred to the full version of the technical
specification document.

1 Introduction
The Open Finance Revisited whitepaper [KKS+24] describes a system in which
user data d is held in secret shared format amongst three parties, one of whom
may be actively corrupt. Upon receiving the user’s consent to operate on this
data, the parties jointly run Multiparty Computation (MPC) protocols to com-
pute f(d), and expose only the output of this computation. The motivation of
the system is to protect users and Financial Information Providers (FIPs) from
data duplication by data fiduciaries (Financial Information Users, or FIUs) and
to bind data usage to user consent. An important aspect of this system is how
the parties are able to obtain secret shares of the user’s data in a secure fashion.
The running example considered in the Open Finance paper is that of the Ac-
count Aggregator (AA) framework [Sah], which delivers encrypted data to the
system upon the user providing their consent. The workflow, without the MPC
component, is recalled below in Figure 1.

As mentioned earlier, we envision the Financial Information User (FIU) to
be decentralized by means of a three-party system, where sensitive data is never
exposed in plaintext. Our foremost priority is to have this system be a drop-in
replacement for the existing FIU role, i.e. it must be directly compatible with
protocols in the AA framework, allowing the rest of the ecosystem to be agnostic
to the FIU’s decentralization. This principle is visualized in Figure 2.

1



Figure 1: Existing workflow of the Account Aggregator framework, which facili-
tates the delivery of encrypted user data from a Financial Information Provider
(FIP) to a data fiduciary, i.e. Financial Information User (FIU).

Figure 2: Drop-in decentralization of the FIU. The rest of the AA ecosystem is
agnostic to the FIU’s new configuration.

2



2 High Level Structure
With the context having been established, we proceed to describing the MPC
protocols involved. The workflow can be divided into three phases:

1. Fetching the Data. The first step is to establish a mechanism to import
the encrypted data delivered by the AA into the 3PC system. This entails
generating the FIU’s public key pk in a distributed fashion, and decrypting
the AA’s encrypted response E = Enc(pk, d) directly into secret shared
format—without exposing d or the FIU’s secret key sk to any one party.

2. Parsing Data into a Query-friendly Format. Once the data d has
been decrypted into secret shares, it is in principle feasible to run queries
upon it immediately. However, note that d is typically a string that must
be tokenized before queries can be run; for instance in the AA specifica-
tion, d is an XML file. While this operation may be straightforward in
plaintext, performing this operation in MPC is non-trivial. Empirically,
we have observed this step to be most expensive in the workflow, but
fortunately this is done only once when loading the data into the 3PC
system. Therefore, we treat it as a separate phase.

3. Executing Queries. Once data is decrypted and tokenized, we dis-
cuss optimized primitive operations that can be composed to construct
reponses to standard queries on it in the Open Finance setting.

First, we establish the secret sharing format: given that the setting is that of
three parties with tolerance to one active corruption, we make use of Replicated
Secret Sharing [CDI05]. This secret sharing methodology is remarkably versatile
in that it does not require any particular structure of the underlying ring/field,
which suits our setting. The computations relevant to this setting are diverse in
their native representations, as they include Boolean and arithmetic circuits, as
well as elliptic curve group operations. We therefore choose the most appropriate
representation for any given operation, and describe how we convert between
representations when relevant.

There are several places in which we invoke general MPC as a subroutine,
which we implement in the common paradigm of running a lightweight “secure
with additive errors” protocol first [GIP+14, GIP15], and then verifying the
result before it is ready to be used. We employ the techniques of Furukawa et
al. [FLNW17] in the Boolean case, and Lindell and Nof [LN17] in the arithmetic
case for this purpose. While more theoretically efficient protocols have been
developed, these are conceptually simpler (enabling easier implementation and
validation), and efficient enough in for our use cases.

We now proceed to describe the tools that comprise each phase.

3



3 Threshold Decryption
We first visualize the ideal functionality that we wish to enable in this step, in
Figure 3.

Figure 3: Multiparty Decryption.

The AA ecosystem, like most internet infrastructure, is not designed to in-
tegrate directly with MPC. The structure of the ciphertext E delivered by AA
to the FIU is one such point of friction for decentralization. The encryption
scheme follows a standard recipe:

• FIU’s public key pk is a point on an elliptic curve, specifically Curve25519.

• The ciphertext E consists of a nonce R = r ·G, which is used to derive a
shared value as per Diffie-Hellman: KDH = (r · sk) ·G.

• The above value is then hashed to derive a shared encryption key, k =
HKDF(KDH)

• Data d is encrypted using a symmetric key cipher—AES256 in GCM mode
for the AA setting—keyed by k as derived above.

One of the difficulties in designing an MPC protocol to process ciphertexts of this
form lies in the use of cryptographic tools whose native modes of computation
differ from each other. In particular, KDH is very efficient to compute when
operating with a secret sharing defined as per the elliptic curve group addition
law, whereas HKDF and AES256 are best represented as Boolean circuits.

4



3.1 Generating pk

The first step towards decentralizing the FIU’s decryption phase is to generate
pk = sk·G in a distributed fashion, while keeping the secret key sk secret shared.
This is quite straightforward, as has been done in a number of threshold signing
and decryption protocols for elliptic curve based primitives. Roughly, parties
jointly sample sk as a random secret shared Zq value (where q is the order of the
elliptic curve) and expose pk = sk ·G by broadcasting their respective shares in
the exponent, and performing reconstruction in the exponent.

3.2 Deriving Shares of KDH

It is straightforward to derive shares of KDH as per the group addition law,
but the challenge lies in then converting these shares for the next phase of the
computation, which is over a Boolean circuit.
Shares of KDH in EC form. Given R and secret shares of sk, parties can
simply exponentiate R by their respective shares of sk, in order to derive shares
of KDH.
Shares of KDH in Boolean form. Borrowing ideas from the Oblivious TLS
protocol of Abram et al. [ADST21], our approach is to translate shares of KDH

to a standard arithmetic sharing in the base field Zp of the elliptic curve, and
then convert these arithmetic shares to Boolean shares. As we operate in the
3-party 1-corruption setting (unlike Abram et al. who assume a dishonest ma-
jority), we are able to adapt the share conversion techniques of Mohassel and
Rindal [MR18] for this purpose. In particular, we express the group addition
law as a circuit in Zp, and use an arithmetic 3PC over Zp to derive shares of
KDH as per the Zp addition law applied to the input EC shares of KDH. This
circuit is quite compact, and involves only a handful of multiplications; the
only slightly nontrivial arithmetic operation is field inversion, which can be per-
formed efficiently via the Bar-Ilan Beaver trick [BIB89]. Subsequently, we tweak
the arithmetic to Boolean conversion protocol of Mohassel and Rindal [MR18]
to work over integers modulo a prime (rather than 2ℓ) to convert the Zp sharing
of KDH into a Boolean sharing.

3.3 Evaluating HKDF and AES256-GCM
Once Boolean shares of KDH are available, we use the Boolean 3PC of Furukawa
et al. [FLNW17] to derive shares of k = HKDF(KDH). As this is a relatively
deep Boolean circuit, we may consider using a Garbled Circuit based protocol
to perform this evaluation rather than a secret sharing based approach, based
on empirically observed performance in the future.

Decryption as per the GCM mode of operation for AES is highly parallelized;
each block of AES has no dependency on the others, and therefore all blocks can
be processed in parallel. When decrypting ciphertexts that are over a kilobyte in
size, for most standard regimes of network latency, round complexity is unlikely
to be the bottleneck. Therefore, secret sharing based Boolean 3PC is clearly

5



the most efficient paradigm for this task, and once more we employ the protocol
of Furukawa et al. to complete decryption and derive standard Boolean secret
shares of the data.

4 Secure Parsing
Typically, decrypted data will be represented using a text format, such as JSON
or XML. These formats are structured, and we can assume that the field names
are pre-determined. Nevertheless, this representation is not easy for a secure
computation to work with directly. The main challenge is that the location of
relevant fields is variable, dependent on fields values. Consider the following
simple JSON string:
[{"name":"Alice", "age":21}, {"name":"Bob", "age":23}]
In this case, the position in the string at which the field for Alice’s age is located
(in this case the 24th character) depends on the length of the name “Alice”.
Likewise, the position in the string at which the entry for “Bob” begins depends
both on the length of Alice’s name, and the order of magnitude of Alice’s age.
Therefore, revealing the locations at which field values are located would leak
information about the field names themselves.

We would prefer to have data in an array, in which each field is padded to a
maximum length. For instance:

Name Age
Alice--- 21-
Bob----- 23-

The main task needed to achieve this can be expressed by a functionality we
refer to as SplitAndPad. This takes a secret-shared string that is delimited by
a certain character (e.g. “{” or “,”) and splits the string into an array of secret-
shared segments, divided by the delimiter, each padded to a certain length. For
instance this could be used in the above JSON string to split separate records
(using delimiter “{”), to separate fields within a record (using delimiter “,”) or
to separate field names from values (using delimiter “:”). The protocol should
take as input the maximum length of each delimiter-divided segment, and should
reveal nothing except the number of delimiters/segments.

Surprisingly, our solution has a number of rounds which does not depend on
the number of segments. We do this by making heavy use of conversions from
Boolean to arithmetic share representations, local computation of cumulative
sums and constant-round secure shuffles. First, we obtain a mapping from i to
the index of the ith delimiter. This is achieved by evaluating the equality circuit
to check whether an item is a delimiter, converting this secret-shared Boolean
value to an arithmetic representation and then computing the cumulative sum,
which gives for each delimiter the number of delimiters which have occurred up
to that point. Second, using this and cumulative sum techniques, we obtain for
each non-delimiter character secret-shared values i and j such that the previous
delimiter was the ith delimiter and occurred j locations prior. This means that
the given non-delimiter character should occur in the ith segment, at position j

6



in that segment. Third, we create whitespace padding characters. We calculate
the (secret-shared) length of each unpadded segment from the difference of the
indexes of adjacent delimiters, which in turn allows us to calculate the amount
of padding we need. Each needed padding character can then be assigned a
segment and a location within that segment. Finally, we shuffle all non-delimiter
characters and needed padding characters, reveal the segment and position to
which each belongs (while keeping the character itself secret-shared) and relocate
each secret-shared character accordingly.

5 Primitives for Query Execution
We assume that records are stored in a table, with different secret-shared fields.
The number of records is potentially very large. In order to attain good per-
formance, we therefore ensure that the round complexity of the MPC protocol
does not depend on the number of records.

5.1 Subset Count
This calculates the number of records for which one of the fields satisfies a
property that can be represented using a comparison. For instance “compute
the number of orders that were in the category Books” or “compute the number
of customers who were born before 1959”.

The protocol first performs the comparison using a Boolean circuit. It then
converts the output (1 if the statement holds, 0 if it doesn’t) into an arithmetic
sharing. This is important, because it allows the challenging aspect of combining
data from all the records to occur without any communication. By converting
to an arithmetic sharing, the sum of the predicates can be obtained using only
local operations. Finally, these shares are sent to the user who can reconstruct
the result.

Note that the conversions from Boolean to arithmetic sharings can be ex-
ecuted in parallel. Therefore the round complexity does not depend on the
number of records.

5.2 Subset Sum
This assumes two different fields, one of which is a key used for filtering, and
another of which is a value over which a sum is computed. For instance, the
following queries are of this type: “compute the total spending of orders in the
category Books” or “compute the total electricity consumed today by customers
who joined within the past 5 months”.

The protocol to achieve this is similar to that of Subset Sum above. The
initial step is the same: a Boolean circuit is evaluated to filter records. However,
rather than storing a “1” for records which match the filter, the protocol stores
the desired value field (e.g. spending or electricity consumption), and stores a

7



“0” for any record which does not match the filter. Summing over these will
give the subset sum.

5.3 Subset Average
Like Subset Sum above, but compute the average over the elements that match
the filter. For instance “compute the average income of graduates who graduated
between 2004 and 2007” or “compute the average age of customers who joined
in the past month”.

To achieve this, we first evaluate a subset sum and then evaluate a subset
count. The average is computed as the sum divided by the count. This, in
turn, needs a protocol for fixed-point division, which we can implement using
standard a long division algorithm evaluated over Boolean circuits.

5.4 Sort
This is useful for finding the records that have the highest, or lowest, values for
some particular field. For instance “return the 10 most expensive purchases by
the given customer” or “return the 50 customers who have joined most recently”.
Unlike previous queries, the round complexity of this protocol does depend on
the number of records, n. The (expected) round complexity is Θ(log(n)) and the
total number of comparisons required is Θ(n log(n)). This performance is signif-
icantly better than a standard Oblivious sort which either requires Θ(n log2(n))
comparisons [Bat68] with small constants or Θ(n log(n)) comparisons [AKS83]
with enormous constants. This improvement is possible because we can first
make use of a secure shuffle which randomly permutes the elements. Follow-
ing this, we can use a non-oblivious sort, such as QuickSort, which reveals the
relative ordering of indices in the permuted array. Since the array was first
permuted, this reveals nothing about the relative ordering in the original array.

We make use of the honest-majority 3-party shuffle protocol of Laur et al.
[LWZ11]. This securely shuffles items by shuffling the data 3 times, once by each
pair of parties using a permutation unknown to the third party. We extend the
protocol of Laur et al. to the malicious-security setting by using information-
theoretic Message Authentication Codes (MACs).

5.5 Most Common Item
This is similar to the sort protocol above, but first we need to group by count.
For instance, it could answer the query: “given an array of transactions, cal-
culate on which day the most transactions occurred”. We adopt the approach
of the Vogue protocol [JKK+22]. First, we sort records according to the item
field. Storing the index of the first record of each type, we sort again, placing all
first occurrences at the beginning. The number of occurrences of a given item
is equal to the the index of its first occurrence subtracted from the index of the
first occurrence of the next item. Sorting by number of occurrences gives the
desired result.

8



References
[ADST21] Damiano Abram, Ivan Damgård, Peter Scholl, and Sven Trieflinger.

Oblivious TLS via multi-party computation. In Kenneth G. Pater-
son, editor, CT-RSA 2021, volume 12704 of LNCS, pages 51–74.
Springer, Heidelberg, May 2021.

[AKS83] Miklós Ajtai, János Komlós, and Endre Szemerédi. An O(n log n)
sorting network. In 15th ACM STOC, pages 1–9. ACM Press, April
1983.

[Bat68] Kenneth E Batcher. Sorting networks and their applications. In
Proceedings of the April 30–May 2, 1968, spring joint computer
conference, pages 307–314, 1968.

[BIB89] Judit Bar-Ilan and Donald Beaver. Non-cryptographic fault-tolerant
computing in constant number of rounds of interaction. In Piotr
Rudnicki, editor, 8th ACM PODC, pages 201–209. ACM, August
1989.

[CDI05] Ronald Cramer, Ivan Damgård, and Yuval Ishai. Share conversion,
pseudorandom secret-sharing and applications to secure computa-
tion. In Joe Kilian, editor, TCC 2005, volume 3378 of LNCS, pages
342–362. Springer, Heidelberg, February 2005.

[FLNW17] Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. High-
throughput secure three-party computation for malicious adver-
saries and an honest majority. In Jean-Sébastien Coron and Jes-
per Buus Nielsen, editors, EUROCRYPT 2017, Part II, volume
10211 of LNCS, pages 225–255. Springer, Heidelberg, April / May
2017.

[GIP+14] Daniel Genkin, Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and
Eran Tromer. Circuits resilient to additive attacks with applications
to secure computation. In David B. Shmoys, editor, 46th ACM
STOC, pages 495–504. ACM Press, May / June 2014.

[GIP15] Daniel Genkin, Yuval Ishai, and Antigoni Polychroniadou. Efficient
multi-party computation: From passive to active security via secure
SIMD circuits. In Rosario Gennaro and Matthew J. B. Robshaw,
editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 721–
741. Springer, Heidelberg, August 2015.

[JKK+22] Pranav Jangir, Nishat Koti, Varsha Bhat Kukkala, Arpita Patra,
Bhavish Raj Gopal, and Somya Sangal. Vogue: Faster computa-
tion of private heavy hitters. Cryptology ePrint Archive, Report
2022/1561, 2022. https://eprint.iacr.org/2022/1561.

9

https://eprint.iacr.org/2022/1561


[KKS+24] Yashvanth Kondi, Kush Kanwar, Siddharth Shetty, Anurag Ar-
jun, and Jay Prakash. Open finance revisited: Strengthening data
governance with cryptographic privacy and auditability. https:
//hackmd.io/p7uDvlbRQfaRZrHXpLSaMg, 2024.

[LN17] Yehuda Lindell and Ariel Nof. A framework for constructing fast
MPC over arithmetic circuits with malicious adversaries and an
honest-majority. In Bhavani M. Thuraisingham, David Evans, Tal
Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 259–276.
ACM Press, October / November 2017.

[LWZ11] Sven Laur, Jan Willemson, and Bingsheng Zhang. Round-efficient
oblivious database manipulation. Cryptology ePrint Archive, Re-
port 2011/429, 2011. https://eprint.iacr.org/2011/429.

[MR18] Payman Mohassel and Peter Rindal. ABY3: A mixed protocol
framework for machine learning. In David Lie, Mohammad Man-
nan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018,
pages 35–52. ACM Press, October 2018.

[Sah] Sahamati. Account aggregators. https://sahamati.org.in/
account-aggregators/.

10

https://hackmd.io/p7uDvlbRQfaRZrHXpLSaMg
https://hackmd.io/p7uDvlbRQfaRZrHXpLSaMg
https://eprint.iacr.org/2011/429
https://sahamati.org.in/account-aggregators/
https://sahamati.org.in/account-aggregators/

	Introduction
	High Level Structure
	Threshold Decryption
	Generating pk
	Deriving Shares of KDH
	Evaluating HKDF and AES256-GCM

	Secure Parsing
	Primitives for Query Execution
	Subset Count
	Subset Sum
	Subset Average
	Sort
	Most Common Item


