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Abstract

Threshold cryptography is the practice of distributing the secret keys of a cryptosystem across
multiple devices, so that a consortium of these devices must collaborate in order to use the
key. This makes threshold cryptography a useful tool for cryptographic key management, as
it can mitigate single points of failure in a cryptosystem by decentralization.

In this thesis, we study how to securely decentralize signing with the most commonly used
elliptic curve based signature schemes—ECDSA and EdDSA—and develop novel protocols
that are efficient to operate in common parameter ranges, while being sensitive to real-world
constraints. The constraints we consider include interaction, reliable access to entropy, and
state continuity. To this end, we make progress on the fronts of non-interactively aggregat-
ing EdDSA signatures, proactive threshold ECDSA state refresh with offline devices, and
derandomizing threshold EdDSA signing with native resilience to state resets.

Our results on EdDSA signature aggregation include a highly efficient scheme that achieves
rate 2 compression, albeit with a loose security proof, and a rate 2−o(1) compressing scheme
(with tight security) that is slower but tolerable for many applications. The latter construc-
tion is enabled by improving upon the state of the art for straight-line extraction in the
random oracle model. We further improve on the state of the art by expanding the applica-
bility of Fischlin’s transformation, and proving (and matching, for some parameters) a lower
bound on the Prover’s random oracle query complexity.

In the context of long-term security for threshold ECDSA, we study a notion of proactive
state refresh with ‘offline’ devices, where the signing consortium can refresh the state of
the system and leave update packages for offline devices to catch up at their leisure. We
give an efficient construction to achieve this notion for (2, n) threshold ECDSA, and show a
fundamental barrier to its immediate extension.

Finally, we explore the problem of derandomizing threshold EdDSA signing while achiev-
ing natural resilience to state resets. We show via a new construction that such provably
secure resilience can be achieved at lower latencies than heuristic solutions that rely on
trusted hardware. We develop new techniques for committed oblivious transfer, and garbling
the exponentiation function in order to achieve this result.

All of our constructions use tools native to the signature schemes that they decentralize,
and their practicality is justified either empirically or by concrete analysis.

15



Chapter 1

Introduction

In the nineteenth century, Dutch linguist and cryptographer Auguste Kerckhoffs formulated
one of the first principles of modern cryptography:

The security of a system must be uncompromised even if an adversary were to
learn the design of the system.

This concept is widely realized today by making public any cryptographic algorithms that
constitute a system, but keeping a randomly sampled “key” hidden from view. Maintaining
secrecy of the keys is critical for most deployed cryptosystems today; if an attacker were to
obtain the key, the system might be rendered completely insecure.

Given the total dependence of a cryptosystem upon its key, any device that stores such a
key is potentially a single point of failure for the security of the entire system. Single points
of failure are highly undesirable for any secure architecture, as evidenced by the increasing
adoption of multi-factor authentication as industry standard practice [Wha21].

A Solution Paradigm: Decentralization. The generation and storage of cryptographic
key material can instead be distributed across multiple devices in such a way that an adver-
sary trying to steal the key is forced to break into more than one device. A suite of accom-
panying protocols can allow the devices to collaboratively perform cryptographic operations
(such as signing) without ever having to reconstruct the key at a single physical location. Un-
der the assumption that security failures for the devices are reasonably uncorrelated—such
as by using independent software stacks and hardware—decentralization offers a promis-
ing solution to the single point of failure problem for cryptographic keys. This approach of
threshold cryptography was first conceived by Desmedt [Des88].
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Practical Modern Multiparty Signing. In the context of digital signatures, threshold
cryptography implies a distributed system in which the secret key is generated and accessed
for signing only via multiparty protocols. The task of designing such a system can be viewed
as an instance of Secure Multiparty Computation (MPC). Fundamental decades old re-
sults on MPC have already established the theoretical feasibility of securely distributing any
task [Yao86, GMW87, BGW88] including multiparty signing. With a sophisticated theory
supplying a foundation, MPC and multiparty signing are primed to find their place as stan-
dard tools in system designers’ toolkits. However as with any nascent technology that is in
the process of being forged from an applied science, several challenges arise upon the intro-
duction of real-world constraints. In this thesis, we develop multiparty signing protocols for
commonly deployed elliptic curve schemes that function efficiently under such constraints.
The particular constraints that are of interest to us are those of interaction, long-term secu-
rity, resilience to poor entropy, and statelessness.

1.1 Problem Scope

With the above constraints in mind, we introduce the specific domains that we study in this
thesis.

The security of multiparty signing protocols is typically conditional on no more than a
threshold number of devices in the system being under adversarial control. While this may
be a reasonable expectation in the short term, in the long term it is prudent to plan for
the eventual compromise of every device—under the assumption that fewer than a threshold
number are compromised at any given time. We study proactive state refresh in this
thesis as one such long-term defense mechanism. In particular, we study proactive state
refresh under a specific interaction constraint, which allows the state of the system to be
rerandomized with the same consortium of parties that typically convenes to produce a
signature.

Another avenue for an adversary to induce a security failure in the lifetime of a system
is to exploit vulnerabilities relating to randomness generation in otherwise uncompromised
devices. In particular, entropy is usually a scarce resource, and many deployments instead
draw their randomness from stateful random number generators. However, avoiding state
reuse (and therefore randomness reuse) in the face of power supply interruptions, Virtual
Machines instantiated with stale snapshots, unsafe restoration from backups, etc. is a noto-
riously difficult problem to solve in practice. In this thesis, we study distributed signing
that is stateless and deterministic by design in order to avoid this issue altogether.

In many settings, the scale and nature of parties involved imply that it is highly impracti-
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cal to have them all run an interactive protocol in order to generate a joint signature. While
the trivial approach to capture the effect of their joint signing is to have them sign individ-
ually and simply concatenate their signatures, we investigate non-interactive signature
aggregation as a method to achieve some compression of the trivial approach.

Which Signature Algorithms to Decentralize? The most commonly used public key
cryptosystem across the internet today is RSA [RSA78], although elliptic curve based schemes
are rapidly increasing in popularity due to the improved operational efficiency that comes
with their smaller key sizes [Hen22]. The Elliptic Curve Digital Signature Algorithm (ECDSA)
is the most widely deployed elliptic curve based signature scheme, followed by the more recent
Edwards-curve Digital Signature Algorithm (EdDSA). This surge in the use of these elliptic
curve cryptosystems elicits research that facilitates their efficient and safe deployment. In-
deed, as of the writing of this thesis, the ongoing NIST Multiparty Threshold Cryptography
project [NIS] seeks to develop guidelines for their decentralization, and serves as an indicator
of where industry and government interest lies. We therefore focus on ECDSA and EdDSA
in this thesis.

Better Building Blocks for Threshold Signatures. Protocols to distribute signing for
ECDSA/EdDSA frequently make use of tailored cryptographic proofs (with or without zero-
knowledge) as building blocks, particularly to prove knowledge of discrete logarithms in the
corresponding elliptic curve groups. As contributions that may be of independent interest
in this thesis, we improve the state of the art in instantiating such primitives, under the
umbrella of straight-line extraction in the random oracle model.

1.1.1 The Tradeoffs We Make

The term “practical” is in itself highly sensitive to context, and the notion of a practical
scheme is constructed by accounting for various environmental factors. Most secure compu-
tation tasks have a plethora of options for modern cryptographic tools with which to address
them, and each comes with its own performance profile and security guarantees. Choosing
from amongst these cryptographic tools is informed by priorities in efficiency metrics and
other contextual concerns.

For the settings relevant in this thesis we determine computation cost to be a priority, and
when constructing a multiparty protocol for signing with a given signature scheme, we use
cryptographic tools native to the signature scheme itself. Using cryptographic tools native
to the signature scheme—in particular the same hash function and elliptic curve—minimizes
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the trusted base of complexity assumptions as well as systems dependencies (eg. by the reuse
of verified libraries) while maintaining compatibility with widely accepted standards.

Why Optimize Computation Cost? We briefly justify here why minimizing the com-
putation cost (at the expense of bandwidth for instance) is a meaningful tradeoff, and defer a
more nuanced discussion to the relevant technical sections. In the case of multiparty signing
for ECDSA, consider two representative applications: one of mobile devices where signing
is human-initiated, where the important metric is the latency of producing a signature, and
the other of a consortium of servers signing many messages, where the important metric
is throughput. Assuming realistic connectivity, our benchmarks [DKLs18, DKLs19] indicate
that for multiparty ECDSA signing, both metrics are determined by computation cost; the
latency due to computation on mobile devices is higher than that of data transmission over
4G LTE, and the servers exhaust computational resources before saturating a gigabit connec-
tion. These claims are further evidenced by independent benchmarks due to Gavenda [Gav21]
for the mobile setting, and Dalskov et al. [DOK+20] for the server setting.

Within the scope of the stateless deterministic signing problem, our goal is to show that
addressing the problem at the protocol design level while providing better security guarantees
than a heuristic trusted hardware approach, need not come at a performance penalty. In
particular, our point of comparison is the use of special purpose hardware with a “trusted
monotic counter” that is incremented each time a signing operation is executed. In our
work [GKMN21] we estimate that the latency induced by maintaining such a counter can be
outperformed only by the most computationally lightweight of cryptographic mechanisms to
enable stateless deterministic signing.

In the signature aggregation setting, if we consider the naive concatenation of signatures
to be our baseline, then any time required for aggregation must be tolerable latency for the
higher level application. In a system that involves hundreds or thousands of signers—such
as a large scale multisignature, or cryptocurrency spenders per block in a blockchain, where
the system latency is a few minutes or tens of seconds—it may be reasonable for aggrega-
tion to require a few seconds, but beyond that the aggregation operation itself may induce
unacceptable latency for the system. While using generic succinct proofs off the shelf can
achieve ω(1)-rate compression, for EdDSA and instantiations of Schnorr that use standard-
ized cryptographic functions, the induced aggregation time is on the order of minutes at least.
In contrast, our θ(1)-rate compression scheme [CGKN21, Ks22] can aggregate thousands of
signatures in under a second.

In essence, across all of the settings that we consider to be relevant for our work, the present
state of affairs suggests that the conservation of computational resources is a meaningful
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objective.

1.2 Summary of Results

With the context of distributed signing for ECDSA and EdDSA established, we now proceed
to give an informal overview of the results contained in this thesis. We begin with our work on
non-interactive signature aggregation in Section 1.2.1, and then the closely related problem
of straight-line extraction in the random oracle model in Section 1.2.2. Subsequently we
discuss our contributions to proactive long-term security in Section 1.2.3, and finally stateless
deterministic signing in Section 1.2.4.

1.2.1 Non-interactive EdDSA Signature Aggregation

In many scenarios, signers may not be able to interactively collaborate (at any point) in
producing signatures. Such settings include authorities that issue certificate chains in TLS,
large scale consensus systems where validator nodes may be too numerous to speak to each
other, and cryptocurrency spenders whose transactions are to be included in a common block.
An aggregate signature [BGLS03] allows any public third party to compress the effect of a
number of independent signatures into a single object, without the signers having to interact
with anyone (including the aggregator). While pairing-based signatures are known to permit
such compression without interaction [BLS01, BGLS03, BDN18] they are not as widely
implemented as ECDSA or EdDSA. Unfortunately signature schemes based on the discrete
logarithm problem alone are not known to natively permit non-interactive aggregation. One
could of course use generic compressing proof machinery [Gro16, BBHR18, BBB+18], but
the high proving cost (i.e. large circuit sizes) induced by statements that involve standard
hash functions like SHA2—as used by ECDSA/EdDSA—would likely be prohibitive for most
applications.

We therefore initiate the study of native non-interactive aggregation techniques for dis-
crete logarithm based signature schemes. In particular, we constrain ourselves to aggregation
that is blackbox in both the hash function as well as the group (in which discrete logarithms
are assumed to be hard to compute) used by the signature scheme. In this section, we will
use the term “native aggregation scheme” to mean a “non-interactive proof of knowledge of
n ∈ Z signatures, where the prover and verifier make blackbox use of the hash function and
group of the signature scheme”.

On the positive side, we construct a public coin three-move protocol to prove knowledge
of a collection of Schnorr signatures, where the proof transcript is only half the size of the con-
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catenation of all the signatures [CGKN21]. Applying the Fiat-Shamir transformation [FS87]
to this protocol yields a highly efficient non-interactive proof—essentially an aggregated
signature that achieves 50% compression—which we empirically validate with the EdDSA
scheme as incurring essentially no computational penalty (in proving/verification time).

Theorem 1.2.1. (Informal) There is a native aggregation scheme for Schnorr signatures in
the random oracle model, where the bit length of the aggregate signature is half of the naive
concatenation of signatures.

On the negative side, we also show that this is essentially the best possible compression
that one can hope to achieve given the constraints, in particular when the prover’s algorithm
must be blackbox in the hash function.

Theorem 1.2.2. (Informal) No native aggregation scheme for full-entropy Schnorr signa-
tures (where the hash function used for the signature is treated as a random oracle) can
achieve a compression rate better than 2 + o(1).

To our knowledge, there are no techniques to prove knowledge of Schnorr signatures
that are non-blackbox in the Schnorr hash function, which do not involve expressing the
hash function as an arithmetic circuit and invoking general SNARKs. Our theorem therefore
serves as evidence that achieving sublinear aggregation of standardized Schnorr signatures
is inherently computationally expensive, i.e. tied to the SNARK proving complexity of hash
functions that are believed to be correlation intractable as relevant for Schnorr [CCH+19].

Provably Secure Parameterization. An unfortunate consequence of using the Fiat-
Shamir transformation is reliance upon the Forking Lemma [PS96] for the security proof,
which incurs a quadratic loss in the reduction of security of the aggregated signature to that of
the underlying signature scheme itself. Besides being problematic for concurrent composition,
this means that in order to provably retain the same security level, the underlying Schnorr
signatures must be doubled in size, which eliminates the 50% compression due to aggregation.
This quadratic loss comes from a proof technique that rewinds the adversary in order to
extract a witness. One can instead obtain a tight proof (and thus tight parameters) with
only a small loss in the compression rate by using straight-line extraction techniques, for
instance by applying Fischlin’s transformation [Fis05] instead of Fiat-Shamir.

Theorem 1.2.3. (Informal) There is a native aggregation scheme for Schnorr signatures
that achieves a compression rate of 2− oκ(1), whose security tightly reduces to unforgeability
of the underlying Schnorr scheme.
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The oκ notation treats terms dependent on the security parameter (i.e. κ) as constants,
as is common in the SNARK literature when describing how performance scales with witness
size [BCR+19]. By tight security, we refer to the fact that the extraction error for the proof
of knowledge is bounded by 2−κ. However upon benchmarking the resulting construction,
we found the computational cost of aggregation by applying Fischlin’s transformation to be
prohibitively high for many applications.

We therefore perform a detailed study of straight-line extraction techniques, making im-
provements to the security, applicability, and efficiency of the state of the art. For the signa-
ture aggregation setting in particular, we improve performance by two orders of magnitude
so it may be tolerable for many applications [Ks22]. We summarize our contributions to this
area below.

1.2.2 Improved Straight-Line Extraction

In the context of zero-knowledge proofs of knowledge in the random oracle model, a straight-
line extractor is able to produce a witness simply by reading the queries that the prover made
to the random oracle in the production of the proof, which eliminates the need to rewind the
prover and enables tight reductions. We revisit Fischlin’s transformation [Fis05], which upon
application to a Sigma protocol produces a non-interactive proof of knowledge with straight-
line extraction in the random oracle model. A constraint of this transformation is that it only
applies to Sigma protocols that support ‘quasi-unique responses’, which informally means
that it is computationally hard to find more than one accepting response to a challenge. At
a high level, Fischlin’s Prover must solve a ‘proof of work’ problem in order to produce a
proof, in particular by finding accepting Sigma protocol transcripts of the form (a, e, z) such
that H(a, e, z) = 0 for an appropriate hash function H. A folklore belief regarding Fischlin’s
work [Fis05, pg. 13] is that the transformation also extends to languages where a statement
may have multiple witnesses, for eg. logical combinations of Sigma protocols [CDS94]. We
show via an attack that this belief is false, and tighten the conditions under which the
transformation applies by means of a new proof [Ks22].

Theorem 1.2.4. (Informal) Fischlin’s transformation does not preserve Witness Indistin-
guishability when applied to the Sigma protocol to prove knowledge of one out of two discrete
logarithms.

Intuitively, the problem stems from the deterministic nature of Fischlin’s prover, which
we show how to address by a careful randomization mechanism.

Theorem 1.2.5. (Informal) Any strong special sound sound Sigma protocol can be com-
piled to a non-interactive zero-knowledge proof of knowledge with the same bandwidth and
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computation efficiency as Fischlin’s technique.

Strong special soundness—a notion that we introduce—requires that any pair of valid
Sigma protocol transcripts that share a first message can be used to extract a witness. This
is stronger than special soundness (which has the additional constraint on the transcripts
that they must not share the same challenge) and in conjunction with our randomization
technique, replaces Fischlin’s use of quasi-unique responses.

Computational Cost. With signature aggregation as our motivating application, we make
progress in the study of the computation cost in producing straight-line extractable proofs in
the random oracle model. The cost of the Schnorr/EdDSA aggregation protocol [CGKN21]
can be characterized as having to evaluate a degree n polynomial at T points, where T cor-
responds to the number of random oracle queries required to solve Fischlin’s proof-of-work
problem. We improve both components: we show that T can be reduced by changing the
underlying proof-of-work problem to that of finding collisions, and we improve the cost of
evaluating the polynomial by applying an O(n1.5) algorithm that is uniquely suited to the
parameters relevant to signature aggregation. We note that improving on the naive O(n2)
polynomial evaluation algorithm is non-trivial, as the commonly used Fast Fourier Trans-
form is incompatible with signing curves deployed in practice, and general asymptotically
superior polynomial evaluation algorithms [vzGG13, BCKL21] are not efficient for the rela-
tively low degrees relevant to the applications for signature aggregation. Combined with a
tighter analysis of parameters for the proof of work problem, we empirically demonstrate an
improvement of two orders of magnitude over the naive application of Fischlin’s transform
to aggregate EdDSA signatures for practically relevant parameters (up to 1000 signatures at
a time), and obtain a performance envelope that is tolerable for many applications.

The idea of improving T (which we call the prover query complexity) by using a collision-
based proof of work carries over to the more general zero-knowledge setting as well. We show
that Fischlin’s NIZKPoK prover can be sped up by 11-15% by applying this idea, and for a
special class of Sigma protocols (that structurally resemble the signature aggregation setting)
by up to a factor of ≈ 2. While this is a modest improvement, it is significant as it meets
(for the first time, for non-trivial parameters) a new lower bound on prover query complexity
that we present.

Lemma 1.2.6. (Informal) If a NIZKPoK scheme for a hard relation with a straight-line
extractor (in the non-programmable ROM) induces a verifier to make V queries to the RO
for a κ-bit security level, then the prover must on average make at least POPT[V, κ] = (V !·2κ) 1

V

queries in generating a proof.

23



Our lower bound is a tightening of an asymptotic lower bound by Fischlin [Fis05, Propo-
sition 2].

1.2.3 Long-Term Security

Most practical multiparty computation protocols are designed to tolerate static adversaries
(i.e. corruptions fixed prior to execution), typically for efficiency purposes. However in the
long term, external security failures may render this model inadequate. One such scenario is
where the adversary is able to compromise all devices in the system through its lifetime, but
never more than a threshold at any given point in time. Ostrovsky and Yung [OY91] were
the first to consider this model of mobile adversaries, and formulated a defence mechanism
termed proactive security in subsequent work by Canetti and Herzberg [CH94]. The method
of proactive secret sharing due to Herzberg et al. [HJKY95]—which laid the template for most
subsequent work [MZW+19]—involves all devices in the system periodically coming together
in order to interactively rerandomize their shared state. However certain inadequacies of such
mechanisms are brought out in applications relating to cryptocurrency custody.

In the case of cryptocurrencies, even accidental loss of the secret key corresponds to a total
loss in the funds associated with the key. Therefore it is imperative to design mechanisms that
facilitate key recovery, without inducing too much extra risk due to redundant storage. In this
regard, a (2, 3) threshold architecture is known to be a reasonable configuration [Eya21]. For
instance, two ‘online’ devices are invoked to sign messages (via a threshold signing protocol),
and an ‘offline’ cold storage server keeps a third share and can assist with key recovery in case
one of the online devices fails. This complicates proactive share refresh, as an explicit goal is to
keep the cold storage server isolated from the signing devices. We therefore formulate a model
of ‘offline refresh’ [KMOS21] in which any subset of parties required to access/operate on the
shared secret is also sufficient to rerandomize the state of the system, and any offline devices
that don’t participate in this rerandomization can ‘catch up’ after the fact. Formalizing the
task itself is subtle—we settle on a notion that we call unanimous erasure, which can be seen
as the proactive analogue of the standard multiparty computation notion of ‘security with
unanimous abort’ [FGH+02].

Achieving unanimous erasure even in the (2, 3) case is non-trivial, intuitively because of
the inherent unfairness of two-party computation [Cle86] combined with the fact that private
channels are not verifiable—this may create a situation where an honest online party is unable
to obtain an update message to send the offline server, while its corrupt counterparty may
(or may not) have already sent such a message via its private channel to the offline server to
induce a share refresh.
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As a first step, we make use of a public ledger to construct an offline refresh mecha-
nism for (2, n) threshold Schnorr/EdDSA signatures, via a novel interleaved threshold sign-
ing technique. Our use of the ledger is immediately compatible with the way that existing
cryptocurrency wallets already use the blockchain.

The ECDSA scheme is generally more challenging to decentralize due to its non-linear
signing equation. Threshold ECDSA can be constructed using two-party multiplication as
a building block [DKLs18, DKLs19, LN18, GG18]. We proceed with an instantiation based
on Oblivious Transfer (OT), as it uses tools native to the ECDSA signature, while being
computationally light [DKLs18, DKLs19]. We then devise a proactivization technique for
the state that it induces via Beaver’s OT preprocessing method [Bea95]. We subsequently
construct a signing protocol for (2, n) threshold ECDSA with support for offline refresh
that extends our Schnorr techniques, and show empirically that our refresh mechanism adds
reasonable computational overhead (14%–24%) to existing threshold ECDSA protocols.

Finally, we show that our definition of offline refresh is too strong to satisfy for (t, n)
threshold schemes (when t > 2) in a model that allows a random oracle and an ideal ledger,
by means of a novel proof.

Theorem 1.2.7. (Informal) For any integers n > t > 2, it is impossible for a (t, n) threshold
signature scheme to achieve resilience to t − 1 malicious corruptions while also permitting
an offline refresh protocol (with unanimous erasure) with only 2t− 2 online devices.

1.2.4 Stateless Deterministic Signing

Another issue to consider for the long-term security of a system is state reuse upon a reset. In
particular, during the lifetime of a system, downtime can be incurred due to scheduled mainte-
nance or even adversarial attacks. Restarting the system (eg. by reloading a Virtual Machine
with a snapshot) may resume its operation from a stale state, which can be problematic for
cryptographic applications as we discuss below. General solutions to this problem at the sys-
tems level are constructed under the umbrella of ‘state continuity’ [PLD+11, SP16, MAK+17],
however they require additional physical assumptions such as helper servers or slow, expensive
trusted hardware.

Most threshold signing protocols do not critically rely on updating state as written,
however they do rely on a supply of fresh uniform randomness. As good entropy is scarce
in practice, this randomness is typically obtained from a pseudorandom number generator.
Reusing state in this context is equivalent to reusing randomness, which in turn is known to
entirely void any security guarantees of ECDSA/Schnorr—in fact even a few bits of bias in
their nonce generation is known to permit complete leakage of their secret keys [HS01, Hen22].
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In the single signer setting where the signing key is available in its entirety this issue
is easily solved by deriving nonces as the result of applying a PRF on the message to be
signed, an approach that is explicitly specified by EdDSA [BDL+12]. This makes signing
deterministic, and stateless in that state need not be updated (nor fresh randomness sampled)
after the one-time key generation phase.

We study how to extend stateless deterministic signing to multiparty Schnorr, as the naive
application of the single-party technique is known to fail in the multiparty case [MPSW19].
Our resulting dishonest majority threshold Schnorr scheme [GKMN21] makes use of novel
gadgets for garbled circuits and Committed Oblivious Transfer.

Theorem 1.2.8. (Informal) There is an n-party threshold Schnorr protocol where signing
does not require fresh randomness nor the ability to update state. The protocol makes blackbox
use of the group and hash function used to instantiate Schnorr (but non-blackbox use of a
PRF), and the public key operations that a party is induced to perform when signing a message
is O(n) exponentiations.

We estimate that for several useful real-world parameters, our stateless deterministic
threshold signing protocol will induce a lower latency than using trusted hardware for general
state continuity.

1.3 Thesis Organization

In Chapter 2 we establish the notation, model, and tools with which our results are achieved.
Chapter 3 presents the background for our results, along with an overview of our techniques.
The subsequent chapters contain the technical details—Chapter 4 pertains to signature ag-
gregation and straight-line extraction, Chapter 5 to derandomizing threshold signing state-
lessly, and Chapter 6 to achieving proactive security with a natural communication pattern.
Finally, we give our concluding remarks in Chapter 7.
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Chapter 2

Preliminaries

2.1 Notation

Throughout this paper, we use κ as the security parameter, and (G, G, q) to represent the
elliptic curve over which signatures are calculated, where G is the group of curve points, G
the curve generator, and q the order of the curve. Curve points are represented in |q| = 2κ
bits, where κ is the security parameter. Curve points are denoted with capitalized variables
and scalars with lower case. We use = for equality, := for assignment,← for sampling from a
distribution, ≈c for computational indistinguishability, and ≡s for statistical indistinguisha-
bility.

2.2 ECDSA

ECDSA is parameterized by a group G of order q generated by a point G on an elliptic curve
over the finite field Zp of integers modulo a prime p. Assuming a curve has been fixed, the
ECDSA algorithms are as follows [KL15]:

Algorithm 2.2.1. Gen(1κ)
1. Uniformly choose a secret key sk← Zq.

2. Calculate the public key as pk := sk ·G.

3. Output (pk, sk).
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Algorithm 2.2.2. Sign(sk ∈ Zq,m ∈ {0, 1}∗)
1. Uniformly choose an instance key k ← Zq.

2. Calculate (Rx, Ry) = R := k ·G.

3. Calculate
σ := H(m) + sk ·Rx

k

4. Output σ := (σ mod q, Rx mod q).

Algorithm 2.2.3. Vrfy(pk ∈ G,m ∈ {0, 1}∗, σ ∈ (Zq,Zq))
1. Parse σ as (σ,Rx).

2. Calculate
(r′x, r′y) = R′ := H(m) ·G+Rx · pk

σ

3. Output 1 if and only if (r′x mod q) = (Rx mod q).

2.3 Schnorr/EdDSA

Like ECDSA, (elliptic curve based) Schnorr is parameterized by a group G of order q gener-
ated by a point G on an elliptic curve over the finite field Zp of integers modulo a prime p.
Assuming a curve has been fixed, the Schnorr generation algorithm is the same as ECDSA,
and signing and verification are as follows:

Algorithm 2.3.1. Sign(sk ∈ Zq,m ∈ {0, 1}∗)
1. Uniformly choose an instance key k ← Zq.

2. Calculate (Rx, Ry) = R := k ·G.

3. Calculate
σ := H(pk, R,m) · sk + k

4. Output σ := (σ mod q, Rx mod q).
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Algorithm 2.3.2. Vrfy(pk ∈ G,m ∈ {0, 1}∗, σ ∈ (Zq,Zq))
1. Parse σ as (σ,Rx).

2. Calculate
(r′x, r′y) = R′ := σ ·G−H(pk, R,m) · pk

3. Output 1 if and only if (r′x mod q) = (Rx mod q).

The EdDSA scheme is essentially identical to the algorithm described above, with the
exception that rather than uniformly sampling k, EdDSA samples a key sd for a PRF F
during key generation, and computes k = F(sd,m) when signing a message.

2.4 Standard Helper Functionalities

Several of the protocols in this thesis are written and proven in secure in the Universal
Composability framework of Canetti [Can01]. In this section, we recall some standard func-
tionalities necessary for the hybrid models in which we present our protocols.

We make use of UC Commitments, as described below.

Functionality 2.4.1. FCom. Commitments
This functionality allows a sender S to commit to an indexed message, and reveal it at
a later point in time. The sender’s message remains secure iff an index is never reused
for a different message. Additionally any index that is ‘revealed’ subsequently offers no
security when reused. All messages are adversarially delayed.

Initialize: Wait for (init) from both parties, and store (init) in memory.

Commit: Upon receiving (commit, ind,m) from S, if (init) exists in memory,

• If R is not corrupt, store (ind,m) in memory and send (committed, ind) to R

• Otherwise:

1. If (ind,m′) exists in memory such that m 6= m′ then send (reused-index,m′,m)
to R

2. If (index-used, ind) exists in memory, then send (revealed-index, ind,m) to R

3. If neither of the previous conditions hold, then store (ind,m) and send (committed, ind)
to R
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Reveal: Upon receiving (reveal, ind) from S, if (ind,m) exists in memory, then send
(deommitted,m) to R. Store (index-used, ind) in memory.

We now describe a functionality to commit to a proof of knowledge of discrete logarithm.

Functionality 2.4.2. Committed ZKPoK for Discrete Log
(
FRDL

Com−ZK

)
This functionality is parameterized by the party count n and the elliptic curve (G, G, q).
In each instance, one party Pi is the prover, and the others verify.

Commit Proof: On receiving (sid, com-proof, x,X, I) from party Pi where x ∈ Zq and
X ∈ G, if (sid, com-proof, ·, ·, ·) does not exist in memory, then send (sid, committed, i)
to every party Pj for j ∈ I and store (com-proof, x,X, I) in memory.

Decommit Proof: On receiving (sid, decom-proof) from party Pi, if there exists in
memory a record (sid, com-proof, x,X), then:

1. If X = x ·G, send (sid, accept, X) to every party Pj for j ∈ [n].

2. Otherwise send (sid, fail) to every Pj for j ∈ [n].

Instantiating this functionality can be done with Schnorr’s proof of knowledge of discrete
logarithm Sigma protocol, plugged into any straight-line extractable sigma protocol to NIZK
compiler in the random oracle model [Fis05].

Functionality 2.4.3. Prove all-but-one discrete logarithms
(
FRDL

( `
`−1)ZK

)
This functionality is parameterized by two parties P and V , and the elliptic curve
(G, G, q). On receiving (prove, I, (xi)i∈I , (Xi)i∈[n]) from P for an integer n and set of

indices I ⊂ [n] such that |I| = n− 1, xi ∈ Zq, Xi ∈ G, if xi ·G = Xi for each i ∈ I, then
send (proven, (Xi)i∈[n]) to V .

Instantiating this functionality can be done with Schnorr’s proof of knowledge of discrete
logarithm Sigma protocol in conjunction with the transformation of Cramer, Damgård and
Schoenmakers to prove logical combinations of instances with Sigma protocols [CDS94],
plugged into any general straight-line extractable sigma protocol to NIZK compiler in the
random oracle model [Pas03]. This Sigma protocol even achieves Strong Special Soundness,
as necessary for the NIZK compiler that we construct in this thesis.

FCoin This is a coin tossing functionality, which allows any pair of parties to publicly sample
a uniform Zq element.
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Functionality 2.4.4. Coin Tossing (FCoin)
This functionality is run with two parties P0, P1.

On receiving (sample-element, idcoin, q) from both P0, P1, sample x← Zq uniformly
and send (idcoin, x) to both parties as adversarially delayed output.

Realizing this functionality is easy in the FCom-hybrid model: P0 samples x0 ← Zq and
sends it to FCom, following which P1 samples x1 ← Zq and sends it to P0. Finally P0 instructs
FCom to release x0 and the output is defined as x = x0 + x1.

FMUL Secure two party multiplication functionality, in simplified form.

Functionality 2.4.5. Secure two party multiplication (FMUL)
This functionality is run with two parties P0, P1.

On receiving (input, idcoin, x0) from P0 and (input, idcoin, x1) from P1 such that
x0, x1 ∈ Zq, sample a uniform (t0, t1)← Z2

q conditioned on

t0 + t1 = x0 · x1

and send t0 to P0 and t1 to P1 as adversarially delayed output.

For a more nuanced functionality that can be efficiently instantiated, along with such
an instantiation based on Oblivious Transfer (which we describe how to proactivize in this
thesis), we refer the reader to the work of Doerner et al. [DKLs19].

2.5 Sigma Protocols and Zero-knowledge

The standard definition of a Sigma protocol is given below.

Definition 2.5.1. [Dam02] A Sigma protocol for relation R is a three move public coin
protocol between a prover PΣ and verifier VΣ that has the following properties:

• Completeness: If PΣ (with private input w) and VΣ with public input x such that (x,w) ∈
R execute the protocol honestly, then the protocol always terminates with V accepting.

• Two-special soundness: There exists an efficient extractor Ext which given as input the
accepting conversations T = (a, e, z) and T ′ = (a, e′, z′) for statement x such that e 6= e′,
outputs w such that (x,w) ∈ R.
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• Honest verifier zero-knowledge: There exists an efficient simulator S which upon
input a statement x and challenge e outputs a, z such that (a, e, z) is an accepting con-
versation. Moreover when e is uniformly chosen, (a, e, z) is distributed identically to an
execution of the honest protocol.

A strong-special sound Sigma protocol—which is a notion that we introduce in this
paper—additionally has the following property:

Definition 2.5.2. A strongly two-special sound Sigma protocol for relation R is a three move
protocol between a prover P and verifier V that is complete and honest verifier zero-knowledge
as per Definition 2.5.1, and additionally has the following property:

• Strong two-special soundness: There exists an extractor Ext which given as input the
accepting conversations T = (a, e, z) and T ′ = (a, e′, z′) for statement x such that T 6= T ′,
outputs w such that (x,w) ∈ R.

Next we present the definition of straightline extraction as given by Pass.

Definition 2.5.3 ([Pas03]). We say that an interactive proof with negligible soundness (P, V )
for the language L ∈ NP, with the witness relation RL, is straight-line witness extractable in
the RO model if for every PPT machine P ∗ there exists a PPT witness extractor machine
E such that for all x ∈ L, all y, r ∈ {0, 1}∗, if P ∗x,y,r convinces the honest verifier with non-
negligible probability, on common input x, then E(viewV [(P ∗x, y, r, V (x))], `) ∈ RL(x) with
overwhelming probability, where P ∗x,y,r denotes the machine P ∗ with common input fixed to
x, auxiliary input fixed to y and random tape fixed to r, viewV [(P ∗x,y,r, V (x))] is V ’s view
including its random tape, when interacting with P ∗x,y,r, and ` is a list of all oracle queries
and answers posed by P ∗x,y,r and V .

We recall Fischlin’s transformation in Figure 2.1.

2.6 Garbling Schemes and Zero-knowledge

We first recall the syntax of garbled circuits, in the language of Bellare et al. [BHR12]. A
garbling scheme G comprises: a garbling algorithm Gb that on input a circuit C produces
a garbled circuit C̃ along with encoding information en and decoding information de. The
encoding algorithm En maps an input x to a garbled input X̃ relative to en. The evaluation
algorithm Ev then evaluates C̃, X̃ to produce a garbled output Ỹ , which is then decoded by
De using de to a clear output y. The verification algorithm Ve given C̃, en validates their
well-formedness, and extracts the decoding information de if they are so.
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Protocol πFis05
NIZK

The prover P and verifier V are both given the statement x while the prover also has a witness
w for the statement x ∈ L. The security parameter κ defines the integers r, `, t. These integers
are related as r · ` = 2κ, and t = dlog κe · `. Both parties have access to a Random Oracle
H : {0, 1}∗ 7→ {0, 1}`. The underlying sigma protocol is given by Σ = ((PaΣ,PzΣ),VΣ).

PH(x,w):

1. For each i ∈ [r], compute (ai, statei)← PaΣ(x,w)

2. Set a = (ai)i∈[r], and initialize ei = −1 for each i ∈ [r]

3. For each i ∈ [r], do the following:

(a) If ei > t, abort. Otherwise increment ei and compute zi = PzΣ(statei, ei)

(b) If H(a, i, ei, zi) 6= 0`, repeat Step 3a

4. Output π = (ai, ei, zi)i∈[r]

VH(x, π):

1. Parse (ai, ei, zi)i∈[r] = π, and set a = (ai)i∈[r]

2. For each i ∈ [r], verify that H(a, i, ei, z1) = 0` and VΣ (x, (ai, ei, zi)) = 1, aborting with
output 0 if not

3. Accept by outputting 1

Figure 2.1: Fischlin’s Transformation [Fis05]

For the purpose of the paper, we will assume that G is projective [BHR12], i.e. garbled
input X̃ = (eni,xi)i∈[|x|]. We require the garbling scheme to be privacy-free [FNO15], i.e.
satisfy two main security properties:

• Authenticity1: let C̃, en, de ← Gb(C, 1κ) and X̃ ← En(x, en), and ŷ 6= C(x) for an
adversarially chosen C, x, ŷ. It should be computationally infeasible for any PPT adversary
A(C̃, X̃) to output Ẑ such that De(de, Ẑ) = ŷ.

1This is slightly weaker than the standard notion of authenticity [BHR12], which requires that any output
other than C(x) is hard to forge. It is sufficient for ZKGC if it is hard to forge an output only for any ŷ 6= C(x)
specified before C̃, X̃ are generated. Our gadget achieves this weaker notion, however it can easily be upgraded
to the stronger notion if required by executing the gadget twice with independent randomness, and checking
that they decode to the same output.
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• Verifiability: given C̃, en, the algorithm Ve produces decoding information de if C̃ is
well-formed (i.e. a legitimate output of Gb). Alternatively if C̃ is malformed, Ve outputs
⊥ with certainty.

Additionally we need ‘Uniqueness’, i.e. that ifC(x) = C(x′), then Ev(C̃,En(en, x)) = Ev(C̃,En(en, x′))
for any valid C̃, en. We give the formal definitions in Appendix B.3.

2.6.1 Committed Oblivious Transfer

Committed Oblivious Transfer (COT) offers the same interface as regular OT, but it also
allows a ‘reveal’ phase where the both the sender’s messages are revealed to the receiver,
while the receiver’s choice bit stays hidden. We encapsulate this notion (along with addi-
tional bookkeping to account for statelessness) in functionality F∗COT. Additionally in order to
facilitate a round compression optimization in the higher level protocol, F∗COT lets the sender
lock its messages with a ‘key’, and reveals these messages upon the receiver presenting the
key. We defer the formal details to Section 5.5.

2.6.2 Zero-knowledge from Garbled Circuits

We are now ready to recall a description of the original ZKGC protocol [JKO13]. The prover
P holds a private witness x (of which the ith bit is xi), such that C(x) = 1 for some public
circuit C.

1. The verifier V garbles the verification circuit, C̃, en, de← Gb(C, 1κ). Both parties engage
in |x| parallel executions of Committed Oblivious Transfer, with the following inputs in
the ith instance: V plays the sender, and inputs eni,0, eni,1 as its two messages. P plays
the receiver, and inputs xi as its choice bit in order to receive eni,xi .

2. P assembles X̃ = (eni,xi)i∈[|x|] locally. V sends C̃ to P , who then computes Ỹ ← Ev(C̃, X̃),
and sends Commit(Ỹ ) to V .

3. V opens its randomness from all the COTs to reveal en in its entirety

4. P checks Ve(C̃, en) = 1, and if satisfied decommits Commit(Ỹ ). V accepts iff De(Ỹ , de) = 1

Intuitively the above protocol is sound due to authenticity of the garbling scheme: a malicious
P ∗ who inputs x′ such that C(x′) 6= 1 to the OT will receive X̃ ′ such that De(Ev(C̃, X̃ ′), de) =
0, and so to make V accept P ∗ will have to forge a valid Ỹ that is not the outcome of ‘hon-
est’ garbled evaluation. Zero-knowledge comes from the verifiability and unique evaluation
properties of the garbling scheme: an incorrect garbled circuit C̃∗ will be rejected in step 4
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by P (who has not sent any useful information to V yet), and conditioned on C̃ being a valid
garbled circuit, the uniqueness property hides which input was used to arrive at the output.

2.6.3 Extensions to ZKGC

The work of Chase et al. [CGM16] examines how to integrate proofs of algebraic statements
into the garbled circuit based zero-knowledge framework, in order to prove composite state-
ments. Roughly, their technique has P commit to a MAC of the witness z = ax+b (computed
via the garbled circuit/OT) along with Ỹ using a homomorphic commitment scheme. Once V
reveals the randomness of the circuit, a, b become public and P leverages the homomorphism
of the commitment in order to prove additional algebraic statements about the witness via
Sigma protocols, such as the relation between x, z.

sequently Ganesh et al. [GKPS18] showed how to compress the original [JKO13] protocol
to three rounds using a conditional disclosure of secrets technique, essentially by having V
encrypt the OT randomness necessary for step 4 using the correct Ỹ .

2.7 Proactive Security Notation and Assumptions

Throughout our exposition on proactive security, we fix the corruption threshold as t = 1
and hence formulate all of our definitions assuming one malicious adversarial corruption.

Network Model We assume a synchronous network, as already required by recent thresh-
old signature schemes [GG18, LNR18, DKLs19]. For the blockchain model, we follow the syn-
chronous functionality of Kiayias et al. [KZZ16]. In this functionality, the blockchain only
progresses after all parties finish their current round, therefore parties are always synchro-
nized during the protocol run.

Additionally, we make the necessary assumption of proactive channels that support de-
livery to offline parties, discussed further in Section 6.2.1.

Protocol Input/Output Notation for (2, n) setting The (2, n) proactively secure pro-
tocols in this thesis are described for any pair of parties indexed by i, j ∈ [n]. In particular,
any two parties Pi, Pj out of a group of n parties P can run a protocol π with private inputs
xi, xj to get their private outputs yi, yj respectively. For ease of notation since all of our
protocols have the same instructions for each party, we choose to describe them as being run
by Pb with P1−b as the counterparty. The general format will be

yb ← π(1− b, xb)
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to denote that Pb gets output yb by running protocol π with input xb and counterparty P1−b.
For instance if π is run between P2 and P6, the protocol as described from the point of view
of P6 is interpreted with b ≡ 6 and 1− b ≡ 2.

Lagrange Coefficients λji (x), λij(x) are the Lagrange coefficients for interpolating the
value of a degree-1 polynomial f at location x using the evaluation of f at points i and j.
In particular,

λji (x) · f(i) + λij(x) · f(j) = f(x) ∀x, i, j ∈ Zq

Each λji (x) is easy to compute once i, j, x are specified.

2.8 Blockchain Model

We detail here the relevant aspects of the underlying blockchain system that is required for
our proactively secure (2, n) ECDSA protocol.

A Transaction Ledger Functionality A transaction ledger can be seen as a public
bulletin board where users can post and read transactions from the ledger. As it was shown
in [GKL15], a ledger functionality must intuitively guarantee the properties of persistence
and liveness, that we informally discuss next.

• Persistence: Once a honest user in the system announces a particular transaction as final,
all of the remaining users when queried will either report the transaction in the same
position in the ledger or will not report any other conflicting transaction as stable.

• Liveness: If any honest user in the system attempts to include a certain transaction into
their ledger, then after the passing of some time, all honest users when queried will report
the transaction as being stable.

We encapsulate the ledger in a functionality GLedger inspired by the functionality of [KZZ16].

On the Supported Type of Ledgers. For simplicity, we present our results on a syn-
chronous public transaction ledger (e.g., Bitcoin [Nak09] or Ethereum [Woo]) where there is
a known delay for the delivery of messages. We note however that synchrony of the ledger is
not a necessary assumption for our protocol. In fact, any ledger satisfying the standard prop-
erties of persistence and liveness as defined in [GKL15] can be employed by our protocol. As
it was shown in [GKL15], Bitcoin satisfies both properties for an honest majority of mining
power under the assumption of network synchrony. However, if one is willing to trade off the
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honest majority assumption for a partially synchronous network,2 we point out that partially
synchronous Byzantine Fault Tolerant (BFT) ledgers such as Algorand [CM19] can also be
employed by our protocol due to how we define the corruption model, where the adversary
“waits” for a full refresh before changing corruptions.

Without loss of generality we assume that every transaction that is included in the chain
becomes final and will not be rolled-back. For a more detailed discussion we refer the reader
to [BMTZ17]. We give a formal definition of the ledger functionality below.

Functionality 2.8.1. Global Ledger Functionality (GLedger)
The functionality GLedger is globally available to all participants. The functionality is
parameterized by a function Blockify, a predicate Validate, a constant T, and variables
chain, slot, clockTick and buffer, and a set of parties P . Initially set chain := ε, buffer := ε,
slot := 0 and clockTick := 0.

• Upon receiving (Register, sid) from a party P , set P := {P} ∪ P and if P was not
registered before set dP := 0. Send (Register, sid, P ) to A.

• Upon receiving (ClockUpdate, sid) from some party Pi ∈ P set di := 1 and forward
(ClockUpdate, sid, Pi) to A. If dP = 1 for all P ∈ P then set clockTick := clockTick +
1, reset dP := 0 for all P ∈ P and execute Chain extension.

• Upon receiving (Submit, sid, tx) from a party P , If Validate(chain, (buffer, tx)) = 1
then set buffer := buffer||tx.

• Upon receiving (Read, sid) from a party P ∈ {A∪P}, If P is honest then set b := chain
else set b := (chain, buffer). Then return the message (Read, sid, b) to party P .

• Upon receiving (Permute, sid, π) from A apply permutation π to the elements of
buffer.

Chain extension: If |clockTick− (T · slot)| > T then set
chain := chain||Blockify(slot, buffer) and buffer := ε, and subsequently send
(ChainExtended, sid) to A.

The functionality GLedger is parameterised by a set P of participants P ; for a new partic-
ipant to join the protocol it must send a message Register to the GLedger functionality. We
parameterise GLedger by a constant T that denotes the gap in clock tick units between two

2It is a well known fact that it is impossible to achieve consensus on partially synchronous networks
under honest majority [DLS88].
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subsequent slots in the ledger. Without loss of generality, one could assume the existence of
a function Tick2Time that maps clock ticks to physical time, in the same spirits of [KZZ16].
For concreteness, in such a case, the value of T would be 10 minutes in Bitcoin.

The functionality GLedger is synchronous, and the clockTick variable is incremented only
after all the parties send a message ClockUpdate to GLedger. A new block is created and
appended to the chain only after T clock ticks have elapsed since the last block creation; in
the meantime, parties can submit new transactions to the ledger with the message Submit,
and read all the contents of the ledger with the message Read. The adversary A can permute
the contents of the current transaction buffer, which translates to rearranging the order of
the transactions that will be included in the next block.

We define the predicate Validate that validates the transactions contents and format
against the current chain before including it in the transactions buffer. In existing systems
such as Bitcoin, the Validate predicate checks the signature of the user spending funds. The
function Blockify, as in [KZZ16], handles the processing of the transaction buffer and “packs”
it nicely into blocks.

Global Functionality The simulator for our protocol will not be able to act on behalf
of GLedger. In particular the simulator is only able to use the functionality with the same
priviliges as a party running the real protocol.
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Chapter 3

Background and Technical Overview
of Results

In this chapter, we describe the landscape of the state of the art for each problem that we
discussed in the Introduction, and give a brief technical overview of how our work advances
upon it.

3.1 Schnorr/EdDSA Signature Aggregation [CGKN21]

We view the problem of signature aggregation as that of constructing a compressing proof
of knowledge of a collection of signatures. In particular, there must exist an extractor that
outputs the constituent signatures with roughly the same probability that an adversary
is able to produce an aggregate signature. To our knowledge, there does not exist such a
construction (even for weaker game-based aggregate signatures [BGLS03]) for Schnorr or
ECDSA signatures, besides the generic approach of expressing signature verification as an
arithmetic circuit and proving knowledge of an input with a SNARK [BFH+20]. The current
state of the art SNARKs [LSTW21, BFH+20] for this task require hundreds of milliseconds
per signature that is aggregated, which as we described in the Introduction, induces far too
high a latency for most applications.

Our Approach [CGKN21]. We start by constructing an n-special sound Sigma protocol
to prove knowledge of n Schnorr signatures. Informally the Sigma protocol is the combination
of the following two ideas:

1. Once m, pk, R are determined there is a unique s ∈ Zq that ‘completes’ the signature, and
this is the discrete logarithm of the publicly computable group element S = H(pk, R,m) ·
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pk+R. Proving knowledge of the discrete logarithm of S is therefore equivalent to proving
knowledge of the missing component of the signature. If m, pk are known, it therefore
suffices to provide R and prove knowledge of DLog GS, in order to prove knowledge of the
signature.

2. There is an n-special sound Sigma protocol to simultaneously prove knowledge of the
discrete logarithms of n public group elements at the same bandwidth cost of a single
PoK of DLog [GLSY04].

Combining these ideas yields the following n-special sound Sigma protocol: Upon fixing n
messages mi and signatures (Ri, si)i∈[n] under respective public keys pki, the prover is given a
challenge e ∈ Zq, to which it computes the response z = ∑

i∈[n] si ·ei. The verifier is given the
statement (pki, Ri,mi)i∈[n], challenge e, and the putative Prover’s response z, and validates
them by verifying that z ·G = ∑

i∈[n] e
i · (H(pki, Ri,mi) · pk +Ri).

Theorem 3.1.1. [CGKN21](Informal) There is an n-special sound Sigma protocol to prove
knowledge of n Schnorr signatures, such that the size of the transcript of a single execution
is half the size of a naive concatenation of those signatures.

Applying the Fiat-Shamir transformation to this Sigma protocol yields a non-interactive
proof of knowledge for n Schnorr signatures. In our work we demonstrated empirically
[CGKN21, Table 1] that there is effectively no performance penalty incurred if one were
to use this aggregation scheme rather than the naive concatenation method.

Caveat: Loose Security Proof. Our proof of this construction makes use of the Forking
Lemma [PS00], which unfortunately results in a loss in (bits of) security proportional to the
number of ‘forks’ required to extract the signature (at least two). In particular this means
that in order to retain the same security level, the input signatures have to be doubled in
size, which completely eliminates the 50% compression of the aggregation mechanism.

Achieving Provably Secure Parameters. We explore Fischlin’s transformation [Fis05]
as a method to obtain a non-interactive proof with a tight reduction via ‘straight-line’ ex-
traction, while still retaining close to 50% compression. We found the computational cost of a
naive application of Fischlin’s transformation to be prohibitively high for many applications.
We refer to this naive application of Fischlin’s transformation when we cite [CGKN21] in
the context of straight-line extraction henceforth. We postpone the exact figures to the next
section, as in subsequent work [Ks22]—also contained in this thesis—we improve the cost of
aggregation with straight-line extraction significantly, and provide a detailed comparison.
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3.2 Improved Straight-Line Extraction [Ks22]

We first recall Fischlin’s transformation in order to build intuition for our techniques. The
base unit of the transformation is the following: for the instance x, the Prover computes a
first message a of the Sigma protocol, and finds second and third messages e, z such that
Vx(a, e, z) = 1 and H(a, e, z) = 01 for some `-bit hash function H, where ` ∈ O(log κ).
This is done by starting with e = 0 (and the corresponding response z) and computing
H(a, e, z), iteratively stepping through e, z candidates which verify until the first e, z pair
is found such that H(a, e, z) evaluates to the all-zero string 0. An adversarial prover is able
to produce (a, e, z) such that H(a, e, z) = 0 without querying more than one transcript to
H only if it gets lucky with its first query, which happens with probability 2−`. This base
unit is therefore repeated r = κ/` times to achieve κ bits of soundness; specifically, to bind
these instances together and prevent independent grinding, all of the a messages for the
repeated instances are incorporated into the input to the hash function. For example, for
r = 2 repetitions, the Prover must produce a1, a2, e1, e2, z2, z2 such that H(a1, a2, e1, z1) = 0
and H(a1, a2, e2, z2) = 0 and of course Vx(a1, e1, z1) = 1 and Vx(a2, e2, z2) = 1.
Prover Query Complexity. We refer to the (expected) number of queries that the prover
makes to the random oracle as the prover query complexity. For instance, the Prover query
complexity of Fischlin’s construction as described above is r · 2` = r · 2κ

r , which implies a
tradeoff between r (which governs proof size and verification cost) and the query complexity.
We develop the study of prover query complexity in this work, as part of our study on the
computation cost of straight-line extraction.
A note on exact vs. ‘near’ inversions. The version of the transformation described above
is referred to as the ‘basic’ one by Fischlin. They proceed to tweak the Verifier to accept
‘near’ inversions, where it is sufficient for the Prover to output transcripts τ1, · · · , τr such
that H(τi) is interpreted as a positive integer and ∑iH(τi) < S for some parameter S ≈ r.
The purpose of this change is to reduce the completeness error for the Prover (by increasing
the soundness error). Our discussion on quasi-unique responses is unaffected by this change
as the Prover is still deterministic and the same vulnerability persists. Regarding Prover
query complexity, it is already pointed out in [Fis05] that relaxing this requirement for an
accepting proof increases the soundness error, and adjusting the hash function parameter `
to retain the same r, κ values results in an increase in the expected Prover query complexity.
Consequently we do not discuss the near-inversion variant further in this thesis, and every
reference to Fischlin’s construction will pertain to the basic exact inversion predicate.

1The instance x is also included in the hash, but omitted for clarity.
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3.2.1 Schnorr/EdDSA Signature Aggregation and Computation
Cost

Our motivating practical application is that of aggregating Schnorr/EdDSA signatures with
tight security. As discussed previously, in [CGKN21] we construct a compressing Sigma pro-
tocol to prove knowledge of n Schnorr signatures, to which we apply Fischlin’s transformation
to obtain a non-interactive proof. Roughly, our initial ‘baseline’ scheme is to have the prover
encode the n signatures as the coefficients of a degree n − 1 polynomial f , and output a
proof consisting of (x1, f(x1)), · · · , (xr, f(xr)) such that each H(xi, f(xi)) = 0. We find pro-
ducing such a proof to be computationally intensive, for instance over a minute to aggregate
even hundreds of signatures at a 53% compression ratio2 which induces a prohibitively high
latency for many applications.

Faster Polynomial Evaluation with Curve25519. If we denote the prover query com-
plexity as TAgg, the prover must evaluate f at TAgg points. The first aspect of the prover’s
computation cost that we improve is the cost of producing TAgg evaluations of f . The naive
method to evaluate a degree n polynomial costs n multiplications in Zq, meaning that the
prover performs nTAgg multiplications. The Fast Fourier Transform (FFT) is a well-known
method to speed up polynomial evaluation to O(TAgg log n), and is used in straight-line ex-
tractable proofs for general statements [AHIV17, BCR+19]. Unfortunately the most common
variant of Schnorr in practice—EdDSA—uses the elliptic curve group Curve25519 [Ber06],
whose corresponding base field does not have a sufficiently large multiplicative subgroup
to support the FFT. Asymptotically efficient polynomial evaluation algorithms for general
fields [vzGG13, BCKL21] are not concretely efficient for the parameter range that is relevant
to signature aggregation; we find our method to outperform the state of the art [BCKL21]
by a factor of 5× even for the upper end of our signature aggregation parameters (n = 1024).

We make use of a method by which we can derive a randomly chosen polynomial h of
degree m < n, such that it agrees with f on m points. Deriving h costs n multiplications,
and evaluating h at each point costs m multiplications, which means that we can obtain m
evaluations of f at roughly n+m2 cost rather than the naive nm—a substantial improvement
when m ≈

√
n. A prerequisite to use this method is that Zq must have a multiplicative

subgroup of size m, however unlike the FFT this method is randomized and can be invoked
multiple times using the same subgroup, with negligible probability of producing redundant
evaluations. Curve25519 has multiplicative subgroups of size up to 132, which provides nearly
optimal values of m ≈

√
n for the parameters relevant to signature aggregation.

2The r parameter governs a tradeoff between query complexity and compression ratio—a lower ratio is
better compression, and 50% is the lowest possible [CGKN21]
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Theorem 3.2.1. [Ks22]Given a prime q, degree n polynomial f ∈ Zq[X], and primitive kth

root of unity ω ∈ Zq, there is an algorithm that outputs a list of k distinct points that lie on
f at a cost of k2 + n+ 2 log k multiplications and k(k − 1) + n additions in Zq.

The intuition for the method is as follows: we decompose f into m different degree n/m
polynomials fi such that f(x) = ∑

i∈[m]
xi · fi(xm). We then sample α ← Zq, and derive

h(x) = ∑
i∈[m] x

i · fi(αm). Observe that for any primitive mth root of unity ω ∈ Zq and for
any j ∈ [m], it holds that fi((αωj)m) = fi(αm) for every fi. Consequently, h agrees with f
on the points {α · ωj}j∈[m].

Better Prover Query Complexity via Collisions. We change the underlying proof
of work predicate to that of finding collisions rather than inversions of the hash function.
In particular, the prover outputs a proof consisting of (x1, f(x1)), · · · , (xr, f(xr)) such that
H(x1, f(x1)) = · · · = H(xr, f(xr)). For the same r and soundness level (note that ` has to
be adjusted), analytical estimates on multicollision running times [vM39, Pre93] place the
query complexity TAgg induced by this collision predicate at up to 2× better than that of
inversions.

Theorem 3.2.2. (Informal) Let r be an integer, and H1 and H2 be random oracles with out-
put lengths `1 and `2 bits respectively. Let inv and col be predicates such that invH1(x1, · · · , xr) =
1 iff H1(x1) = · · · = H1(xr) = 0`1, and colH2(x1, · · · , xr) = 1 iff H2(x1) = · · · = H2(xr). If
r, `1, `2 are constrained so that Pr[invH1(1, · · · , r)] = Pr[colH2(1, · · · , r)], then finding a sat-
isfying assignment for colH2 is faster than finding one for invH1.

Combining these improvements (along with a tighter analysis that makes the proof of
work easier by 2–8×) yields an improvement of a factor of 70×–200× for the most aggres-
sive compression settings of the baseline approach reported in our prior work (see Table 3.2.3).
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n r [CGKN21] Improved [Ks22] Improvement

AggVer(ms) AggSign AggVer(ms) AggSign

512 16 137 167 ± 13.0 s 134 2.2 ± 0.07 s 76x

1024 32 485 85.5 ± 4.8 s 452 ± 6 350 ± 10 ms 244x

256 16 78 40.6 ± 2.8 s 72 901 ± 36 ms 45x

512 32 258 20.1 ± 1.4 s 255 136 ± 3 ms 147x

128 16 43 9.9 ± 0.74 s 42 363 ± 8 ms 27x

256 32 147 5.5 ± 0.31 s 143 54 ± 1 ms 101x

32 8 5.7 84.2 ± 11.6 s 5.6 7.8 ± 0.5s 11x

64 16 21 2.9 ± 0.25 s 23 78 ± 1 ms 37x

128 32 80 1.4 ± 0.08 s 84.5 20 ms 70x

Table 3.2.3: Comparing the computation cost for aggregation and aggregate-verification
of n Ed25519 signatures with SHA-256 hash function used for H1 on the same parameters
from [CGKN21]. The benchmarks were run using the publicly available code for [CGKN21],
and a new Rust implementation of our method and the Criterion rust framework; times
show a 95% confidence interval over at least 30 runs on one Intel i7-10710U core running
at 3.9Ghz with 32 Gb of memory. Intervals are omitted when less than 1ms. While the
aggregation methods can easily be parallelized, each of these benchmarks only use 1-core to
properly compare against the implementation from [CGKN21]. The best compression ratios
are achieved on the first row at roughly 53%; the last row in the table achieves the worst
ratio around 75%.

Collisions Improve Fischlin’s NIZK. We generalize this principle and apply it to Fis-
chlin’s transform for NIZKPoKs as well, by using a collision pair base unit as a drop-in
replacement for inversion base units. In particular, a collision pair base unit instructs the
prover to find pairs of accepting Sigma protocol transcripts (a, e, z) and (a′, e′, z′) such that
H((a, a′), e, z) = H((a, a′), e′, z′). A forgery requires a collision within the first two queries
to the random oracle, which happens with probability 2−` for an `-bit hash function. This
serves as a drop-in replacement for a pair of inversion base units that achieve a combined
` bits of soundness. Analyzing the query complexity is difficult as this is a chosen prefix
collision [SLdW07], and so we test the new proof-of-work problem empirically and observe

44



an 11%− 15% improvement for common practical parameters. We report our results in Ta-
ble 4.4.1 in Section 4.4.

A Query Complexity Lower Bound. We tighten Fischlin’s asymptotic lower bound on
hash queries for a NIZK with a non-programming extractor [Fis05, Proposition 2] to derive
Lemma 4.4.2.

Lemma 3.2.4. [Ks22](Informal)If a NIZKPoK scheme for a hard relation with a straight-
line extractor (in the non-programmable ROM) induces a verifier to make V queries to the RO
for a κ-bit security level, then the prover must on average make at least POPT[V, κ] = (V !·2κ) 1

V

queries in generating a proof.

Intuitively if the prover makes P queries of which V are checked by the verifier,
(
P
V

)
must be at least 2κ to achieve a 2−κ soundness error. We note that this bound applies to
schemes with perfect completeness, and while Lemma 4.4.2 is sufficiently general to derive
a strict bound for probabilistic schemes, POPT serves as a useful reference point, and will be
the quantity that we refer to as ‘optimal’ prover query complexity.

We show that the expected query complexity of Fischlin’s construction is never better
than

√
2POPT in any non-trivial parameter regime.

We note that Pass’ transform (and equivalently Unruh’s transform3 [Unr15]) has a (strict)
query complexity that is twice that of the expected prover complexity of Fischlin in any non-
trivial parameter regime, and so we do not consider Pass/Unruh going forward.

Achieving POPT. For a special class of r-simulatable Sigma protocols (i.e. r transcripts
are simulatable at once) we show that a NIZKPoK with prover query complexity POPT can
be achieved for a range of non-trivial parameters. We construct this NIZK by applying
a multicollision predicate akin to our signature aggregation construction, where the prover
must produce transcripts (a, e1, z1), · · · , (a, er, zr) such thatH(a, e1, z1) = · · · = H(a, er, zr).
We make use of classic results on multicollision complexities [vM39, Pre93] to analyze the
expected prover query complexities, which we denote TCol.

Lemma 3.2.5. [Ks22](Informal) There is a NIZPoK for the DLog relation with a straight-
line extractor (in the non-programmable ROM) where the prover makes roughly POPT[V, κ]
queries on average for V up to 5, and κ = 128 onwards.

3For the purpose of prover query complexity, Unruh’s transform can be seen as Pass’ transform without
the Merkle trees to reduce the number of repetitions of the base Sigma protocol.
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Note that this transform is limited in applicability—we show how Schnorr’s proof of
knowledge of discrete logarithm can be made r-simulatable, but leave it as an interesting
problem for future work to expand the scope of this transform.
Wider Application of Our Techniques. Our techniques for improving the computation
cost of Signature Aggregation can be applied directly to the threshold cryptography context
for the same signature schemes. For example, the most expensive component of Distributed
Key Generation (DKG) for the canonical (t, n) threshold Schnorr scheme [Lin22, Protocol
6.1] is the NIZKPoK to prove knowledge of a polynomial that is committed in the curve
group. The instantiation for this NIZKPoK suggested by Lindell [Lin22] is the batch PoK
of Discrete Log [GLSY04] compiled to a NIZK using Fischlin’s transform—i.e. exactly the
same as EdDSA signature aggregation (with an extra blinding factor). Consequently, DKG
for (t, n) EdDSA can benefit from roughly the same speedup that we report for signature
aggregation.

3.2.2 Extending the Applicability of Fischlin’s Transform

A technicality in Fischlin’s transformation arises when it is possible for the Prover to iterate
through verifying transcripts without having to change the challenge message e. Consider a
Sigma protocol that permits an adversary without a witness to sample (a, e), z1, z2, · · · zn such
that each (a, e, zi) is a valid transcript. Applying Fischlin’s transformation will not produce
a sound NIZK because an adversary can simply step through H(a, e, z1), · · · , H(a, e, zn) to
find a pre-image of 0 whereas an extractor may not be able to extract a witness from this
sequence of queries because they do not satisfy the requirements for 2-special soundness.

Although it is folklore that many Sigma protocols allow for extraction even given ac-
cepting transcripts (a, e, z1), (a, e, z2) (examples include the famous logical OR composi-
tion [CDS94], opening of a Pedersen commitment, etc. for which this is simply a matter of
adjusting syntax), Fischlin’s transform only applies to protocols that support a quasi-unique
response property, given below.

Definition 3.2.6. [Fis05, Definition 1] A Sigma protocol has quasi-unique responses if for
every PPT algorithm A, for system parameter k and (x, a, e, z1, z2) ← A(k), we have as a
function of k that the following probability is negligible:

Pr [Vx(a, e, z1) = Vx(a, e, z2) = 1 ∧ z1 6= z2]

Here the system parameter k can be an arbitrarily structured object sampled according
to some distribution, for eg. an RSA modulus or h ∈ G such that DLog g(h) is unknown, as
required in Okamoto’s identification protocols [Oka93].
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Interestingly, Fischlin’s proof also uses this property to argue zero-knowledge. It is less
obvious as to why quasi-unique responses is relevant for this purpose. In the absence of an
explicit attack on the zero-knowledge property when quasi-unique responses does not hold,
one may even conclude that it is simply an artefact leveraged to prove the simulation secure.

We show this intuition to be false. In particular, we construct an explicit attack on
Witness Indistinguishability when Fischlin’s transformation is applied to a common Sigma
protocol for a language with two witnesses. This attack is the result of combining two facts:

• Fischlin’s Transformation is Deterministic. Once the Sigma protocol first messages
have been sampled, the prover’s algorithm is deterministic.

• Some Sigma Protocols Reveal the Prover’s Randomness. In particular Schnorr’s
proof of knowledge of discrete logarithm reveals a linear combination of the witness and the
prover’s randomness—knowledge of the witness therefore allows an attacker to reconstruct
the prover’s randomness.

It is therefore possible for an attacker to retrieve the prover’s random tape when given a
Fischlin-compiled Schnorr proof, and replay the prover’s steps and reconstruct the proof
string. To demonstrate why this is problematic, we examine the effect of this retrieve-and-
replay strategy given a Fischlin-compiled proof of knowledge of one-out-of-two discrete loga-
rithms [CDS94]. In particular if a prover uses one of x0, x1 to prove knowledge of x0 ·G∨x1 ·G,
an attacker with knowledge of say x0 can execute the retrieve-and-replay strategy to test if
x0 was indeed used in producing the proof string. We show that if the attacker uses x0 to
execute this strategy on a proof that was actually produced using x1, there is a non-negligible
chance that the proof string that the attacker reconstructs will be different from the given
one (as opposed to a proof string produced using x0, which always matches the reconstruc-
tion). Intuitively, this is because the proof string serves as a record of how many Sigma
protocol transcripts had to be hashed before a solution to the proof of work was found—
recomputing the proof using a different witness might result in finding a solution by hashing
fewer transcripts.

Theorem 3.2.7. [Ks22](Informal) Fischlin’s transformation does not preserve Witness In-
distinguishability when applied to the Sigma protocol to prove knowledge of one of two Discrete
Logarithms.

We note that our attack runs entirely in the random oracle model and does not exploit
concrete instantiations of the hash function, unlike previous work that studies the concrete
instantiability of Fischlin’s transform [ABGR13].
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Randomization Fixes the Problem. We formalize a notion of strong special soundness
to capture the folklore notion that accepting transcripts of the form (a, e, z1),(a, e, z2) yield a
witness. This is a subtle change in the definition of special soundness; luckily many natural
Sigma protocols (including those with multiple witnesses for which Fischlin’s transformation
is shown not to work as above) satisfy this property, including every regular special sound
Sigma protocol that supports quasi-unique responses.

We then show how to randomize Fischlin’s transformation to erase all traces of the witness
from the compiled proof strings, and prove that zero-knowledge is guaranteed unconditionally
for any strong special sound Sigma protocol. Intuitively this is achieved by having the prover
step randomly through the challenge space to find a solution to the proof of work, and this
form of randomization is directly compatible with a collision-based proof of work.

Theorem 3.2.8. [Ks22](Informal) Any Strong Special Sound Sigma protocol can be com-
piled to a straight-line extractable NIZKPoK in the ROM, with the same computation and
bandwidth efficiency as applying Fischlin’s transformation.

Our attack on WI appears to uncover an interesting aspect of the role of randomness
in straight-line extractable zero-knowledge proofs. Pass’ transformation is randomized (due
to its use of a commitment scheme), and naively derandomizing it would result in a similar
attack. An interesting and natural question for future work would be to identify the class
of languages for which “well-behaved” transforms that make black-box use of an underlying
zero-knowledge protocol and compile them into a straightline extractable one in the random
oracle model must be randomized.

We therefore demonstrate conclusively that one can do better than generic cut-and-
choose (i.e. Pass [Pas03]) for straight-line extractable NIZKs for many algebraic languages
in the random oracle model. Such languages include logical combinations [CDS94], openings
to Pedersen commitments, among many others that are used in non-trivial cryptographic
systems such as the anonymous survey protocol [HMPs14].

3.3 Stateless Deterministic Threshold Schnorr Signing
[GKMN21]

A naive application of the technique used by EdDSA to the multiparty case (i.e. each party
derives its respective nonce as ki = F(sdi,m)) yields stateless deterministic threshold signing
for Schnorr in the semi-honest setting. However Maxwell et al. [MPSW19] identified that this
technique is completely insecure in the malicious setting, due to a ‘rewinding’ attack where
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an adversary can effectively force a nonce reuse by an honest party. Intuitively, the adversary
initiates two independent signing sessions where the same message is to be signed, but uses
two different values as its contribution to the nonce, which induces the honest party to reveal
two different linear combinations of the same secret key and nonce shares. We revisit this
issue in Section 5.1.1

As Nick et al. [NRSW20] identified, a conceptually simple fix for this problem is to have
each party commit to a PRF key sd during key generation, and subsequently prove when
signing a message that its contribution to the nonce R is indeed the result of using its
PRF key. Informally, the task is to design a zero-knowledge proof system for the following
language:

{((R,m, F,G, C), sd) : R = F(sd,m) ·G ∧ C = Commit(s)}

where sd is the witness to be kept hidden. More formally, we encapsulate this task in Func-
tionality 5.6.1 in Section 5.6.

While there is a plethora of proof systems one could use to prove the above relation, as our
goal is to design a stateless deterministic threshold signing protocol that is faster than using
trusted hardware, we opt for the computationally lightest approach. In particular, we follow
the zero-knowledge from garbled circuits (ZKGC) paradigm of Jawurek et al. [JKO13] along
with a conditional disclosure technique [GKPS18]. We defer a more thorough explanation as
to why this paradigm suits the task at hand best to Section 5.1.3.

The difficulty in proving the above relation lies in combining the algebraic component
(i.e. elliptic curve exponentiation) with the non-algebraic component (F instantiated with
AES/SHA). In this ZKGC context, the heaviest elements lie in (1) the bridge between the
algebraic and non-algebraic components, and (2) public key operations required for commit-
ting OT. We develop new techniques to suppress both, so that they are no longer bottlenecks.

3.3.1 Bridging Algebraic and Non-algebraic Operations

While previous work by Chase et al. [CGM16] has explored this topic in the ZKGC context,
their solution makes use of far too many public key operations to be computationally efficient.
We give a new garbling gadget for the exponentiation function that significantly improves
on their work, intuitively by making use of the Oblivious Linear Evaluation technique of
Gilboa [Gil99] to apply an algebraic MAC on the non-algebraic component.

Intuition. The ciphertexts are structured so that the evaluator always decrypts zi = bi +
xi ·ui ·a on wire i, where a and b = ∑

i bi are the garbler’s MAC keys and x = 〈u,x〉. Adding
up z = ∑

i zi yields z = ax+ b, which is the desired arithmetic encoding, and allows for easy
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exponentiation outside the garbled circuit. This self-contained gadget can be expressed as a
garbling scheme and proven secure as such. We give the concrete improvement relevant for
our parameters in Table 3.3.1.

Scheme Asymptotic Comm. Concrete Comm. Calls to KDF

[CGM16] Õ(s · |q| · κ) 1024KB 64000

Our gadget O(|q| · κ) 8.2KB 1024

Table 3.3.1: Cost to apply algebraic MAC z = ax+ b to a secret x encoded in a garbled cir-
cuit. Concrete costs are given for |q| = 256, s = 60, and κ = 128, with the HalfGates [ZRE15]
garbling scheme. KDF is the cipher used for garbling.

Our technique leads to significant savings, as stated earlier the MAC computation alone
would have dominated bandwidth (and to some extent computation) cost.

3.3.2 Committed Oblivious Transfer

The ZKGC protocol makes use of ‘committed’ OT, which is a flavour of OT in which a sender
is able to decommit the messages it had sent earlier, upon request. Unfortunately all known
efficient constructions require public key operations per instance, which can be quite heavy
in this context, as they will induce hundreds of exponentiations per signing instance. We
therefore design a committed OT mechanism that pushes all of the public key operations to
the one-time distributed key generation.

Intuition. Recall that a UC commitment scheme must be ‘straight-line extractable’, i.e.
there must exist an extractor algorithm Ext, which when given a commitment C to message
m and a trapdoor ek should efficiently output m. Our insight is to run Ext to implement
the committed OT receiver, even though its utility in the context of the UC commitment is
simply as a ‘proof artefact’ which is never executed in a real protocol. Roughly, we generate
a pair of commitment keys ck0, ck1 for the OT sender during the preprocessing phase, and
give the trapdoor ekb corresponding to ckb to the OT receiver, where b is the choice bit. To
send a message pair (m0,m1) the sender commits to m0 using ck0 and m1 using ck1, of which
the receiver retrieves mb by invoking Ext with ekb. In order to ‘open’ its messages, the sender
simply runs the decommitment phase of the UC commitment scheme. The novelty in this
approach lies in our use of the extraction trapdoor ek, which is an object that only appears in
the security proof of a UC commitment (but not in the ‘real’ world), to construct a concrete
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protocol. The real-world OT receiver essentially runs the simulator of the UC commitment
scheme.

We give an estimate below of the computation cost per OT instance, where runtime
figures are taken from the author’s 2017 Macbook Pro (i7-7700HQ CPU, 2.80GHz) running
OpenSSL 1.1.1f.

Scheme Comp. Comm. (bits) Estd. runtime

OT [CO15] 5 exponentiations 1152 299µs

This work 240 · F + 31 · CRHF 5120 26.1µs

Table 3.3.2: Cost per bit of the witness (send+receive+open), per instance not including
preprocessing. Parameters: 128 bits of computational security, 60 bits of statistical security.
Estimated runtime with AES for F, SHA-512 for CRHF, and Curve25519 for exponentiations.

With the above improvements, we obtain a proof system that induces only a small con-
stant number of exponentiations per threshold signing instance.

Theorem 3.3.3. [GKMN21](Informal) Assuming the existence of privacy-free garbled cir-
cuits [FNO15, ZRE15] and collision resistant hash functions, there is a protocol to UC-realize
FF·G in the FOT-hybrid local random oracle model, where each invocation of the ‘Verify Nonce’
interface induces O(1) exponentiations and O(κ|F|) bits of communication.

We estimate that a two-party signing instance for standard 256-bit curves will run in the
order of 10ms on commodity hardware (which is signficantly faster than trusted hardware,
which takes high tens to hundreds of milliseconds [SP16, BCLK17]), while consuming around
400KB of bandwidth. In contrast, the construction of Nick et al. [NRSW20] requires only
a few hundred bytes of bandwidth, but 1 second to produce a proof, when instantiated
with Bulletproofs [BBB+18] and a custom elliptic curve based PRF. We refer the reader to
Chapter 5 for details about the setting, constructions, and comparisons.

3.4 Proactive Threshold Wallets With Offline Devices
[KMOS21]

Proactive Secret Sharing (PSS) as it has come to be known, has seen a number of real-
izations for different ranges of parameters since the introduction of the mobile adversary
model [OY91]. In fact, even proactive signature schemes themselves have been studied di-
rectly [ADN06, FGMY97]. A naive adaptation of any off-the-shelf PSS scheme to the thresh-
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old signature setting would in many cases yield proactive threshold signature schemes imme-
diately. However, heavy use of an honest majority by most PSS schemes would already rule
out many practical applications of such an approach. Moreover all such solutions will have
communication patterns that require every party in the system to be online at pre-defined
times, at the close of every epoch, in order to keep the system proactivized and moving
forward.

To see why requiring all parties to be online simultaneously is not reasonable especially
for threshold wallets, consider the following scenarios:

• Cold storage: Alice splits her signing key between her smartphone and laptop and has
them execute a threshold signing protocol when a message is to be signed. However if for
any number of operational reasons one of the devices (say her smartphone) malfunctions,
the secret key is lost forever and any funds associated with the corresponding public key
are rendered inaccessible. In order to avoid this situation, Alice stores a third share of the
signing key in a secure cold storage server. While this third share does not by itself leak the
signing key, along with the laptop it can aid in the restoration of the smartphone’s key share
when required. In this scenario it would be quite inconvenient (and also defeat the purpose
of two-party signing) if the cold storage server has to participate in the proactivization
every time the system needs to be re-randomized; it would be much more reasonable to
have the smartphone and laptop proactivize when required, and send update packages to
the server.

• (2,3)-factor authentication: Alice now splits her signing key across her smartphone,
laptop, and tablet so that she must use any two of them to sign a message. Even in
this simple use case, having all of her devices online and active simultaneously (possibly
multiple times a day) just so that they can refresh would be cumbersome. Ideally every
time she uses two of them to sign a message, they also refresh their key shares and leave
an update package for the offline device to catch up at its leisure.

• Concurrent use: Alice, Bob, Carol, and Dave are executives at a corporation, and at least
two of them must approve a purchase funded by the company account. This is enforced by
giving each of them a share of the signing key, so that any two may collaborate to approve
a transaction. Requiring them all to be online simultaneously is impractical given their
schedules; it would be much more convenient to have any two of them refresh the system
when they meet to sign, and send updates to the others.

Correlated Risks Beyond convenience, there are qualitative security implications for the
de-facto standard pattern of proactivization. In particular, the validity of the assumption
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that an adversary controls only up to a threshold number of devices hinges on the risk of
compromise of each device being independent. However having all devices in the system
come online at frequent pre-specified points in time and connect to each other to refresh may
significantly correlate their risk of compromise. Instead it would be preferable that only the
minimal number of devices (i.e. the signing threshold) interact with each other in the regular
mode of operation, and enable the system to non-interactively refresh itself.

The ideal communication pattern alluded to above is the following: in a (t, n) proactive
threshold signature scheme, any t parties are able to jointly produce all the necessary com-
ponents to refresh the system, and send the relevant information to offline parties. When an
offline party wakes up, it processes the messages received and is able to “catch up” to the
latest sharing of the secret.

3.4.1 Challenges in Realizing this Pattern

While this communication pattern sounds ideal, a whole host of subtle issues arise in potential
realizations. For instance, in the Cold Storage case, how does the server know that the updates
it receives are “legitimate”? An attacker controlling Alice’s smartphone could spoof an update
message and trick the server into deleting its key share and replacing it with junk.

Due to the inherent unfairness of two-party/dishonest majority MPC protocols, an ad-
versary can obtain the output of the computation while depriving honest parties of it. In this
spirit, the smartphone (acting for the attacker) could work with the laptop until it obtains
the “update” message to send to the server, but abort the computation before the laptop
gets it. Now the attacker has the ability to convince the server to delete its old share by
using this message, whereas the laptop has no idea whether the attacker will actually do this
(and therefore doesn’t know whether to replace its own key share).

Implicit in these scenarios is the problem of unanimous erasure:

How can we design a proactivization protocol in which the adversary can not
convince an honest party to prematurely erase its secret key share?

In the (2, 2) case even a network adversary (who does not control either party) can induce
premature deletion by simply dropping a message in the protocol. Moreover is it possible to
restrain such a proactivization procedure to be minimally invasive to the threshold wallet?
i.e. native to usage patterns and protocol structures of threshold wallets.
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3.4.2 Our Contributions

In this work we give a comprehensive treatment of the notion of proactive security with
offline-refresh, with our study progressing in four phases:

1. Defining Offline Refresh. We formalize the notion of offline refresh for threshold proto-
cols in the Universal Composability (UC) framework [Can01], and justify why our defini-
tion (unanimous erasure) is the correct one. Our starting point is the definition of Almansa
et al. [ADN06] which we build on to capture that all parties need not be in agreement
about which epoch they are in, and that an adversary can change corruptions while other
parties are offline. Intuitively previous definitions have had an inherent synchrony in the
progress of the system, which we remove in ours and show how to capture that parties
may refresh at different rates.

2. Upgrading (2, n) Schemes.We show how to upgrade (2, n) threshold Schnorr-like signa-
ture schemes to proactive security tailored for use with a threshold wallet, in that it makes
use of transactions posted to the blockchain for synchronization purposes. We make the
case in Section 6.2.2 that the power of a ledger is necessary for this task. Our refresh pro-
tocol adds no extra assumptions, incurs very little overhead as compared to running the
threshold signature itself, and exactly matches the ideal communication pattern outlined
in the previous section.

3. Proactive Multiplication. We construct a mechanism to proactivize OT Extension
state. This allows us to proactivize even threshold ECDSA protocols, which are sophisti-
cated due to the non-linear signing equation. We prove the efficiency of our construction
by means of an implementation, specifically the overhead incurred in computational time
of our refresh procedure is roughly 24% for the ECDSA protocol of Doerner et al. [DKLs19]
and the communication round overhead is zero.

4. Impossibility of Online Dishonest Majority for (3, n) and Beyond. Intuition would
strongly suggest that any (t, n) threshold scheme could also be upgraded to proactive
security with offline refresh in the presence of a dishonest majority online using sufficiently
heavy cryptographic hammers. However, surprisingly we show this intuition to be false;
i.e. even assuming arbitrary trusted setup/random oracle and an ideal ledger, there must
be an honest majority online to refresh the system. We prove this result by developing
new elegant techniques to reason about security in this setting.

We therefore formulate the problem of offline refresh and address the most pressing practical
and theoretical questions: the honest majority online case is simple, the (2, n) case permits a
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novel efficient protocol with a ledger which we implement, and the (t, n) case for t > 2 must
necessarily have an honest majority of participants online.

Broader Implications Our results can be interpreted as positive for small-scale decen-
tralization, eg. 2FA across personal devices. In particular the (2, n) refresh protocol is readily
compatible with existing implementations of threshold wallets, and essentially comes at only
the cost of implementing forward-secure channels. However our impossibility result rules out
this strong form of security for larger scale systems, where many servers hold shares of a secret
with a high reconstruction threshold. In those cases system designers who desire proactive
security must account for the cost of either bringing an honest majority online, or waiting to
hear from all parties before progressing epochs.

3.4.3 Our Techniques

We first sketch the ideas behind our (2, n) construction, and then discuss how to reason about
the general (t, n) case and show impossibility.

(2, n) Construction

Roughly, our approach is to use private channels to communicate candidate refresh packages,
and the public ledger to achieve consensus on which one to use. We take advantage of the
fact that threshold wallets already rely on posting signatures to a public ledger in order to
coordinate these refreshes. Let each party Pi own point f(i) on a shared polynomial f where
f(0) = sk (i.e. standard Shamir sharing of the secret key sk). We have parties generate a
candidate refresh polynomial f ′ when they sign a message, associate each signature with
f ′, and “apply” the refresh (i.e. replace f(i) with f ′(i)) when the corresponding signature
appears on the blockchain. While this handles the coordination part, the major issue of
verifiably communicating f ′(j) to offline party Pj remains a challenge. To solve this, we have
the online refreshing parties jointly generate a local threshold signature authenticating f ′

when communicated to each offline party; such a signature can only be produced by two
parties working together, so any candidate f ′ received when offline must have been created
with the approval of an honest party.

Working Around Unfairness Note that this approach is still vulnerable to attacks where
the adversary withholds the threshold signature from an honest party in the protocol; if an
online signing protocol aborts, how does an honest party know if its (possibly malicious) sign-
ing counterparty sent f ′ and the corresponding signature to offline parties? This is an issue
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that stems from the inherent unfairness of two-party computation. While this is impossible
to solve in general, we observe that most threshold ECDSA/Schnorr signature protocols are
simulatable so the signing nonce R is leaked, but the signature itself stays hidden until the
final round. We exploit this fact to bind each f ′ to R instead of the signature itself; so our
proactive version of threshold ECDSA/Schnorr will proceed as follows:

1. Run the first half of threshold ECDSA/Schnorr to obtain R.

2. Sample candidate f ′, bind it to R, threshold-sign these values and send them to offline
parties.

3. Continue with threshold ECDSA/Schnorr to produce the signature itself.

Correspondingly when any signature under R appears on the blockchain, each party searches
for a bound f ′ that it can apply. With overwhelming probability there will never be two
independently generated signatures that share the same R nonce throughout the lifetime of
the system.

Threshold ECDSA and Multipliers Threshold ECDSA protocols require use of a secure
two-party multiplication functionality FMUL (or equivalent protocol) due to its non-linear
signing equation. Indeed, recent works [GG18, LNR18, DKLs19] have constructed practical
threshold ECDSA protocols that make use of multipliers that can be instantiated with either
Oblivious Transfer or Paillier encryption. Using these multipliers is significantly more efficient
in the offline-online model where parties run some kind of preprocessing in parallel with
key generation, and make use of this preprocessed state for efficient FMUL invocation when
signing a message (this is done by all cited works). However as this preprocessed state is
persistent across FMUL invocations, it becomes an additional target to defend from a mobile
adversary. We show how to efficiently re-randomize this preprocessed state for OT-based
instantiations of FMUL, and therefore get offline-refresh proactive security for (2, n) threshold
ECDSA in its entirety. Our proactivization of FMUL makes novel use of the classic technique
of Beaver [Bea95] to preprocess oblivious transfer, in combination with the mechanism we
build to deliver updates securely.

General (t, n) Impossibility

We develop a novel technique to reason about the security of protocols that tolerate mobile
corruptions. We first prove that any refresh protocol that tolerates an online dishonest ma-
jority must have the property that a minority of online parties holds enough information to
allow any offline party to refresh. Subsequently we show that a mobile adversary can exploit
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this property to derive the refreshed private state of a previously corrupt offline party even
after it is un-corrupted. The proof is built up from this underlying insight, discussed further
in Section 6.8.

3.4.4 Related Work

The notion of mobile adversaries with a corresponding realization of proactive MPC was
first introduced by Ostrovsky and Yung [OY91]. Herzberg et al. [HJKY95] devise techniques
for proactive secret sharing, subsequently adapted for use in proactive signature schemes by
Herzberg et al. [HJJ+97]. Cachin et al. [CKLS02] show how to achieve proactive security
for a shared secret over an asynchronous network. Maram et al. [MZW+19] construct a
proactive secret sharing scheme that supports dynamic committees, with a portion of the
communication done through a blockchain. For a more comprehensive survey, we refer the
reader to the works of Maram et al. [MZW+19] and Nikov and Nikova [NN05].

Very recently Benhamouda et al. [BGG+20] and Goyal et al. [GKM+20] introduced a
protocol in which a committee (elected from a larger set of parties) runs what is essentially a
proactivization with offline-refresh. However they work in the setting of an honest majority,
and their techniques are tailored as such.

The work of Canetti et. al. [CHH00] solves the problem of an offline node regaining
the ability to authenticate its communication after having suffered a break-in. However the
settings are incomparable; our network model is stronger in that we assume authenticated
communication (details in Section 6.2), but weaker in another dimension as we do not rely
on an honest majority among online parties. Our use of the ledger is merely as a passive
public signalling mechanism, and not as interactive party-specific storage (eg. no issuing of
certificates to individual parties).

As discussed earlier, every existing work (including those since the above mentioned sur-
veys) assumes either that all parties come online [CGG+20], an honest majority of parties
collaborate in order to proactivize the system [BGG+20, GKM+20], or that corruptions are
passive [EOPY18]. Additionally they require this honest majority of parties to come online si-
multaneously at pre-specified points in time to run the refresh protocol. As the entire premise
of the (t, n) threshold signature setting is that only t parties need be online simultaneously
to use the system,

• For the (2, n) case we impose as a strict requirement that only two parties be sufficient
to proactivize the system. Consequently as it is meaningless to have an honest majority
among two parties, we can not directly apply techniques from previous works to our setting.
To our knowledge the conceptual core of our protocol– a threshold signature (internal to
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the system) interleaved with a threshold signature that appears on the blockchain, is novel.

• For the general t > 2 case, we prove that the weakest possible notion of dishonest majority
for proactivization, i.e. refresh with 2t− 1 online parties, is impossible to achieve.

Therefore we give a comprehensive treatment of proactivization with an online dishonest
majority, which has not previously been studied in the literature.
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Chapter 4

Schnorr Signature Aggregation and
Improved Straight-Line Extraction in
the Random Oracle Model

In this chapter, we present our results on signature aggregation, and straight-line extraction
in the random oracle model.

4.1 Signature Aggregation

We first explore aggregating EdDSA signatures as a motivating practical application. We be-
gin by giving our n-special sound Sigma protocol to prove knowledge of n Schnorr signatures.
Define the relation RAgg as:

RAgg = {(x,w) | x = (pk1,m1, . . . , pkn,mn), w = (s1, . . . , sn),

Verify(mi, pki, si) = true for ∀i ∈ [n]}

i.e. each si ∈ Zq is a signature on message mi ∈ {0, 1}∗ under Schnorr public key pki ∈ G,
as per the Schnorr Verify algorithm.

Theorem 4.1.1. Protocol Σaggr is an n-special sound Sigma protocol for RAgg.

Proof. Completeness is easy to verify. Extraction is always successful due to the following:
let F ∈ G[X] be the degree n − 1 polynomial where the coefficient of xi−1 is given by
Ri + H(Ri, pki,mi) · pki for each i ∈ [n]. Define f ∈ Zq[X] as the isomorphic degree n − 1
polynomial over Zq such that the coefficient of xi−1 in f is Si (the discrete logarithm of
the corresponding coefficient in F ). Observe that f(x) · B = F (x) for each x ∈ Zq. Given
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Protocol Σaggr

For instance x = {(pki,mi)}ni=1 ∈ (G×{0, 1}∗)n and witness w = {σi = (Ri, si)}ni=1 ∈ (G×Zq)n

Prover PΣ(x,w):

1. Commitment: a = [R1, . . . , Rn]

2. Challenge: e $←− Z∗q

3. Response: z =
∑
i∈[n] si · ei−1

Verifier VΣ(x, (a, e, z)): Output 1 iff z ·B =
∑
i∈[n] e

i−1(Ri +H(Ri, pki,mi) · pki)

Extractor ExtΣ((a, e1, z1), . . . , (a, en, zn)): Define the n × n matrix E = [eji ]i,j∈[n] and the
column vector Z = ([zi]i∈[n])T . Output (s1, . . . , sn) = (E−1Z)T .

Figure 4.1: Sigma protocol for a collection of signatures RAgg

a transcript (a, e, z), VΣ accepts iff z · B = F (e), which is true iff z = f(e). Therefore n
valid transcripts (a, e1, z1), . . . , (a, en, zn) define n distinct evaluations of f (which has degree
n− 1) allowing for recovery of coefficients [Si]i∈[n] efficiently. This is precisely the operation
carried out by ExtΣ, expressed as a product of matrices. Note that E = [eji ]i,j∈[n] is always
invertible; each ei is known to be distinct, and so E is always a Vandermonde matrix.

For signatures instantiated over a field of order q, the transcript of the Sigma protocol is of
size (n+1)|q| bits, as opposed to naive transmission of n signatures which would require 2n|q|
bits. It is straightforward to apply the Fiat-Shamir transformation to this Sigma protocol
and obtain a non-interactive proof of knowledge for the relation RAgg, and so we refer the
reader to the full version of the paper [CGKN21] for a thorough treatment.

We do however justify that this is the best possible compression rate that one can achieve
with techniques that are blackbox in the hash function used by Schnorr.

4.2 Impossibility of non-interactive compression by more
than a half

Given that we have shown that it is possible to compress Schnorr signatures by a constant
factor, it is natural to ask if we can do better. Indeed, the existence of succinct proof systems
where the proofs are smaller than the witnesses themselves indicates that this is possible, even
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without extra assumptions or trusted setup if one were to use Bulletproofs [BBB+18] or IOP
based proofs [BBHR18, BCR+19] for instance. This rules out proving any non-trivial lower
bound on the communication complexity of aggregating Schnorr’s signatures. However, one
may wonder what overhead is incurred in using such generic SNARKs, given their excellent
compression. Here we make progress towards answering this question, in particular we show
that non-trivially improving on our aggregation scheme must rely on the hash function used
in the instantiation of Schnorr’s signature scheme.

We show in Theorem 4.2.1 that if the hash function used by Schnorr’s signature scheme
is modeled as a random oracle, then the verifier must query the nonces associated with each
of the signatures to the random oracle. Given that each nonce has 2κ bits of entropy, it is
unlikely that an aggregate signature non-trivially smaller than 2nκ can reliably induce the
verifier to query all n nonces.

The implication is that an aggregation scheme that transmits fewer than 2nκ bits must
not be making oracle use of the hash function; in particular it depends on the code of the hash
function used to instantiate Schnorr’s scheme. To our knowledge, there are no hash functions
that are believed to securely instantiate Schnorr’s signature scheme while simultaneously
allowing for succinct proofs better than applying generic SNARKs to their circuit represen-
tations. Note that the hash function must have powerful properties in order for Schnorr’s
scheme to be proven secure, either believed to be instantiating a random oracle [PS00] or
having strong concrete hardness [NSW09]. Given that the only known techniques for making
use of the code of the hash function in this context is by using SNARKs generically, we take
this to be an indication that compressing Schnorr signatures with a rate better than 50%
will incur the overhead of proving statements about complex hash functions. For instance
compressing n Ed25519 signatures at a rate better than 50% may require proving n instances
of SHA-512 via SNARKs.

For “self-verifying” objects such as signatures (aggregate or otherwise) one can generi-
cally achieve some notion of compression by simply omitting O(log κ) bits of the signature
string, and have the verifier try all possible assignments of these omitted bits along with
the transmitted string, and accept if any of them verify. Conversely, one may instruct the
signer to generate a signature such that the trailing O(log κ) bits are always zero (similarly
to blockchain mining) and need not be transmitted (this is achieved by repeatedly signing
with different random tapes). There are two avenues to apply these optimizations:

1. Aggregating optimized Schnorr signatures. One could apply these optimizations to
the underlying Schnorr signature itself, so that aggregating them even with our scheme
produces an aggregate signature of size 2n(κ−O(log κ)) which in practice is considerably
better than 2nκ as n scales. In the rest of this section we only consider the aggregation of
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Schnorr signatures that are produced by the regular unoptimized signing algorithm, i.e.
where nonces have the full 2nκ bits of entropy. This quantifies the baseline for the most
common use case, and has the benefit of a simpler proof. However, it is simple to adapt
our proof technique to show that aggregation with compression rate non-trivially greater
than 50% is infeasible with this optimized Schnorr as the baseline as well.

2. Aggregating unoptimized Schnorr signatures. One could apply this optimization to
save O(log κ) bits overall in the aggregated signature. In this case, O(log κ) is an additive
term in the aggregated signature size and its effect disappears as n increases, and so we
categorize this a trivial improvement.

Proof Intuition. Our argument hinges on the fact that the verifier of a Fiat-Shamir trans-
formed proof must query the random oracle on the ‘first message’ of the underlying sigma
protocol. In Schnorr’s signature scheme, this represents that the nonce R must be queried
by the verifier to the random oracle. It then follows that omitting this R value for a single
signature in the aggregate signature with noticeable probability will directly result in an
attack on unforgeability of the aggregate signature.

We first fix the exact distribution of signatures that must be aggregated, and then reason
about the output of any given aggregation scheme on this input.
GenSigs(n, 1κ):

1. For each i ∈ [n], sample (pki, ski) ← KeyGen(1κ) and ri ← Fs, and compute Ri = ri · B
and σi = ski · RO(pki, Ri, 0) + ri

2. Output (pki, Ri, σi)i∈[n]

The GenSigs algorithm simply creates n uniformly sampled signatures on the message ‘0’.

Theorem 4.2.1. Let (AggregateSig,AggregateVerify) characterize an aggregate signature scheme
for KeyGen, Sign, Verify as per Schnorr with group (G, B, q) such that |q| = 2κ. Let QV be
the list of queries made to RO by

AggregateVerifyRO(AggregateSigRO({pki, Ri, σi}i∈[n]))

where (pki, Ri, σi)i∈[n] ← GenSigs(n, 1κ). Then for any n, max((Pr[(pki, Ri, 0) 6∈ QV ])i∈[n]) is
negligible in κ.

Proof. Let ε = max((Pr[(pki, Ri, 0) 6∈ QV ])i∈[n]), and let j ∈ [n] be the corresponding index.
We now define an alternative signature generation algorithm as follows,
GenSigs∗(n, j, pkj, 1κ):
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1. For each i ∈ [n] \ j, sample (pki, ski)← KeyGen(1κ) and ri ← Fs, and compute Ri = ri ·B
and σi = ski · RO(pki, Ri, 0) + ri

2. Sample σj ← Fs and ej ← Fs

3. Set Rj = σi ·B − ej · pkj

4. Output (pki, Ri, σi)i∈[n]

Observe the following two facts about GenSigs∗: (1) it does not use skj, and (2) the
distributions of GenSigs and GenSigs∗ appear identical to any algorithm that does not query
(pki, Ri, 0) to RO. The first fact directly makes GenSigs∗ conducive to an adversary in the
aggregated signature game: given challenge public key pk, simply invoke GenSigs∗ with pkj =
pk to produce (pki, Ri, σi)i∈[n] and then feed these to AggregateSig1. The advantage this simple
adversary is given by the probability that the verifier does not notice that that GenSigs∗ did
not supply a valid signature under pk∗ to AggregateSig, and we can quantify this using the
second fact as follows:

Pr[AggregateVerifyRO(AggregateSigRO(GenSigs∗(n, j, pkj, 1κ))) = 1]

= Pr[AggregateVerifyRO(AggregateSigRO(GenSigs(n, 1κ))) = 1]− Pr[(pki, Ri, 0) ∈ QV ]

= 1− Pr[(pki, Ri, 0) ∈ QV ]

= 1− (1− ε) = ε

Assuming unforgeability of the aggregated signature scheme, ε must be negligible.

Corollary 4.2.2. The output of AggregateSig must be at least 2nκ−O(log κ) bits on average.

This follows from the fact that the verifer must receive all n nonces {Ri}i∈[n], and they
are sampled uniformly from the space Gn.

4.3 Aggregating Schnorr Signatures With Tight Secu-
rity

We now explore the application of Fischlin’s transformation to our Sigma protocol in order
to construct a non-interactive proof of knowledge that enjoys a tight reduction (yielding
provably secure parameters, unlike Fiat-Shamir) while achieving a compression rate that can
be arbitrarily close to 2. However the proximity to factor 2 compression comes at the expense
of prover computation.

1If necessary, intercept (pkj , Rj , 0) queried by AggregateSig to RO, and respond with ej as set by GenSigs∗
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Concretely as per [CGKN21, Figure 2] aggregating EdDSA2 signatures naively with Fis-
chlin’s transformation incurs an amortized cost of 4.2ms per signature when compressing by
a factor of 1.33, and 39.7ms for factor 1.81 compression. This is multiple orders of magnitude
slower than the Fiat-Shamir compiled proof (which incurs a fraction of a microsecond per
signature on the same hardware) and processing even hundreds of signatures at once becomes
prohibitively expensive.

Related Work. Recently, Chen and Zhao [CZ22] showed that the Fiat-Shamir compiled
construction of Chalkias et al. can be proven secure with a tight reduction in the Random
Oracle and Algebraic Group Model [FKL18]. While such a proof can build confidence in the
Fiat-Shamir construction in that it rules out attacks by algebraic adversaries, the aim of
this thesis is to be more conservative with assumptions, i.e. we consider security against any
attack in the random oracle model. Interestingly, Chen and Zhao also showed that in the
related (but incomparable) model of sequential aggregation [LMRS04] it is possible to prove a
Fiat-Shamir compiled construction secure with a tight reduction in the random oracle model
alone.

Faster Straight-Line Extraction. In this section we will develop the tools to sub-
stantially speed up the aggregation of EdDSA signatures with straight-line extraction in the
random oracle model. Our improved aggregation algorithm is up to 200× faster for prac-
tically relevant parameters, and potentially within the performance envelope of real-world
applications.

Applying Fischlin’s Transformation. We can directly apply Fischlin’s transformation
to the Sigma protocol Σaggr to obtain a non-interactive proof. In particular, a ‘base unit’ of
the proof is a challenge-response pair (ej, zj) such that H(prefix, ej, zj) = 0 where H is an
`-bit random oracle, and this unit is repeated r times in order to achieve a κ-bit soundness
level. These parameters are set so that a successful prover must query the random oracle
with at least n accepting transcripts except with probability 2−κ.

Breaking down the cost. We can express the prover’s computation cost in producing a
proof as TAgg ·Cqry, where TAgg is the prover query complexity, i.e. the number of (e, z) values
the prover queries to the random oracle, and Cqry is the cost of generating each (e, z) value.
We discuss below how to improve on both of these dimensions.

2We use EdDSA to refer to Ed25519 [BDL+12] in particular, which is believed to instantiate a 128-bit
security level.
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Algorithm PolyEval

This algorithm is parameterized by a finite field Zq where q is prime, a primitive kth root of
unity ω ∈ Zq, and a degree n polynomial f ∈ Zq[X]. For simplicity we assume that k divides
n. The output of this algorithm is a list of points {(xi, f(xi))}i∈[k].

PolyEval(q, k, f, n):

1. Parse the coefficients of f , with ci as the coefficient of xi

2. For each i ∈ [0..k − 1], define polynomial fi(x) =
∑

j∈[0..n/k]
xj · cjk+i

3. Sample α← Z∗q and for each i ∈ [0..k − 1] compute αi = fi(αk)

4. Define the degree k − 1 polynomial h(x) =
∑

i∈[0..k−1]
αix

i

5. Let points denote the (initially empty) list of output points

6. For each i ∈ [0..k − 1], append
(
α · ωi, h(α · ωi)

)
to points

7. Output points

Figure 4.2: Improved Polynomial Evaluation

4.3.1 Reducing Cqry via Improved Polynomial Evaluation

The efficiency of polynomial evaluation algorithms is usually tied to the degree of the poly-
nomial being evaluated. In our case, the degree of the polynomial corresponds to the number
of signatures being aggregated. As the signature batch size can be small in practice (eg.
number of transactions in a block, which is around 2000 for Bitcoin [Blo]) asymptotically
efficient polynomial evaluation algorithms [vzGG13, BCKL21] may not be relevant to our
setting.

Theorem 4.3.1. Given a prime q, degree n polynomial f ∈ Zq[X], and primitive kth root of
unity ω ∈ Zq, Algorithm PolyEval outputs a list of k distinct points that lie on f at a cost of
k2 + n+ 2 log k multiplications and k(k − 1) + n additions in Zq.

Proof. We begin by showing correctness. It suffices to show that for any α ∈ Z∗q, the corre-
sponding polynomial h agrees with f on the points {α · ωj}j∈[0..k−1]. First we establish that
f(x) = ∑

i∈[0..k−1] x
ifi(xk) for every x ∈ Zq—this follows from the definition of fi. Next we
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use the fact that ω is a kth root of unity to simplify the expansion of f(α · ωj) as follows:

f(α · ωj) =
∑

i∈[0..k−1]
(α · ωj)ifi((α · ωj)k) =

∑
i∈[0..k−1]

(α · ωj)ifi(αk)

=
∑

i∈[0..k−1]
(α · ωj)iαi = h(α · ωj)

Now we count the number of multiplications in Zq used by PolyEval. Step 3 requires computing
αk (2 log k multiplications by repeated squaring) and evaluating k degree n/k polynomials.
Assuming we naively make use of Horner’s rule (n/k multiplications and as many additions
per polynomial), it costs n multiplications and n additions in Zq to evaluate these polynomi-
als, for a total of n+ 2 log k Zq multiplications and n additions induced by Step 3. Finally, in
Step 6 we require k multiplications to generate each α · ωi, and we can evaluate the degree
k − 1 polynomial h at k points using Horner’s rule, bringing the cost for this step to k2

multiplications and k(k−1) additions in Zq. Across all steps, the total number of operations
required are k2 + n + 2 log k multiplications, and k(k − 1) + n additions in Zq. This proves
the theorem.

While this is a significant improvement over the naive polynomial evaluation algorithm
(which requires nk Zq multiplications), in our application we need to evaluate f over a
large set of points, and PolyEval only produces a batch of k evaluations. A simple extension
to produce a batch of say m · k evaluations is to invoke PolyEval m times independently.
However it is possible that there may be some redundancy across the multiple evaluations,
i.e. independent instances may evaluate f at the same point. We show via Lemma 4.3.2 and
Corollary 4.3.3 that for the parameters relevant to our setting, the probability of there being
any redundancy is negligible.

Lemma 4.3.2. The probability that m independent invocations of PolyEval with the same
polynomial f ∈ Zq[X] and parameter k will output fewer than m ·k distinct points (i.e. repeat
at least one point) is at most m2k/2q

Proof. In the event of a repetition, two independent invocations sample α and α′ that induce
at least one common point, i.e. α ·ωi = α′ ·ωj for some i, j ∈ [k]. Rearranging the terms, we
see that it must be the case that the ratio α/α′ is an integer power of ω. Note that there are
exactly k integer powers of ω in Zq, i.e. the multiplicative subgroup that it generates. For
any fixed x ∈ Z∗q, the probability that a uniformly chosen y ∈ Zq is such that the ratio y/x
lands in this subgroup is k/q.

If we denote αi as the α value sampled by the ith invocation of PolyEval and correspond-
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ingly Ai = {αi · ωj}j∈[0..k−1], we can therefore bound the event of a repetition as follows:

Pr[∃i, j ∈ [m] : i 6= j,Ai ∩Aj 6= ∅] = Pr
 ∨
i,j∈[m]

Ai ∩Aj 6= ∅


≤

∑
i∈[m−1]

∑
j∈[i+1..m]

Pr[Ai ∩Aj 6= ∅]

≤
∑

i∈[m−1]

∑
j∈[i+1..m]

k

q
≤ m2k

2q

This proves the lemma.

Corollary 4.3.3. Given a parameter κ, if q ∈ Ω(2κ) and m, k ∈ poly(κ), the probability that
m independent invocations of PolyEval with the same polynomial will result in a redundant
evaluation is negligible in κ.

Efficiency. As per Theorem 4.3.1, PolyEval achieves the best improvement when k ≈
√
n.

In this case, evaluating a degree n polynomial at
√
n points costs roughly 2n multiplications,

which is a factor
√
n/2 improvement over the naive method. This improvement is subject

to the availability of appropriate k in the field in question. The setting that we consider in
this thesis involves the EdDSA signature scheme, which uses Curve25519 [Ber06], which in
turn is of order q such that q− 1 is divisible by 4, 3, and 11. Given that we are interested in
n < 212 or so, we are able to find a nearly optimal k for for any value of n in our range. We
plot the improvement achieved by PolyEval in Figure 4.3.

Comparison with ECFFT. The very recent work of Ben-Sasson et al. [BCKL21] intro-
duces a method to enable an FFT-like recursive evaluation of a polynomial in any arbitrary
Zq, by using isogenies of elliptic curves. Their algorithm achieves impressive asymptotic as
well as concrete performance in the preprocessing model, and can be applied to our setting.
In particular, theirO(n log2(n)) complexity is asymptotically superior to our O(n1.5) PolyEval
algorithm. However for our parameter range, we find our PolyEval algorithm to perform bet-
ter, as we show in Figure 4.4.

Further Applications

The algorithm PolyEval is generally useful in settings where one has to evaluate a degree n
polynomial in Zq, where n ranges from say 25 to 214, and q− 1 is ‘slightly smooth’, i.e. there
are enough k ≈

√
n values that divide q− 1. Such settings include the base fields of common

elliptic curves such as Curve25519 (discussed in this paper in the context of EdDSA), and

67



 16

 64

 256

 1024

 4096

 16384

 65536

 262144

 1.04858x106

 4.1943x106

 4  8  16  32  64  128  256  512  1024  2048

C
o
s
t 
in

 Z
q

 m
u
lti
p
lic
a
tio
n
s
 (
lo
g

 s
c
a
le
)

Degree of polynomial

Naive
This work, PolyEval
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secp256k1 (used by Bitcoin and others for ECDSA). We describe some of these settings where
PolyEval can be relevant in this section.

Threshold Cryptography. A common method to protect signing/encryption keys is to
distribute them across a number m of devices, so that reconstructing or operating with the
key requires a threshold t of the devices to cooperate. This is typically done by using Shamir’s
secret sharing in the base field of the elliptic curve, i.e. defining a degree t− 1 polynomial f
such that f(0) = sk encodes the secret key, and each party Pi receives f(i). When t is in the
range of 25 to 214, PolyEval can speed up the generation of these shares for threshold versions
of EdDSA and ECDSA keys.

Verifiable Secret Sharing and Beyond. There are numerous constructions to upgrade
the security of secret sharing schemes to tolerate a malicious dealer and participants, i.e.
verifiable secret sharing (VSS). Simple VSS schemes such as Feldman’s [Fel87a] for groups
where the discrete logarithm assumption is assumed to hold form the basis for distributed key
generation protocols [Ped91] for ECDSA/EdDSA. VSS can also form the basis for verifiable
encryption [CD00], where a ciphertext can be verified to encrypt the discrete logarithm of
a public point (say encrypt the secret component of an EdDSA/ECDSA public key), when
it is combined with MPC-in-the-head techniques [TZ21]. In this case, the degree of the
polynomial corresponds to the number of ‘transcripts’ that must be checked, which for a
128 or 256 bit security level falls within the previously mentioned range for which PolyEval
provides significant savings.

4.3.2 Improving Prover Query Complexity TAgg

First we note that we can parameterize the proof of work via a better analysis tailored to the
signature aggregatio setting, which yields an improvement of 2 to 8× in the hardness setting
for the proof-of-work problem. Intuitively this is because the direct application of Fischlin’s
transform results in repeating a base unit sufficiently many times for the desired soundness
level, whereas one can prove better parameters by directly analyzing the final construction,
i.e. the event that a malicious prover finds r inversions within n queries.

Our idea. We change the underlying ‘proof of work problem’ solved by the prover
from finding r inversions to finding an r-collision. In particular the prover now searches
for (ej, zj)j∈[r] such that H(prefix, e1, z1) = · · · = H(prefix, er, zr), where H is a random ora-
cle with output bit length ` ≥ (κ + r log2(n) − log(r!))/(r − 1). This yields a ≈ 1.5 to 2×
improvement in TAgg corresponding to the ratio of the costs of finding an r-collision to that
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of finding r inversions at the same security level (even with the improved analysis).
We give the full protocol and justify its parameterization below. We give the concrete

query complexity improvements in Table 4.3.4, although we defer a more precise analytical
justification of why finding an r-collision is faster than finding an equivalent number of
inversions at the same security level to Section 4.4.3.

n r Collision (This work) Inversion Improvement

1024 8 9.33× 107 2.68× 108 2.8

512 8 5.11× 107 1.34× 108 2.6

512 16 2.95× 105 5.24× 105 1.7

1024 32 3.55× 104 6.55× 104 1.8

256 16 1.57× 105 2.62× 105 1.6

512 32 1.86× 104 3.28× 104 1.7

128 16 8.36× 104 1.31× 105 1.5

256 32 9.80× 103 1.64× 104 1.6

32 8 2.53× 106 8.39× 106 3.3

64 16 2.38× 104 6.55× 104 2.7

128 32 5.19× 103 8.19× 103 1.5

Table 4.3.4: Prover/aggregator query complexity TAgg when using a collision based pred-
icate to aggregate n signatures, as opposed to inversions (with a tighter parameterization
than [CGKN21]), for a range of r parameters. Expected running times are derived analyti-
cally [vM39, Pre93]

Caveat: Memory Complexity. We note that keeping track of collisions consumes more
memory—O(TAgg)—than the inversion construction which only needs O(κ). In practice,
however, this is quite a small amount (up to 30MB for benchmarked parameters), as shown
in Table 4.3.5 below.

Further Applications. The superior combinatorial characteristics of the collision prob-
lem over the inversion problem has interesting implications for the computation complexity
of straight-line extraction even in the zero-knowledge setting. In Sections 4.4.1 and 4.4.3,
we show how to improve the prover’s query complexity when compiling any standard Sigma
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n r Expected Memory Usage

1024 8 8.9GB

512 8 4.9GB

512 16 28.3MB

1024 32 3.4MB

256 16 15MB

512 32 1.7MB

128 16 8MB

256 32 0.9MB

32 8 242MB

64 16 2.2MB

128 32 0.5MB

Table 4.3.5: Prover/aggregator memory complexity when using a collision based predicate
to aggregate n signatures for a range of r parameters, for a naive implementation. Derived
analytically [vM39, Pre93]

protocol to a NIZKPoK by 10− 15%, and for some special Sigma protocols by up to a factor
of 2. The latter is particularly significant as it matches a new lower bound that we prove.

4.3.3 Putting It Together – Improved EdDSA Aggregation

We combine our improvements to TAgg and Cqry to obtain an EdDSA signature aggregation
algorithm πAggr with substantially improved prover computation complexity, which we give
below in Figure 4.5. We further justify its performance improvements with our benchmarks
in Table 3.2.3.

Theorem 4.3.6. Protocol πAggr is a proof of knowledge for the relation RAgg with straight-line
extraction in the random oracle model.

Proof. We know from Theorem 4.1.1 that the underlying Sigma protocol is n-special sound,
which implies that once a malicious prover has queried n accepting transcripts to the random
oracle, the entire witness can be extracted. It therefore suffices to analyze the smallest ` that
guarantees that a cheating prover is unable find an r-collision within ≤ n queries except with
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probability 2−κ. The number of events (i.e. assignments of random oracle outputs) in which
the first n queries to an `-bit random oracle contain an r-collision is at most:(

n

r

)
· 2` · (2`)(n−r)

Here
(
n
r

)
counts the number of combinations of indices to ‘plant’ an r-collision, there are

2` values that the collision can take, and there are (2`)(n−r) assignments of the remaining
n − r indices. This term is not tight since we double-count r + 1 collisions, triple count
r+ 2 collisions, etc. but their impact is minimal. Since there are a total of 2n` equally likely
possible output assignments to n random oracle queries, we have that:

Pr[r-collision within the first n steps] ≤

(
n
r

)
· 2` · (2`)(n−r)

2n`

It remains to examine the constraint on ` that will induce the above probability to be upper
bounded by 2−κ: (

n
r

)
· 2` · (2`)(n−r)

2n` ≤ 2−κ(
n

r

)
2`(1+n−r−n) ≤ 2−κ

nr

r! 2`(1−r) ≤ 2−κ

2`(1−r) ≤ r! · 2−(κ+r log2(n))

≤ 2−(κ+r log2(n)−log2(r!))

2`(r−1) ≥ 2κ+r log2(n)−log2(r!)

` ≥ (κ+ r log2(n)− log2(r!))/(r − 1)

which is precisely the constraint adhered to by ` in πAggr.

4.4 Applying the Collision Predicate to NIZKPoK

We apply the principle of replacing hash inversions in Fischlin’s transformation with hash
collisions to the original NIZKPoK transform, and observe improved prover query complexity
in this setting as well. We begin by considering the hash collision predicate as a drop-in
replacement to any Sigma protocol for which Fischlin’s transformation can be applied, and
observe an 11− 15% improvement in the prover’s query complexity.

To our knowledge this is the best query complexity achieved for NIZKs so far, however
a natural question is to ask to what extent such techniques can be extended. To this end,
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Protocol πAggr

The prover P and verifier V are both given the public instance (pki,mi, Ri)i∈[n] ∈
(G × {0, 1}∗ × G)n while the prover also has witness (si)i∈[n] ∈ Znq for the statement
si · G = HSch(pki, Ri,mi) · pki + Ri ∀i ∈ [n]. Both parties have access to an `-bit Random
Oracle H : {0, 1}∗ 7→ {0, 1}` where ` ≥ (κ+ r log2(n)− log2(r!))/(r − 1).

PH((pki,mi, Ri, si)i∈[n]):

1. Find k closest to
√
n such that k | q − 1

2. Set a = (pki,mi, Ri)i∈[n], and define polynomial f(x) =
∑
i∈[n] x

i · si

3. Initialize Z = ∅ and do the following until an output is produced:

(a) Obtain points← PolyEval(q, k, f, n) and append each (e, z) ∈ points to Z

(b) If ∃(e1, z1), (e2, z2), · · · , (er, zr) ∈ Z such that

H(a, e1, z1) = H(a, e2, z2) = · · · = H(a, er, zr)

then set e = (ei)i∈[r] and (zi)i∈[r] and output π = (a, e, z)

VH((pki,mi, Ri)i∈[n], π):

1. Parse (a, e, z) = π, and (ei)i∈[r] = e, and (zi)i∈[r] = z.

2. Check that H(a, e1, z1) = H(a, e2, z2) = · · · = H(a, er, zr)

3. For each i ∈ [n], compute Si = HSch(pk, R,m) · pk +R

4. For each i ∈ [r], check that zi ·G =
∑
i∈[n] e

i · Si, aborting with output 0 if not

5. Accept by outputting 1

Figure 4.5: Collision Based Aggregation of n Signatures
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we show a lower bound on the query complexity of any NIZK that has a straight-line non-
programming extractor in Section 4.4.2. We find that Fischlin’s construction (which is the
most query efficient straight-line extractable scheme) never meets this lower bound for any
non-trivial parameters.

We show in Section 4.4.3 that it is indeed feasible to meet this lower bound for some
non-trivial parameters, by means of a new transformation based on our collision predicate.
Unfortunately this transformation only applies to a special class of Sigma protocols that
have an r-simulatability property. We show in Appendix A.2 how to construct such a Sigma
protocol by extending Schnorr’s proof of knowledge of discrete logarithm.

4.4.1 Unconditionally Improving Fischlin’s Query Complexity

Recall that the prover in Fischlin’s transformation is required to invert a fixed target of the
random oracle. In particular, a proof consists of a base unit where the prover is required to find
a Sigma protocol transcript (a, e, z) such that H(prefix, a, e, z) = 0`, and this unit is repeated
r times to achieve κ = r · ` bits of security. We can replace this inversion based unit by a
collision based one as follows: the prover is required to find a pair of independent transcripts
(a1, e1, z1) and (a2, e2, z2) such that H(prefix, a1, e1, z1) = H(prefix, a2, e2, z2). Note that just
as in the case of Fischlin, prefix includes a1, a2 to prevent trivial attacks. Additionally, the
output length of the hash function is 2`, i.e. doubled as compared to the inversion predicate.

Security. Upon fixing prefix, a prover is successful in finding an accepting pair (a1, e1, z1)
and (a2, e2, z2) in their first attempt with probability no more than 2−2`. Repeating this base
unit r/2 times achieves security 2` · r/2 = κ bits.

Efficiency. A base unit of the collision based construction is equivalent to two base units of
the inversion construction; in both cases two Sigma protocol transcripts are transmitted, and
they achieve 2` bits of security. With regards to computation cost, both constructions have
the same cost per query made to the random oracle (i.e. computing a fresh Sigma protocol
response), and therefore the difference comes down to the number of queries made per proof,
i.e. the prover query complexity.

What query complexity does this induce? Consider Z1,Z2 to be domains from which
(e1, z1) and (e2, z2) are drawn respectively, and observe that Z1,Z2 are entirely disjoint when
a1 6= a2. If we consider (prefix, a1, e1, z1) and (prefix, a2, e2, z2) to be the ‘left’ and ‘right’ halves
of the collision respectively, this means that any given (prefix, ai, ei, zi) can be a candidate
pre-image for either the left or right half, but not both. This is because any given ei, zi can
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be a verifying transcript with at most one of a1 or a2. This task therefore becomes that of
finding a chosen prefix collision [SLdW07]. The combinatorics of chosen prefix collisions are
considerably more complex to analyze than regular collisions, making the derivation of the
exact query complexity of the above construction difficult. We instead measure the query
complexity induced by this predicate empirically, and report on the results in Table 4.4.1.

As our experiments show, this chosen prefix collision predicate works for the exact same
Sigma protocols as Fischlin’s transformation, and improves on its query complexity. A natural
question for future work is if we can obtain further improvements by considering multicolli-
sions rather than pairs of collisions.

Fischlin Pairwise collisions

r ` Expected queries ` Exp queries Improvement

8 216 64,877 232 58,190 1.11

10 213 8,233 226 7,293 1.13

12 211 2,038 222 1,824 1.12

14 29 509 218 448 1.13

16 28 267 216 232 1.15

Table 4.4.1: Comparing the computation cost of Fischlin’s approach to our chosen prefix,
pairwise collision approach. The reported value is the expected number of queries for finding
either one preimage, or 2 collisions taken over 500-2000 experiments. Parameters for r and `
are set for the same 128 bit security.

4.4.2 Lower Bound on Prover Query Complexity

Fischlin [Fis05] proved via a meta reduction that any NIZKPoK scheme (with a non-programming
extractor) for a language with a hard instance generator, must have a super-logarithmic num-
ber of queries V in κ made by the verifier to the random oracle. Fischlin’s proof demonstrated
asymptotic bounds due to its reliance on the hardness of the underlying language; in this
work we are concerned with tight parameters for concrete security as guaranteed in the ran-
dom oracle model, independently of the hardness of the underlying language. We therefore
initiate a study of concrete query complexity, in particular we express this as the optimal
prover query complexity P upon fixing V .

Caveat. We make a simplifying assumption, namely that the language L has a hard
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instance generator I such that the probability that any PPT algorithm is able to find a
witness w for theorem x← I(κ) is bounded by εκ � 2−κ.

This assumption frequently does not hold as in practice one can instantiate the NIZKPoK
with a concrete soundness level comparable to the hardness of instances generated by I,
however making this simplification allows us to focus on the random oracle query complexity
of the NIZKPoK (which is given by parameters independent of the language) without having
to account for concrete hardness of the language (which is very specific to each language and
seldom leveraged by the extractor of a NIZKPoK scheme).

We begin with the following lemma, which is a tightening of [Fis05, Proposition 2]:

Lemma 4.4.2. If (P,V) is a straight-line extractable NIZKPoK scheme for language L in
the random oracle model with the following characteristics for security parameter κ:

• Perfect zero-knowledge simulator S

• `-bit output random oracle H

• P queries made by P to H in generating a proof

• Probability pC > 0 of producing an accepting proof

• V queries made by deterministic V to H in verifying a proof, is a strict subset of the
queries made by P

• Non-programming extractor Ext with error ≤ 2−κ for an adversary that makes ≤ V queries
to the random oracle

Then it must hold that: P
V

 ≥ pC
2−κ + εκ

Proof. The idea is to show that if

P
V

 is too small, then a malicious prover can succeed in

producing a verifying proof by just guess the queries that V would make in verifying a proof,
and simulating the remaining ones. This means an extractor should be able to produce
a witness using just the queries that V makes (since those are the only queries that this
malicious prover P makes) and this contradicts the hardness of the language.

We begin by constructing a new Prover algorithm P′ which internally runs P, but simulates
most of the random oracle calls for P and only makes a total of V external calls to the real
oracle H: P′H(x,w,P):
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1. Sample a set of indices Q ⊂ [1, . . . , P ] such that |Q| = V

2. Define oracle H ′(v) as follows:

• If this is the ith invocation of the oracle and if i ∈ Q then return H(v)

• Otherwise return a uniform {0, 1}`

3. Obtain π ← PH′(x,w) and output π

Let QP represent the queries to H ′ made by P. Assuming no redundant queries in QP , we
note that H ′ agrees with H on V randomly chosen queries, and the two are completely
independent on all other inputs.

By completeness of (P,V), it holds with probability pC that VH′(x, π) = 1. Our goal is
to instead analyze the probability that VH(x, π) accepts, i.e., the verifier who makes queries
to the real external oracle H accepts π. Denote the queries made by V to H ′ as QV . Given
that QV ⊂ QP , and that H ′ agrees with H on V values,

Pr
[
VH(x, π) = 1 : π ← P′H(x,w,P)

]
= Pr

[
VH(x, π) = 1 : π ← PH(x,w)

]
· Pr[H ′(x) = H(x),∀x ∈ QV ]

≥ pC ·

P
V


−1

Recall that the extractor’s error (in this case 2−κ) represents the difference between the
probability that a malicious prover P∗ is able to produce a proof π, and the probability that
the extractor Ext is able to produce a witness w for x when given the proof π and list of
queries made by P∗ in its production. Note that P′ only queries QV to H, and so the set QV
fully characterizes the list of queries made by the malicious prover. We therefore determine
that:

Pr[w ← Ext(x, π,QV ) : π ← P′H(x,w,P)]

≥ Pr
[
VH′(x, π) = 1 : π ← P′H(x,w,P)

]
− 2−κ

≥ pC ·

P
V


−1

− 2−κ

As a final step, we replace π ← P′H(x,w,P) by (π,H) ← S(x) to remove reliance on the
witness w. Note that these two distributions of (π,H) are identical due to the fact that when
P′ outputs a proof, it is identically distributed to the output of honest P, and that the perfect
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simulation is distributed identically to the output of honest P. The set QV is fully specified
by x, π,H as we show below.
A(x):

1. Compute (π,H)← S(x)

2. Construct QV by collecting the queries to H made by VH(x, π)

3. Output π,QV

Firstly due to the perfect simulation we note that

Pr[w ← Ext(x, π,QV ) : (π,QV )← A(x)] = Pr[w ← Ext(x, π,QV ) : π ← P′H(x,w,P)]

≥ pC ·

P
V


−1

− 2−κ

Second we note that w ← Ext(x, π,QV ) : (π,QV ) ← A(x) constitutes a PPT adversary
that finds a witness for any x ∈ L. Since L has a hard instance generator I that admits a
maximum advantage of εκ, for x← I(κ) it holds that

εκ ≥ Pr[w ← Ext(x, π,QV ) : (π,QV )← A(x)] ≥ pC ·

P
V


−1

− 2−κ

Rearranging, we have that P
V

 ≥ pC
2−κ + εκ

and this proves the lemma.

We can use the above lemma to derive the optimal prover query complexity for proofs
that are non-trivially secure, i.e. when V �

(
P
V

)
. We define POPT(V ) to be the smallest

prover query complexity for a given verifier query complexity V .

Corollary 4.4.3. If (P,V) is a perfectly complete straight-line extractable NIZKPoK scheme
for a εκ-hard language L in the random oracle model with all the characteristics required by
Lemma 4.4.2 with the additional constraint that V < κ and 2−κ � εκ, then the optimal
prover query complexity is given by:

POPT(V ) ≈ (V ! · 2κ)
1
V
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Proof. As 2−κ � εκ, we make the approximation 2−κ + εκ ≈ 2−κ. From Lemma 4.4.2 we
have that POPT is the smallest P such that

(
P
V

)
≥ 2κ since pC = 1. Simplifying, we have that:

2κ ≤

P
V


2κ · V ! =

∏
i∈[0,V )

(POPT − i)

≈ (POPT)V

Upon rearranging the terms, we get the statement of the corollary.

In subsequent text we drop the argument [κ, V ] when it is obvious. Note that POPT

only characterizes the optimal prover query complexity for perfectly complete schemes. Since
Lemma 4.4.2 accounts for schemes with arbitrary completeness errors, it is possible to amend
Corollary 4.4.3 accordingly if desired. However we will see that POPT serves as a useful
benchmark for our study. Interestingly Fischlin’s scheme, which has the lowest prover query
complexity in the literature, performs worse than POPT for all V > 1.

Claim 4.4.4. Let r parameterize the number of repetitions of a Sigma protocol used to in-
stantiate Fischlin’s NIZK [Fis05] at a κ-bit security level. Then the average prover query
complexity of the resulting scheme TFis is a factor of r/(r!)1/r worse than the corresponding
POPT. Therefore TFis > POPT for every r > 1.

Proof. The average prover query complexity TFis is given by the complexity of finding r

inversions of the all-zero string of r independent κ/r-bit random oracles. This task requires
r · 2κ/r tries in expectation. Since V = r, the optimal prover complexity is given by POPT =
(r! · 2κ)1/r. The ratio of the average prover complexity to the optimal is therefore:

TFis

POPT
= r · 2κ/r

(r! · 2κ)1/r = r

(r!)1/r

The ratio TFis/POPT = 1 only when r = 1, which is of no use as the average complexity of
computing a proof honestly matches the average complexity of forging a proof when r = 1.
This ratio is

√
2 ≈ 1.41 when r = 2, and continues to increase as r grows, ultimately

converging3 at e ≈ 2.71. Given this it is natural to ask, is it possible to meet POPT for any
non-trivial parameters?

3limr→∞ r/(r!)1/r = e
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4.4.3 Special Case: r + 1-Special Sound Sigma Protocols

Given a Sigma protocol that is r+1-special sound and r simulatable (i.e. given r challenges, a
simulator can produce r accepting transcripts) we are able to apply a multicollision predicate
and reduce the prover’s query complexity as compared with Fischlin’s inversion predicate
even further—to the point where we can meet POPT for a non-trivial parameter range.

Note that we present a randomized construction here—this aspect is orthogonal to query
complexity. The purpose is to avoid dependence on ‘quasi-unique responses’, which we will
discuss in detail in Section 4.5.

We begin by refining the standard definition of Sigma protocols [Dam02] to incorporate
a weaker notion of soundness and simulatability. This notion essentially requires (1) r + 1-
special soundness, which guarantees the success of an extractor upon being given r + 1
accepting conversations that begin with the same first message, and (2) r-simulatability,
which requires that for any statement, r accepting conversations (with the same first message)
can be simulated for any r given challenges. We defer a formal definition to Appendix A.1,
and give an instantiation based on Schnorr’s PoK of discrete logarithm in Appendix A.2. We
describe our NIZK transformation in Figure 4.6.

Theorem 4.4.5. If Σ is a strongly r+ 1-special sound Sigma protocol and `(r− 1) = κ, the
protocol πNIZK is a straight-line extractable NIZKPoK in the random oracle model, with an
extractor that does not program the random oracle and achieves extraction error Q/2κ for an
adversary making Q queries to the random oracle.

Proof. (Sketch) We defer the full proof to Appendix A.1. Completeness follows from the
pigeonhole principle, as any function that maps a domain of size r · 2` to a range of size 2`

will produce at least one r-collision. Zero-knowledge comes from the fact that the challenges e
are distributed uniformly in {0, 1}t·r, and the rest of the transcripts a, z can be simulated by
invoking SΣ(x, r, e). Proof-of-knowledge follows from the fact that in order for an adversary
to compute a proof by querying fewer than r+ 1 accepting Sigma protocol transcripts to H,
the first r accepting transcripts it queries to H must all evaluate to the same `-bit string.
This happens with probability (2−`)r−1 = 2−κ.

Query Complexity. We make use of the analysis of multicollision running times by von
Mises [vM39] and revisited by Preneel [Pre93, Appendix B].

Corollary 4.4.6. [vM39][Pre93, Theorem B.2 and pg. 283] If T balls are randomly dis-
tributed over n urns, the number T required to have at least one urn with r balls with proba-
bility 1− exp(−αr) is given by the following equation:

T · exp
(
− T

r · n

)
=
(
αr · n(r−1) · r!

)1/r
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Protocol πNIZK

The prover P and verifier V are both given the statement x while the prover also has a
witness w for the statement x ∈ L. Both parties have access to an `-bit Random Oracle
H : {0, 1}∗ 7→ {0, 1}`. The underlying Strongly r + 1-special sound sigma protocol is given by
Σ = ((PΣ,a, PΣ,z),VΣ). Define t = `+ dlog re.

PH(x,w):

1. Run PΣ,a(x,w) to obtain a and state

2. Set E = Z = ∅ and do the following until an output is produced:

(a) Uniformly sample e← {0, 1}t \ E

(b) Set z = PΣ,z(state, e) and append (e, z) to Z and e to E

(c) If ∃(e1, z1), (e2, z2), · · · , (er, zr) ∈ Z such that

H(a, e1, z1) = H(a, e2, z2) = · · · = H(a, er, zr)

then set e = (ei)i∈[r] and (zi)i∈[r] and output π = (a, e, z)

VH(x, π):

1. Parse (a, e, z) = π, and (ei)i∈[r] = e, and (zi)i∈[r] = z.

2. Check that H(a, e1, z1) = H(a, e2, z2) = · · · = H(a, er, zr)

3. For each i ∈ [r], check that VΣ (x, (a, ei, zi)) = 1, aborting with output 0 if not

4. Accept by outputting 1

Figure 4.6: Collision Based NIZK

In order to obtain the time TCol required to find an r-collision in expectation, one must solve
for T when the parameter αr = 1. Substituting n = 2κ/(r−1) for our context, we get that:

TCol · exp
(
− TCol

r · 2κ/(r−1)

)
= (2κ · r!)1/r = POPT

This equation is non-trivial to analyze relative to that of Fischlin, and so for ease of under-
standing we plot the ratio T/POPT for both πNIZK and Fischlin’s construction in Figure 4.7.
This plot shows that for some reasonable parameterizations around r ∼ 5, our construction
achieves roughly 2x factor improvement in Prover complexity.
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Figure 4.7: Ratio of prover query complexities TCol and TFis to the optimal POPT (y-axis)
for different r parameters (x-axis), where TCol[r] and TFis[r] are the number of oracle queries
required to compute a proof in expectation upon fixing parameter r. Note that TCol/POPT

depends on the security parameter, whereas TFis/POPT is essentially invariant of it. Conse-
quently we plot TCol/POPT for a range of security parameters, where “κ-bit Col” denotes a
κ-bit security level.

Finally, we note that Figure 4.7 only plots the ratio of Fischlin/Collision/optimal but
does not convey the actual prover query complexities at those parameter choices. Table 4.4.7
below shows the Prover query costs below for selected parameter 130 bit security) to highlight
our improvement.

4.5 Expanding the Applicability of Fischlin’s Trans-
form

As mentioned in the Introduction, Fischlin’s transformation applies to only a limited class
of Sigma protocols that satisfy a quasi-unique responses constraint. Fischlin relied on this
property to prove both zero-knowledge as well as proof of knowledge. While it is folklore
that this property is not strictly necessary for the extractor, its necessity for zero-knowledge
has remained thus far unclear.

We begin by showing in Section 4.5.1 a concrete attack on Witness Indistinguishability
when Fischlin’s transformation is applied to the Sigma protocol used to prove knowledge
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r Lower bound This Work Fischlin

4 1.34× 1010 1.34× 1010 2.43× 1010

5 1.75× 108 1.76× 108 3.36× 108

6 9.97× 106 1.02× 107 2.00× 107

7 1.32× 106 1.40× 106 2.73× 106

8 2.93× 105 3.26× 105 6.23× 105

9 9.25× 104 1.08× 105 2.01× 105

10 3.71× 104 4.55× 104 8.19× 104

Table 4.4.7: Prover work as a function of r for 130-bit security. Fixing the soundness error
and the proof size (which is governed by r), this table of analytical estimates shows that our
construction almost meets our lower-bound while using a factor of between 2

√
2/π and 2

fewer queries than Fischlin’s transform.

of one of two discrete logarithms [CDS94]. We then formalize a strong special soundness
property for Sigma protocols that suffices for extraction, which includes languages that do not
by default support the quasi-unique responses property, such as the logical OR Sigma protocol
mentioned above. Finally we show how appropriately randomizing Fischlin’s construction can
achieve ZK unconditionally, for any strong special sound Sigma protocol.

4.5.1 Testing Witness Use in Fischlin’s Transformation

Our distinguisher will not rely on the ability to query multiple accepting transcripts for the
same challenge. For reference, we first recall the underlying Sigma protocol (due to Cramer
et al. [CDS94]) in Figure 4.8.

An adversary attacking Witness Indistinguishability conventionally possesses two wit-
nesses to the theorem and is given a proof π, and must determine which witness was used to
produce it. We construct a more powerful type of attack, which makes use of a single witness
and determines whether π was created using this witness or the opposite one. This fact will
be useful when examining the protocol contexts in which our attack applies.

As we briefly discussed in Section 3.2.2, the attack strategy is to exploit the deterministic
nature of Fischlin’s prover by retrieving the Sigma protocol randomness and retracing the
prover’s steps. Concretely with Schnorr-style proofs, the messages z and c and the witness
determine the randomness. The attacker can therefore retrieve this randomness, and simply
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Protocol Σ∨DL

The prover P and verifier V are both given the statement (X0, X1) = (w0 · G,w1 · G) ∈ G2

while the prover also has wb ∈ Zq for b ∈ {0, 1}.

PaΣ∨DL
((X0, X1), wb):

1. Simulate a transcript for DLog proof of knowledge of X1−b:

• Sample e1−b ← {0, 1}κ and compute (a1−b, z1−b)← SΣDL(X1−b, e1−b)

2. Sample rb ← Zq and compute ab = rb ·G

3. Publish commitment a = (a0, a1) and output state = wb, rb, (a1−b, e1−b, z1−b)

PzΣ∨DL
(state, e): Compute eb = e⊕ e1−b and zb = wb · eb + rb, and Output (e0, e1, z0, z1)

V(X, a, e, z):

1. Parse a = (a0, a1) and z = (e0, e1, z0, z1) and verify e0 ⊕ e1 = e

2. Verify zb ·G = eb ·Xb + ab for each b ∈ {0, 1}

Figure 4.8: Proving knowledge of one of two discrete logarithms [CDS94]

replay the honest prover’s algorithm and see if the resulting proof string is the same as the
given one. The main subtle step in this attack’s analysis is to argue that when this retrieve-
and-retrace procedure is applied using a different witness from the one used to produce the
proof string originally, there is a noticeable probability of producing a different proof string.

While the regular Witness Indistinguishability definition allows the adversary to supply
both witnesses, in order to stay within the constraints of quasi-unique responses we formulate
a stronger version of the WI experiment for our specific setting. In our definition the chal-
lenger samples both witnesses and gives the adversary only one of them (the other witness
represents the trapdoor for the system parameter k). We define our experiment as follows:

ExptDL-WI
A,P (1κ) :

1. The adversary A submits a bit b ∈ {0, 1} to the challenger

2. The challenger samples w0, w1 ← Zq and sets X0 = gw0 , X1 = gw1

3. The challenger tosses a coin β ← {0, 1}, and computes π ← P((X0, X1), wβ)
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4. The challenger sends X0, X1, wb, π to A

5. A outputs a bit

The advantage AdvDL-WI[A,P] of an adversary A is defined as:

|Pr [A(b, wb, X1−b, π) = 1 | β = 0]− Pr [A(b, wb, X1−b, π) = 1 | β = 1]|

Clearly any Witness Indistinguishable scheme will guarantee that the above advantage is
negligible. We now give our concrete attack and analysis.

Lemma 4.5.1. Let P be the prover’s algorithm obtained by applying Fischlin’s transforma-
tion [Fis05] to the Sigma protocol to prove knowledge of one of two discrete logarithms [CDS94].
Then there is an efficient adversary A such that AdvDL-WI[A,P] is non-negligible.

Equipped with this non-negligibly successful adversary A, in Section 4.5.2 we will show
how a natural protocol scenario that appears to enable quasi-unique responses in fact struc-
turally resembles the ExptDL-WI

A,P experiment. This allows us to deploy our ExptDL-WI
A,P adversary

A to break the security of the larger protocol.

Proof. For simplicity, we consider only a single base unit, i.e. assume that there is only one
repetition in the transformed Sigma protocol.

Consider an attacker, that on input a proof π = ((a0, a1), e, (e0, e1, z0, z1)) obtained by
applying Fischlin’s transformation to Σ∨DL using `-bit output hash function H, and witness
wb, does the following:

1. Compute rb = zb − wb · eb and set stateb = wb, rb, (a1−b, e1−b, z1−b)

2. Starting with e = 0, increment e until H((a0, a1), e, (e0, e1, z0, z1)) = 0` is found, where
(e0, e1, z0, z1) = PzΣ∨DL

(stateb, e)

3. Set πb = (a0, a1), e′, (e′0, e′1, z′0, z′1)

4. If πb = π output b, otherwise output 1− b.

Denote the witness used by the challenger to produce the proof as wβ. When β = b the
attacker outputs the correct bit with certainty since the honest prover’s steps are perfectly
reconstructed to produce πb = π. The interesting case to analyze is when β = 1 − b. There
are two possible outcomes triggered in this case, i.e., πb = π and πb 6= π. The latter outcome
is induced by the attacker finding an accepting transcript (a, e′, z′) with e′ < e that resulted
in H(a, e′, z′) = 0` (note that e′ > e is impossible as we know that H(a, e, z) = 0`, and so
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the prover never increments past e). The implication in this event is that π was certainly not
produced using wb; this is because had the honest prover started with witness wb and state
stateb, it would have terminated with output π′ = (a, e′, z′) rather than the given π.

It remains to show that this distinguishing event (call it diffProof) occurs with non-
negligible probability. Note that since the attack is always successful when β = b, the
value Pr[diffProof] characterizes the distinguishing advantage of this attack. This is because
AdvDL-WI[A,P] can be simplified as follows, given that b is fixed:

|Pr [A(wb, X1−b, π) = b | β = b]− Pr [A(wb, X1−b, π) = b | β = 1− b]|

= |1− (1− Pr[diffProof])| = Pr[diffProof]

LetQb,i be the query made by the attacker that corresponds to responding to the ith challenge
using witness wb; in particular

Qb,i = (a0, a1), i,PzΣ∨DL
(stateb, i)

and thus πb = Qb,i for the smallest i such that H(Qb,i) = 0`. Define Q1−b,i the same way
using state1−b = w1−b, r1−b, (ab, eb, zb), except that the query is made by the challenger rather
than the attacker in this experiment (since β = 1− b).

Claim 4.5.2. ∀e′ 6= e, it holds that Q0,e′ 6= Q1,e′.

Proof. Consider any e′ 6= e. Let e′0 = e′ ⊕ e1 and e′1 = e′ ⊕ e0. Clearly e′0 6= e0 and e′1 6= e1

as e′ 6= e = e0 ⊕ e1. By the structure of PzΣ∨DL
(stateb, e′), the queries Qb,e′ are correspondingly

constructed as follows:

Q0,e′ = (· · · e′0, e1, · · · ) and Q1,e′ = (· · · e0, e
′
1, · · · )

Clearly Q0,e′ 6= Q1,e′ as e0 6= e′0 and e1 6= e′1.

Corollary 4.5.3. ∀e′ 6= e, the values H(Q0,e′) and H(Q1,e′) are independently distributed.

Recall that the event diffProof is precisely the event that the attacker finds an accepting
proof πb = (a, e′, z′) such that e′ < e. Rather than characterizing diffProof in its entirety, we
analyze a simpler special case. In particular, the event H(Qβ,0) 6= 0` (implying e > 0 in π)
and H(Q1−β,0) = 0` (implying e′ = 0 and hence πb 6= π) induces diffProof. Then applying
Corollary 4.5.3 we can therefore lower bound Pr[diffProof] as follows:

Pr[diffProof] ≥ Pr[H(Qβ,0) 6= 0` ∧H(Q1−β,0) = 0`]

= Pr[H(Qβ,0) 6= 0`] · Pr[H(Q1−β,0) = 0`]

= 2` − 1
2` · 1

2` = 2` − 1
22`
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As we know that ` ∈ O(log κ) is necessary for completeness, the denominator of the above
value 22` ∈ poly(κ). We therefore conclude that Pr[diffProof] is non-negligible in κ, and this
completes the analysis.

4.5.2 Where to Apply the Attack

Given the attack in Section 4.5.1, when is it safe to apply Fischlin’s transformation? Re-
call that the security of Fischlin’s transformation hinges on “quasi-unique responses” as in
Definition 3.2.6.

We argue that ensuring this property in a larger system is not always straightforward for
languages where the same statement can have multiple witnesses, even when no individual
party has more than one witness. In particular, a larger cryptographic application that makes
use of such proofs as subprotocols may rely on the ability of the same proof to be produced
indistinguishably by different methods, for example by an honest party using a witness in
the real protocol, and by a simulator using a trapdoor in the ideal protocol. This subtlety
is brought out in the following example protocol between Alice (who only has public input
B ∈ G) and Bob (who has private input b ∈ Zq):

• Alice samples a ← Zq, sets A = ga, and computes πA as the Witness Hiding PoK of
DLog g(A). Alice sends A, πA to Bob.

• Bob and computes πB as the WIPoK of DLog g(A)∨DLog g(B) using b as a witness. Bob
sends B, πB to Alice.

Fischlin’s proof does not directly cover this use case, but it is suggested informally [Fis05, pg.
13] that their construction extends to logical compositions, etc. in the presence of a system
parameter enforcing quasi unique responses.

When Alice is corrupt in the above protocol, her view can be simulated without knowledge
of b. In particular the simulator simply extracts a from πA and uses a as a witness to
compute πB as the WIPoK of DLog g(A) ∨ DLog g(B). This simulation is efficient due
to extractability of the WHPoK, and will be indistinguishable from the real protocol by
witness indistinguishability of the WIPoK. Simultaneously the discrete log b of B is efficiently
extractable due to the witness hiding property of WHPoK (in conjunction with the hardness
of the discrete logarithm problem) and the extractablity of the WIPoK. This template due
to Feige and Shamir [FS90] was used by Pass [Pas03] to construct a deniable two round
zero-knowledge argument in the random oracle model, where the simulator does not rely on
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programming the random oracle. As shown by Canetti et al. [CJS14] this allows for secure
composition in the Global Random Oracle model.

Can we safely use Fischlin’s transformation here? At first glance, the above protocol
appears to be conducive to quasi-unique responses for the sigma protocols that would underlie
πA as well as πB. Indeed Alice only knows a4 allowing B to be treated as a system parameter
if Alice is corrupt, and Bob only knows b which allows A to be considered a system parameter
when Bob is corrupt, therefore neither party has the ability to efficiently compute multiple
accepting responses for the same challenge in Σ∨DL.

However this scenario structurally resembles ExptDL-WI
A,P , i.e. since our attack on WI for

Fischlin’s transformation does not require knowledge of both witnesses, it can be applied
here. In particular Alice knows a, and so can test whether the proof πB was computed using
a or b as the witness. This allows her to distinguish between the real protocol (where Bob
uses b as the witness to compute πB) and the simulation (where πB is generated by the
simulator using a as the witness).

We therefore make the case that a cleaner definition is required, ideally one that does not
require reasoning about the context in which a sigma protocol is used.

4.5.3 Strong Special Soundness

Before describing how to patch the above attack, we present an easily verifiable property
of Sigma protocols for which our transformation applies. Rather than attempting to quan-
tify the ability of an adversary to induce a bad event, we take a constructive approach in
our definition; i.e., it is easier to evaluate precise deterministic conditions (such as special
soundness) rather than reason about probabilistic/computational system parameters (as in
quasi-unique responses).

Our definition is a mild strengthening of the two-special soundness notion for Sigma
protocols [Dam02], and so we call it strong two-special soundness—also in homage to the
similar concept of strong unforgeability for signature schemes. Informally stated, a strongly
two-special sound sigma protocol has an extractor which when given two distinct accepting
transcripts (a, e, z) and (a, e′, z′) that share the same first message, outputs a witness for the
statement with certainty (note that e = e′ is allowed). The standard two-special soundness
notion enforces that e 6= e′ for the extractor’s success. We give the formal definition in
Definition 2.5.2 in Section 2.5.

4We ignore the prospect of obtaining auxiliary information about b, for eg. b could be sampled uniformly
as part of a larger protocol.
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Many natural sigma protocols (including logical compositions [CDS94], Okamoto’s iden-
tification protocol [Oka93], etc.) satisfy this definition (but may not satisfy quasi-unique
responses). There are two notable natural examples that may not meet this definition: (1)
Blum’s protocol to prove knowledge of a Hamiltonian cycle [Blu86] allows the prover to open
any cycle in the graph and it is unclear as to how an extractor for strong special soundness
can deal with such a situation, and (2) the Sigma protocol that underlies EdDSA [BDL+12],
which is Schnorr’s scheme implemented over an elliptic curve group of composite order. The
lax verification equation in the original specification means that the verifier accepts multiple
discrete logarithms for the same curve point. However we stress that this is due to lax real-
ization of the abstraction required for Schnorr’s sigma protocol, and is easily fixed in works
that succeeded the original spec [CGN20, BCJZ21]. Note that both cases will not support
quasi-unique responses either, if they are not strong special sound.

Note that any standard Sigma protocol that is not strongly two-special sound can not
have quasi-unique responses. In particular by definition the only way to retain standard
special soundness while violating strong two-special soundness is by presenting accepting
transcripts (a, e, z1), (a, e, z2) that do not yield a witness for the theorem when given to the
extractor. Any notion of efficient adversaries being unable to find such transcripts in the case
of quasi-unique responses is captured by amending the theorem for the strong two-special
sound Sigma protocol to include a disjunctive clause for knowledge of the system parameter
trapdoor.

With our definition in place, we study how to compile such Sigma protocols to NIZKPoKs
using Fischlin’s technique.

4.5.4 Randomization Extends Fischlin’s Technique

The issue in Fischlin’s transformation is that the prover’s algorithm is deterministic and con-
sequently re-traceable. Indeed, if one were to instantiate the transformation of Pass [Pas03]
by simply constructing a hash tree of accepting protocol transcripts instead of a Merkle tree
of commitments to such transcripts, the same issue as described above would present itself
more directly: given a proof and candidate witness for the statement, one could simply ex-
tract the prover’s randomness and test if recomputing the proof once again yields the given
one. This issue is implicitly avoided by Pass (at constant factor overhead) by constructing
the Merkle tree with commitments to protocol transcripts. However it is unclear how to make
such an approach work with Fischlin’s transform; using randomized commitments appears
to be at odds with obtaining soundness.

We show that an alternate method of randomization can be used to extend Fischlin’s
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technique to any strong special sound Sigma protocol. The idea is to randomize the NIZK
prover’s algorithm so that the prover randomly steps through the challenge space until an
accepting transcript that hashes to the all-zero string is found. Intuitively, proofs produced
with this modified transformation do not leak any information about how many queries the
prover had to make in order to find an accepting transcript. This makes it impossible for
a distinguisher to retrace the steps of a prover even given all witnesses as it does not have
access to the random sequence in which the prover queried the random oracle. We give a
formal description of the modified transformation in Figure 4.9 below, along with a proof of
security.

Protocol πF-rand
NIZK

The prover P and verifier V are both given the statement x while the prover also has a witness
w for the statement x ∈ L. The security parameter κ defines the integers r, `, t. These integers
are related as r · ` = 2κ, and t = dlog κe · `. Both parties have access to a Random Oracle
H : {0, 1}∗ 7→ {0, 1}`. The underlying sigma protocol is given by Σ = ((PaΣ,PzΣ),VΣ).

PH(x,w):

1. For each i ∈ [r], compute (ai, statei)← PaΣ(x,w)

2. Set a = (ai)i∈[r]

3. For each i ∈ [r], do the following:

(a) Set Ei = ∅

(b) Sample ei ← {0, 1}t \ Ei and compute zi = PzΣ(statei, ei)

(c) If H(a, i, ei, zi) 6= 0`, update Ei = Ei ∪ {ei} and repeat Step 3b

4. Output π = (ai, ei, zi)i∈[r]

VH(x, π):

1. Parse (ai, ei, zi)i∈[r] = π, and set a = (ai)i∈[r]

2. For each i ∈ [r], verify that H(a, i, ei, z1) = 0` and VΣ (x, (ai, ei, zi)) = 1, aborting with
output 0 if not

3. Accept by outputting 1

Figure 4.9: Randomized Fischlin’s Transformation
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Extractor ExtNIZK

The extractor is given the statement x, a proof π, and the list of queries to the random oracle
Q that were made by the adversary in the production of this proof. In addition to this, this
extractor has access to the extractor ExtΣ of the strongly special sound sigma protocol, which
requires 2 accepting transcripts (with the same a value) in order to produce a witness w for
the statement.

ExtNIZK(x, π,Q):

1. Parse (ai, ei, zi)i∈[r] = π, and set a = (ai)i∈[r]

2. Search Q until a query of the form (a, i, e, z) is found such that (e, z) 6= (ei, zi), and
VΣ (x, ai, e, z)) = 1

3. Output ExtΣ(ai, ei, e, zi, z)

Figure 4.10: Extracting a witness

Theorem 4.5.4. If Σ is a strongly two-special sound sigma protocol for the language L, then
protocol πF-rand

NIZK is a straight-line extractable non-interactive zero-knowledge proof of knowledge
for the language L in the random oracle model.

Proof. Completeness: follows from the same analysis as Fischlin [Fis05]. Denote by Qi,ei

the query made by P in Step 3c of its algorithm. The only event in which the prover does
not find an accepting proof is when ∃i ∈ [r] such that ∀ei ∈ {0, 1}t, H(Qi,ei) 6= 0`. Call this
event fail. As each H(Qi,ei) is independent, we can bound the probability of fail as follows:

Pr[fail] = Pr[∃i ∈ [r] : ∀ei ∈ {0, 1}t, H(Qi,ei) 6= 0`]

≤
∑
i∈[r]

Pr[∀ei ∈ {0, 1}t, H(Qi,ei) 6= 0`]

=
∑
i∈[r]

∏
ei∈{0,1}t

Pr[H(Qi,ei) 6= 0`]

=
∑
i∈[r]

∏
ei∈{0,1}t

(
1− 1

2`
)

= r ·
(

1− 1
2`
)2t

= r ·
(

1− 1
2`
)κ·2`

≈ r · 1
eκ

≤ 2−κ

Proof of knowledge: This follows from the same analysis as Fischlin [Fis05] as well.
The event in which this extractor fails is the event in which an adversarial prover P∗

is able to produce a proof π by querying no more than a single accepting Sigma protocol
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Simulator SF
NIZK

Simulator SF
NIZK is given the statement x, and has the ability to program the Random Oracle

H. In addition to this SF
NIZK is given the simulator for the Sigma protoocol SΣ.

SF
NIZK(x):

1. Uniformly sample ei ← {0, 1}t for each i ∈ [r] and set e = (ei)i∈[r]

2. Run the simulator for the sigma protocol to obtain (ai, zi)← SΣ(x, ei) for each i ∈ [r]

3. Program the random oracle H so that H(a, ei, zi) = 0 for each i ∈ [r]

4. Emulate H as a random oracle ‘honestly’ for every other query

5. Output π = (a, e, z)

Figure 4.11: Simulator for Zero-Knowledge

transcript for each i ∈ [r] to the random oracle. We first ignore all queries made to H that
are not accepting transcripts, and then separate queries prefixed by different a as they essen-
tially instantiate independent random oracles (and can not be combined with one another
to produce a proof). For a given a, the event in which the adversary is able to output an
accepting proof with fewer than 2 accepting transcripts (prefixed by a) queried to H for each
i ∈ [r] is exactly the event that the first such accepting transcript queried to H for every
i ∈ [r] evaluates to 0. This is equivalent to r independent uniformly chosen `-bit strings
being equal to 0, which happens with probability (2−`)r = 2−κ. For an adversary that makes
|Q| queries to the random oracle, the extraction error is therefore bounded by |Q|/2κ.

Zero-knowledge: We describe how to simulate a proof in Figure 4.11, and then show
its indistinguishability from a real proof.

We argue that the simulation is indistinguishable from a real proof through a sequence
of hybrid experiments, which are defined as follows.

Hybrid H1. The real prover’s algorithm (P from πF-rand
NIZK ) is used to find (a, e, z) such that

H(a, e1, z1) = · · · = H(a, er, zr) = 0 where H is emulated as a random oracle by the
standard technique of maintaining a (query, response) table. The difference from the real
prover’s algorithm is merely syntactic.

Hybrid H2. Implement Step 3 of SF
NIZK. In particular in this experiment, the random oracle

H is implemented as follows:
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1. The first r queries by the honest prover Q1, Q2, · · ·Qr (where each Qi = (a, ei, zi) as
generated by P) will receive 0 as a response, i.e. H(Q1) = H(Q2) = · · · = H(Qk) = 0

2. Emulate H as a random oracle ‘honestly’ for every other query

This hybrid differs from the last in that here the prover P will terminate after the first r
queries it makes to H, whereas in H1 since H is not programmed to shortcut to 0, P will have
to ‘work’ to find accepting transcripts that evaluate to 0. Since the difference in running time
of H2 and H1 is invisible to a distinguisher and a are generated identically in both hybrids,
the only component that remains to be analyzed is e (since z is implicitly fixed by w,a, e).
In H1, each ei represents the index at which the first pre-image of 0 was found by P relative to
H(a, i, ·). Since P steps through pre-images uniformly at random and H is a random oracle
(i.e. H has independent uniformly random outputs for every pair of distinct inputs) each ei
is distributed uniformly in {0, 1}t in H1. In H2, each ei is clearly uniformly distributed in
{0, 1}t as it corresponds to the first r challenges tried by P, which are sampled uniformly
and independently.

As a, e, z are distributed identically in H2 and H1, the only distinguishing event corre-
sponds to the programming of H, i.e. if the adversary is able to query H on some index that
H2 subsequently programs to a different value. Since a has at least κ bits of entropy and is a
prefix for all queries programmed in H2, this distinguishing event happens with probability
no greater than |Q|/2κ, where |Q| is the number of queries made by the adversary to the
random oracle.

Hybrid H3. We define hybrid experiment H3
0 to be the same as the last, with the only

change being that the vector of challenges e is sampled before invoking PΣ,a. This change
is merely syntactic, and H3

0 is distributed identically to H2. We now define a sequence of
sub-hybrids {H3

i}i∈[r] as follows: hybrid experiments H3
i−1 and H3

i are identical except that
they differ in their computation of (ai, zi). In particular, H3

i−1 computes (ai, statei)← PΣ,a

and zi ← PΣ,z(ei, statei) whereas H3
i computes (ai, zi) ← SΣ(x, ei). Clearly distinguishing

H3
i−1 from H3

i is equivalent to distinguishing a simulated Sigma protocol transcript from
a real one. By perfect simulation of the sigma protocol, we have that H3

i−1 ≡ H3
i for each

i ∈ [r].

The final experiment in this sequenceH3
r implements Steps 1 and 2 of SF

NIZK and is entirely
independent of the witness, which completes the process of replacing the real P(x,w) with
the simulation SF

NIZK(x).

93



4.6 Open Problems

In this chapter, we showed how to aggregate Schnorr signatures by a factor of 2, with tech-
niques that are blackbox in the hash function, and proved that this compression rate is
optimal. It remains open to construct non-blackbox techniques in hash functions that enable
better aggregation methods than invoking generic SNARKs.

We showed how to speed up aggregation when tight security is desired, so that the over-
head of tight security is roughly three orders of magnitude over the non-tight version, for
real-world parameters. This overhead is already tolerable for many applications, but of course
could have room for improvement. We showed how these techniques can be of benefit to the
zero-knowledge setting as well. We were able to prove a lower bound on Prover query com-
plexity in the zero-knowledge setting, and showed that Fischlin’s construction is roughly a
factor of 2–2.7 worse than this bound. We showed (for the first time) how to achieve optimal
prover query complexity for a small range of parameters; an interesting question for future
work is whether the bound can be met (or improved) for larger parameter ranges. Of course,
Fischlin showed that such a bound can be circumvented when the straight-line extractor is
allowed to program the random oracle, but thus far no meaningfully efficient techniques to
circumvent the bound are known.

Finally, we showed that Fischlin’s transformation is insecure when applied to certain com-
mon Sigma protocols, such as the proof of knowledge of one of two discrete logarithms. We
attributed this flaw to the deterministic nature of the transform, and showed how suitable ran-
domization can fix the problem. An interesting open problem is whether any “well-behaved”
compiler that achieves straight-line extraction must necessarily be randomized.
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Chapter 5

Threshold Schnorr with Stateless
Deterministic Signing from Standard
Assumptions

The fact that r values are chosen uniformly upon every invocation of Schnorr’s signing
algorithm permits many useful theoretical properties, among them a clean proof [PS96].
However, the necessity of fresh randomness introduces a new attack vector in practice: the
assumption that a consistent source of entropy will be available for use has repeatedly turned
out to be ill-founded.

As an example, the public cloud is a context in which access to good entropy and a
well-seeded PRNG is particularly difficult. Indeed, deploying an application on cloud infras-
tructure delivers the convenience of modern enterprise-grade offerings, yielding significant
benefits in uptime, availability, APIs, threat detection, load balancing, storage, and more.
Yet this choice often entails that a user application will run as a guest in a virtualized
environment of some kind. Existing literature shows that such guests have a lower rate of
acquiring entropy [KASN15], that their PRNG behaves deterministically on boot and re-
set [EZJ+14], and that they show coupled entropy in multi-tenancy situations [KC12], in-
cluding in containers [Bay14]. This can have disastrous consequences, as even a small amount
of bias in r values across many Schnorr signatures can be leveraged to completely break the
scheme [HS01, ANT+20, MH20].
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5.1 Stateless Deterministic Signing

The idea of deterministically deriving r values from randomness established during key gener-
ation has correspondingly gained traction [MNPV99, KW03, KL17]. The widely used EdDSA
signature scheme [BDL+12] derives its nonces as r = H(H(k),m) where k is sampled during
key generation and m is the message to be signed. Assuming k has enough entropy and that
H produces pseudorandom outputs, the r values will be pseudorandomly determined for each
m, leading to signatures that are essentially as secure as the original Schnorr algorithm that
consumes fresh randomness for each r. In this chapter, we aim to translate the benefits of
deterministic signing to the threshold signature setting. In particular, we study deterministic
threshold Schnorr as the problem of designing a decentralized protocol to produce Schnorr
signatures where each party’s signing algorithm is deterministic.

State Continuity is non-trivial. Folklore would suggest that the problem at hand is
simple: first design a randomized protocol (of which many exist for threshold Schnorr) and
then simply ‘compress’ the random tape by using a PRG/block cipher invoked with a fresh
counter each time new randomness is needed. However this approach fundamentally assumes
state continuity [PLD+11], i.e. that the state of the device running the protocol can be
reliably updated and read on demand. However as Parno et al. [PLD+11] first pointed out,
even secure hardened devices with strong isolation guarantees can not take this property for
granted. In particular, malicious attackers or even natural circumstances such as software
errors or power interruptions may induce a device to turn off and roll back to a ‘last known
safe’ state upon restart. While such a state may be entirely consistent in every detectable
way, it could be stale, leading to randomness reuse in the PRG context. We stress that
reliably storing long-term secrets is significantly easier than for instance updating a counter
every time a signature is produced.

Why not solve this at the systems level? While state continuity in general has been
studied as a systems problem, we argue here that incorporating resiliency to state resets in
cryptographic protocol design has both qualitative and quantitative advantages:

• Qualitative: Systems-level solutions depend on context, and consequently hinge on spe-
cific assumptions such as trusted hardware [PLD+11, SP16], a number of helper nodes
with uncorrelated failures [BCLK17, MAK+17], or a trusted server [vDRSD07]. In con-
trast, a cryptographic protocol in the standard model offers provable security and strong
composition guarantees without resorting to context-specific physical assumptions.
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• Quantitative: Deployment of a protocol that relies on state continuity will require the
expending of resources on establishing context-specific solutions to this problem for each
new environment; acquiring such dedicated hardware is expensive. Moreover it is unclear
that the best systems solution in every environment will be more efficient than a canonical
stateless cryptographic protocol. Consider two-party distributed signing: it defeats the
purpose to incorporate extra parties/servers for state continuity, and solutions that rely on
monotonic counters maintained on special purpose hardware such as Intel SGX or Trusted
Platform Modules suffer other issues inherent to these platforms. Matetic et al. [MAK+17]
showed that the upper limit on the number of writes to such protected counters (due to non-
volatile memory wearing out) can be exhausted in a few days of continuous use. Moreover
maintaining and reading from such memory is slow; Strackx and Piessens [SP16] report a
95ms latency, and Brandenburger et al. [BCLK17] report a 60ms latency in incrementing an
SGX Trusted Monotonic Counter. In summary, dedicated hardware for state continuity is
expensive, slow, and comes with limited lifespan. The protocols we construct in this work
are expected to run significantly faster on commodity hardware (order of 10ms) - well
within the performance envelope of trusted hardware solutions due to their latency.

We therefore incorporate statelessness into the problem statement, to mean that security
must hold even when devices are arbitrarily crashed (even in the middle of a protocol) and
restored with only their long-term secrets.

5.1.1 Why is Stateless Deterministic Threshold Signing Challeng-
ing?

Schnorr signatures permit a very elegant multiparty variant [SS01, GJKR07] as signatures
are simply linear combinations of secret values. Most natural secret sharing schemes permit
linear combinations “for free”, with the result that threshold Schnorr in different settings has
essentially reduced to the task of establishing x ·G and r ·G such that x, r are random and
secret-shared among parties.

The instructions for each of the parties in the classic threshold Schnorr protocols [SS01,
GJKR07] looks very much like the regular signing algorithm. We give a brief sketch of how
the semi-honest two party version works, which is sufficient to understand the challenges we
address in the rest of our exposition. The description is from the point of view of party Pb
for b ∈ {0, 1}.

1. Key generation: Pb samples skb ← Zq and sets pkb = skb · G. It then sends pkb to P1−b

and waits for pk1−b. The shared public key is set to pk = pk0 + pk1
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2. Given message m to sign:

(a) Pb samples rb ← Zq and sets Rb = rb ·G. It then sends Rb to P1−b and waits for R1−b.
The signing nonce is computed by both as R = R0 +R1

(b) Pb computes e = H(pk, R,m) and sets σb = skb · e+ rb. It then sends σb to P1−b and
waits for σ1−b. Finally (R, σ = σ0 + σ1) is a signature on m

The above protocol can be made secure against an active adversary with an extra commit-
ment round [NKDM03], however this will not be important for our discussion. An immediate
observation is that instead of having Pb sample a fresh rb for each message, one could adopt
the EdDSA approach and have Pb sample kb during key generation and instead compute
rb = H(H(kb),m). This does in fact yield a deterministic threshold signing protocol, with
security against at least passive corruption. However, as previously noted by Maxwell et
al. [MPSW19], a malicious adversary will be able to completely break such a system. The
attack is as follows: a malicious P1 can first run the honest signing procedure for message
m with the correct r1 (as per Step 2a), and subsequently ask to sign the same m but use a
different r′1 6= r1 this time. The honest P0 follows the protocol specification and unfortunately
uses the same r0 value in both executions, as it is derived as a function ofm, k0, both of which
are independent of r1. Consequently, R = (r0 + r1)G and R′ = (r0 + r′1)G are the nonces
derived for each execution, which induce unequal challenges e = H(..R) and e′ = H(..R′).
The honest party therefore gives P1 the values σ0 = sk0e+ r0 and σ′0 = sk0e

′+ r0 in different
executions, which jointly reveal its secret key share sk0.

Going forward, we follow the natural template for threshold Schnorr set by previous
works [NKDM03, SS01, GJKR07], and investigate how to enforce that parties indeed derive
their nonces deterministically by following the protocol.

5.1.2 Desiderata

There are many possible ways to enforce deterministic nonce derivation, and so we first
highlight the constraints of our context in order to inform our choice of technology.

• Standard assumptions. This is a subtle but important constraint. As with any safety
critical application, we would like to avoid new and insufficiently vetted assumptions in
our protocol. However even more important than protocol security (which is only relevant
when parties in the system are corrupt) is the security of artefacts exposed to the outside
world, i.e. the signature. In particular, we wish to be very conservative in instantiating the
PRF that is used to derive nonces; Schnorr signatures are known to be extremely sensitive
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to nonce bias [HS01, TTA18], meaning that the slightest weakness discovered in the PRF
could lead to attackers retrieving entire signing keys using previously published signatures.

• Lightweight computation. We want our schemes to be as widely applicable as possible,
and consequently we do not want to make use of heavy cryptography. In the case of
decentralized cryptocurrency wallets where one or more signing party is likely to be a
weak device (e.g. low budget smartphone, or Hardware Security Module) both computation
cost and memory consumption must be minimized. On the other end of the spectrum for
threshold signing at an institutional level with powerful hardware, lightweight signing is
conducive to high throughput.

• Round efficiency. As much as possible we would like to avoid compromising on round
efficiency in our endeavour to make signing deterministic and stateless. In particular or-
dinary threshold Schnorr signing [NKDM03, SS01, GJKR07] requires only three rounds,
and we would like to match this efficiency.

We therefore formulate a more precise problem statement,

How can we construct a lightweight threshold signing protocol for Schnorr signa-
tures where parties do not consume fresh randomness or update state after the
initial key generation? Moreover nonce derivation must strictly use standardized
primitives (eg. AES, SHA).

To be clear, our focus is on the ‘online’ signing operations; we do not worry about optimizing
the efficiency of the distributed key generation, which is one-time.

5.1.3 This Work

In this work, we construct an efficient zero-knowledge proof system for proving correct nonce
derivation that makes use of only cheap symmetric key cryptography and a small constant
number of exponentiations when invoked, and does not require updating long-term state.

Our proof system is in the Zero-knowledge from Garbled Circuits (ZKGC) paradigm of
Jawurek et al. [JKO13], and the techniques that we develop improve the ZKGC paradigm
even outside of the stateless deterministic setting.

General ZKGC Bottlenecks. The efficiency of the ZKGC paradigm is rooted in the fact
that the prover and verifier pay at most three AES invocations per AND gate in the circuit,
when instantiated with the privacy-free variant of HalfGates [ZRE15]. However especially for
small circuits such as AES, SHA, etc., the bottleneck usually lies in logistics for the witness
(i.e. input to the circuit). In particular:

99



• Input Encoding: Transferring wire labels for a |q|-bit input requires |q| Oblivious Trans-
fers, which means O(κ) public key operations per invocation even with OT Extension, for
κ bits of computational security.

• Binding Composite Statements: The state of the art technique [CGM16] to tie state-
ments about an order q elliptic curve group elements to a Boolean circuit involves the
garbling of an additional private circuit to multiply a |q|-bit value with an s-bit statisti-
cal MAC. While the cost of these Õ(s · |q|) extra gates may disappear as the circuit size
grows, it incurs high concrete cost relative to common ciphers that have compact Boolean
circuit representations. Consider the parameter regime relevant here, a 256-bit curve and
60 bits of statistical security: the cost of garbling with privacy (2× the per-gate cost of
privacy-free [ZRE15]) the corresponding 32k gate multiplication circuit for the MAC1 is
considerably more expensive than privacy-free garbling of the circuit for the relation itself:
nearly an order of magnitude more than AES-128 (7k gates [AMM+]) and even 3× that
of SHA-256 (22k gates [CGGN17]).

We develop novel techniques to address both of these problems in this work, which we briefly
describe below.

Commit Once, Prove Many Statements

As the use of O(κ) public key operations used for input encoding in garbled circuit based
protocols is a difficult foundational issue, we relax the problem to fit our setting more closely.
In particular, it is sufficient for a party to commit to a nonce derivation key k once during
distributed key generation, and subsequently prove an unbounded number of statements (i.e.
PRF evaluations) online. This gives us a more targeted problem statement:

How can we enable the prover to commit to its witness w once, and prove an
unbounded number of statements x such that R(x,w) = 1 with only symmetric
key operations per instance in the ZKGC paradigm?

This problem reduces to the task of constructing a variant of Committed OT, where an
OT receiver commits to a choice bit once and subsequently receives one out of two messages
for an unbounded number of message pairs sent by the sender. Importantly, after the sender
has sent a message pair, the sender should be able to reveal the pair at a later point without
changing the messages or learning the receiver’s choice bit. We devise a novel method that
makes non-blackbox use of any Universally Composable (UC) commitment [Can01] in the

1Calculated with Karatsuba’s multiplication algorithm per Table 6.7 in [CCD+20]
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one-time preprocessing model to solve this problem. Roughly, each OT in the canonical
instantiation of input encoding is replaced by a pair of UC commitments. This is substantially
more computationally efficient, as we summarized in Table 3.3.2 in Section 3.3.

On a Macbook Pro 2017 laptop (i7-7700HQ CPU, 2.80GHz) running OpenSSL 1.1.1f: a
single AES-128 invocation takes 0.07µs, SHA-512 takes 0.3µs, and a Curve25519 exponen-
tiation takes 59.8µs. This data in combination with Table 3.3.2 suggests that our technique
for preprocessing Committed OT can perform input encoding an order of magnitude faster
than using the fastest plain OT.

Beyond Stateless Deterministic Signing. This pattern of proving an unbounded num-
ber of statements about the same private input is not unique to threshold signing. Consider
the example of distributed symmetric key encryption [AMMR18]: Servers A and B (one of
which may be malicious) hold keys kA, kB respectively, and comprise one endpoint of a secure
channel. Ciphertexts on this channel are of the form (r,m⊕FkA(r)⊕FkB(r)), and so encryp-
tion/decryption requires the servers to reveal FkA(r),FkB(r) and prove correct evaluation.

Exponentiation Garbling Gadget

We design a gadget to garble the exponentiation function fG(x) = x ·G at very low cost. The
gadget takes as input a standard Yao’s garbled circuit style encoding of a bit string x (i.e.
keys (kxi

i )i∈[|x|]), and outputs a convenient algebraic encoding of this value Z = (ax+ b) ·G
for some secret a, b ∈ Z∗q.

A similar effect is achieved by Chase et al. [CGM16] by garbling an explicit multiplication
circuit. However our gadget is drastically more efficient, as summarized in Table 3.3.1 in
Section 3.3.

This leads to significant savings, as stated earlier the MAC computation alone would have
dominated bandwidth cost.

Beyond Stateless Deterministic Signing. This gadget cuts down the heavy MAC com-
putation in [CGM16] by a factor of 125, and therefore is useful for composite statements where
the Boolean circuit size for the non-algebraic component is smaller or comparable in size to
Õ(s · |q|). Concretely bandwidth savings can range from ∼ 90% for AES-128, to ∼ 70%
for SHA-256. The latter translates significant bandwidth savings in the context of proving
knowledge of an ECDSA signature [CGM16].

We are therefore able to construct a highly efficient zero-knowledge proof system, where
a prover commits to a some nonce derivation key k during key generation, and subsequently
proves correct nonce derivation, i.e. R = Fk(m) · G for an unbounded number of messages
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m that are signed online. Simply augmenting the semi-honest threshold signing protocol
sketched earlier with this zero-knowledge proof yields an n-party stateless deterministic
threshold signing protocol that is secure against n− 1 malicious corruptions.

5.2 Related Work

Resettable Zero-knowledge (rZK). The notion of rZK introduced by Canetti et al.
[CGGM00] allows an adversarial verifier to arbitrarily reset a prover, and requires zero-
knowledge to hold even in the absence of fresh randomness for the prover upon being reset.
This achieves stateless determinism as we require, and indeed the attacks discovered by
Canetti et al. on canonical protocols when confronted with such an adversary are of the
same flavour as the one in Section 5.1.1. However the adversarial model that we consider in
this work is weaker for two reasons: one is that the prover and verifier are allowed a one-time
reset-free interactive setup phase, and the other is that in case an abort is induced at any
point no further interaction will occur. Therefore rZK protocols would be overkill for our
setting.

MuSig-DN. The closest work to ours is the very recent work of Nick et al. [NRSW20],
in which the authors construct a two-round multisignature scheme called MuSig-DN which
enforces deterministic nonces with security against n − 1 out of n malicious corruptions.
Their protocol achieves stateless deterministic signing for Schnorr signatures, however their
approach diverges from ours in two significant ways:

• The security of the PRF they use for nonce derivation is based on the Decisional Diffie-
Hellman assumption over a carefully chosen custom elliptic curve that supports efficient
proofs. While this offers a nice tradeoff between the efficiency of proving statements about
arithmetization-friendly primitives and plausibility of assumptions, the assumption is not
exactly the same as DDH over a standardized curve.

• They opt for a SNARK-based approach (specifically Bulletproofs [BBB+18]), which is very
communication efficient (around a kilobyte for a proof) but computation intensive; they
report 943ms on commodity hardware for a single execution.

In contrast, our dishonest majority protocol occupies a different point on the spectrum: it
supports standardized ciphers for nonce derivation, and is computationally very light at the
expense of higher bandwidth.
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Threshold EdDSA. Due to the fact that the EdDSA signing algorithm derives r as a non-
linear function of some preprocessed seed, securely computing EdDSA in a threshold setting
exactly as per its specification is quite challenging. Current implementations of threshold
EdDSA either require elaborate (randomized) MPC protocols [BST21] or abandon deter-
ministic nonce derivation altogether and simply implement randomized threshold Schnorr
over the correct curve [LPR19]. As an example, the Unbound library [LPR19] drops the
determinism requirement with the justification that a nonce jointly sampled in a multiparty
protocol will be uniformly random if even one of the parties uses good randomness. However
this does not protect a device using bad randomness from a malicious adversary controlling a
party in the system. Moreover we contend that in practice it is common for all parties in the
system to be using similar implementations, hence inducing correlated randomness-related
vulnerabilities. Additionally faults/bugs may occur at the system or hardware levels, which
further motivates the need for threshold signing protocols that do not assume that any party
in the system has reliable randomness.

In this work we are not concerned with exactly computing the correct EdDSA signing
equation in a distributed setting, as this will likely require expensive MPC [BST21]. Instead
we would like to construct a threshold Schnorr protocol that embodies the spirit of determin-
istic nonce derivation; in particular our primary goal is to construct a multiparty protocol to
compute Schnorr signatures where each particpant runs a deterministic and stateless signing
algorithm. Also note that the work of Bonte et al. [BST21] is in the incomparable honest
majority setting, and highly interactive.

5.3 Our Techniques

The task at hand can be roughly characterized as follows: parties in the system first sample
some state during a “key generation” phase. When given a message to sign later, they must
securely derive the signing material from the joint state they sampled earlier. Moreover, this
derivation must be deterministic and should not create new state, i.e. signing material for
each message must only rely on the key generation state and the message itself. The template
of sampling a PRF key during key generation and applying this PRF on the message to be
signed to derive signing material works well in the semi-honest setting as discussed, but falls
apart when adversaries deviate from the protocol.

The canonical method to upgrade a semi-honest protocol to malicious security without an
honest majority is for parties to commit to some initial randomness, and subsequently prove
that they computed each message honestly relative to the committed randomness [GMW87].
What this entails for threshold Schnorr is for parties to commit to a PRF key during dis-
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tributed key generation, and when signing a message, prove that the discrete log of their
claimed nonce is indeed the result of applying the PRF on the public message using the
committed key. In particular for some public x,Ri,Commit(ki), party Pi must prove that
Fki(x) ·G = Ri where F is a PRF. We encapsulate this mechanism in the functionality FF·G

later in this paper.

5.3.1 What existing proof technologies suit our task?

As per our desiderata that we set in Section 5.1.2, we wish to prioritize standard assumptions,
light computation, and retaining round efficiency. We examine the different proof technologies
available to us with this lens, as follows:

SNARK-based. The recent progress in succinct proof systems [BFS20, BCR+19, BBB+18,
Gro16] provides a tempting avenue to explore, as a SNARK attesting to the correctness of
nonce generation yields a conceptually simple approach. We highlight here that we wish
to rely on standard assumptions, the implication being that we would like to use a time-
tested and vetted, preferably standardized PRF. While there has been tremendous progress
in constructing SNARK/STARK-friendly ciphers [BSGL20], efficiently proving statements
involving more traditional non-algebraic ciphers (such as SHA/AES) has remained elusive
using any SNARK technology. For instance the fastest such succinct proof system at present
(Spartan [Set20]) would require over 100ms to prove a single AES computation (≈ 214 R1CS
constraints [Kos]) on a modern laptop as per their implementation.

Generic MPC. Advances in generic MPC [KRRW18, HSS17, KPR18] have brought the
secure computation of sophisticated cryptographic functions into the realm of practicality.
However they are all inherently interactive and randomized (with many being heavily reliant
on preprocessing), posing fresh challenges in the deterministic/stateless setting. Additionally
even the most advanced constant round techniques [KRRW18, HSS17] require several rounds
of interaction, marking a departure from conventional threshold Schnorr which needs only
three rounds.

Zero-knowledge for Composite Statements. Chase et al. [CGM16] construct two
protocols in the ZKGC paradigm [JKO13] that bind algebraic and non-algebraic bitwise
encodings of the same value, so that the algebraic encoding may be used for efficient sigma
protocols while the non-algebraic encoding can be used to evaluate a garbled circuit. Roughly,
the two methods are as follows, with the following tradeoffs:

1. Homomorphic bitwise commitments to the witness: This method produces smaller proofs,
and is even extended to the MPC-in-the-head setting by Backes et al. [BHH+19]. However
this fundamentally requires exponentiations for each bit of the input, i.e. O(|q|) asymp-
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totically and hundreds concretely for our parameter range, which would require many tens
of milliseconds at least to compute on commodity hardware. We therefore do not pursue
this line further.

2. Algebraic MAC applied to the witness: This method produces larger proofs, as the MAC
is computed by garbling an Õ(s · |q|) circuit. However this avoids public key operations
(besides OT) and presents a promising direction to investigate.

Equipped with an understanding of the landscape of proof systems, we expand on the results
that we summarized in Section 3.3.

5.4 Exponentiation Garbling Gadget

In this section, we give our new garbling gadget that translates a standard Yao-style rep-
resentation of a binary string (i.e. with wire labels) to an algebraic encoding of the same
value in the target elliptic curve group. As we intend to compose this gadget with the
Half Gates garbling scheme [ZRE15] we give the construction and proof assuming Fre-
eXOR style keys [KS08]. Consequently we prove security assuming a correlation robust hash
function (strictly weaker than circular correlation robustness [CKKZ12] as needed by Fre-
eXOR/HalfGates). Note that this structure is not required by our scheme, and security can
easily by proven assuming just PRFs if desired.
Algorithm 5.4.1. Gexp. Privacy-free Exponentiation Garbling Gadget

This scheme allows to garble the gadget f : {0, 1}η 7→ G, in particular f(x) = 〈u,x〉 ·G
where u ∈ (Z∗q)η is a public vector of group elements, the vector x is a length η bit
string, and G ∈ G generates an elliptic curve group G. Note that the garbled output is
encoded arithmetically, and as such can not be composed with (i.e. fed as input to) a
standard binary circuit garbling scheme. All algorithms make use of the key derivation
function KDF.

Gb(1κ, g): .

1. Sample ∆← {0, 1}κ and a← Z∗q

2. For each i ∈ [η],

(a) Sample ki ← {0, 1}κ

(b) Compute bi = KDF(i, ki)

(c) Set C̃i = KDF(i, ki ⊕∆)− (bi + ui · a)
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3. Set b = ∑
i∈[η] bi and B = b ·G

4. Compute encoding information en =
[
∆, {ki}i∈[η]

]
5. The decoding information is de = (a,B)

6. Output C̃, en, de

En(en, x): .

1. Parse
[
∆, {ki}i∈[η]

]
from en, and for each i ∈ [η]: set Xi = ki ⊕ xi ·∆

2. Output X̃ = {(xi, Xi)}i∈[η]

Ev(C̃, X̃): .

1. Parse {(xi, Xi)}i∈[η] from X̃

2. For each i ∈ [η]: Compute zi = KDF(i,Xi)− xi · C̃i

3. Compute z = ∑
i∈[η] zi, and output Z̃ = z ·G

De(de, Z̃): Parse (a,B) from de and output a−1 · (Z̃ −B)

We first give the exact definition required of KDF in order to secure the garbling scheme.
Informally, KDF is correlation robust if KDF(x ⊕ ∆) appears random even under adversial
choice of x when ∆ is chosen uniformly and hidden from the adversary.

Definition 5.4.2 (Correlation Robust Hash Function). Let the security parameter κ deter-
mine a 2κ-bit prime q, and be an implicit parameter in the following stateful oracles OKDF

and OR defined as follows:

• OKDF(i, x): Upon first invocation, sample ∆← {0, 1}κ. Return KDF(i, x⊕∆)

• OR(i, x): If not previously queried on x, sample F (i, x)← Zq. Return F (i, x).

A hash function KDF is correlation robust if OKDF and OR are computationally indistinguish-
able to any PPT adversary with unrestricted oracle access.

We are now ready to state the security theorem for Gexp.

Theorem 5.4.3. Assuming KDF is a correlation robust hash function, Gexp is a privacy-free
garbling scheme for the function fu(x) = 〈u,x〉 ·G.
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Proof. Correctness. Observe that for each i ∈ [η] the evaluator computes

zi = KDF(i,Xi)− xi · C̃i

Substituting C̃i = KDF(i, ki⊕∆)− (bi + ui · a) and Xi = ki⊕xi ·∆ into the above equation,
we obtain:

zi = KDF(i, ki ⊕ xi ·∆)− xi · (KDF(i, ki ⊕∆)− (bi + ui · a))

The above expression therefore simplifies to two cases:

zi =

KDF(i, ki) when xi = 0

bi + ui · a when xi = 1

Since KDF(i, ki) = bi, we can simplify the above to zi = bi+xi ·ui ·a. We therefore have that

z =
∑
i∈[η]

zi =
∑
i∈[η]

(bi + xi · ui · a) = b+ a · 〈u,x〉

And therefore Z̃ = z ·G = B + a · 〈u,x〉 ·G. Clearly the decoding procedure a−1 · (Z̃ − B)
yields 〈u,x〉 ·G.

Verifiablity. Revealing en allows each bi to be computed and C̃i to be decrypted, and
clearly if every C̃i = KDF(i, ki ⊕∆) − (bi + ui · a) for the same value of a, the values C̃, X̃
will always evaluate consistently for all inputs.

Authenticity. We prove that the encoded output is unforgeable (i.e. authentic) via hybrid
experiments. Recall that the experiment for authenticity of a garbling scheme works as fol-
lows: the adversary A sends a circuit f and input x to the challenger, which then responds
with C̃, X̃ where C̃, en, de← Gb(f) and X̃ = En(en, x). If A is able to produce valid garbled
output Ẑ such that De(de, Ẑ) 6= f(x) then the adversary wins.

Hybrid H1. We first define a hybrid experimentH1 that changes the way C̃, X̃ is computed.
In particular, C̃, X̃ are jointly produced using f, x rather than by separate garbling and
encoding procedures, as detailed below:

1. Sample ∆← {0, 1}κ and a← Z∗q

2. For each i ∈ [η],

(a) Sample ki ← {0, 1}κ

(b) If xi = 0 then
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i. Compute bi = KDF(i, ki)
ii. Set C̃i = KDF(i, ki ⊕∆)− (bi + ui · a)

(c) Otherwise

i. Compute bi = KDF(i, ki ⊕∆)
ii. Set C̃i = KDF(i, ki)− (bi + ui · a)

3. Set b = ∑
i∈[η] bi and B = b ·G

4. Compute X̃ = {ki}i∈[η]

5. The decoding information is de = (a,B)

6. Output C̃, X̃, de

The distribution of C̃, X̃ in this hybrid experiment is identical to the real experiment.
Observe that the only change is that the ‘active’ key (i.e. key seen by the evaluator) on the ith

wire is defined to be ki in H1, whereas in the real experiment the active key is ki⊕xi ·∆. As
the inactive key in both experiments is simply the active key ⊕∆, this is merely a syntactic
change. Therefore we have that for all adversaries A, functions and inputs fu,x and any
string Ẑ:

Pr
[
Ẑ ← A(C̃, X̃) : (C̃, en, de)← Gb(fu), X̃ ← En(en,x)

]
= Pr

[
Ẑ ← A(C̃, X̃) : (C̃, X̃, de)← H1(fu,x)

] (5.1)

Hybrid H2. In this hybrid experiment, the inactive key is changed from ki ⊕ ∆ to a uni-
formly random value. In particular, the code for this hybrid experiment is identical to the
last except for the following two changes:

Experiment H1 Experiment H2

Step 2(b)ii C̃i = KDF(i, ki ⊕∆)− (bi + ui · a) C̃i ← Zq
Step 2(c)i bi = KDF(i, ki ⊕∆) bi ← Zq

A distinguisher for the values (C̃, X̃) produced by H1 andH2 immediately yields a distin-
guisher for the correlation robustness property of KDF. The reduction simply runs the code
of H1, and in place of using KDF in Step 2(b)ii and Step 2(c)i, it queries the challenge oracle
O with the same arguments. In the case that O = OKDF = KDF this exactly produces the
distribution per H1, and in the case O = OR (i.e. truly random function) the distribution
per H2 is exactly produced, resulting in a lossless reduction to the correlation robustness
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property of KDF. We therefore have that there is a negligible function negl such that for all
PPT adversaries A and Ẑ ∈ G:∣∣∣∣∣∣∣

Pr[Ẑ ← A(C̃, X̃) : (C̃, X̃, de)← H2(fu,x)]

−Pr[Ẑ ← A(C̃, X̃) : (C̃, X̃, de)← H1(fu,x)]

∣∣∣∣∣∣∣ ≤ negl(κ) (5.2)

Hybrid H3. This hybrid experiment is the same as the last, with the exception that C̃i ← Zq
for each i ∈ [η]. This differs from Step 2(c)ii, which computes C̃i = KDF(i, ki)− (bi + ui · a)
when xi = 1. However in H2 when xi = 1 the value bi is sampled uniformly from Zq and
never exposed anywhere else in C̃, X̃ anyway, effectively acting as a one-time pad. Therefore
the distribution of C̃, X̃ remains unchanged from H2. In particular,

Pr
[
De(de, Ẑ) = Y : Ẑ ← A(C̃, X̃), (C̃, X̃, de)← H2(fu,x)

]
= Pr

[
De(de, Ẑ) = Y : Ẑ ← A(C̃, X̃), (C̃, X̃, de)← H3(fu,x)

] (5.3)

Hybrid H4. This experiment is the same as the last, except that the definition of the
decoding information de = (a,B) is postponed to after C̃, X̃ are defined. This induces no
change in the distribution of C̃, X̃ as in H3 they are computed independently of a,B. The
value a is derived the same way (uniformly sampled from Z∗q), whereas now B is computed as
B = Z − a · Y where Y = fu(x) and Z = Ev(C̃, X̃). The distribution of (a,B) is unchanged
from H3, note that by definition De(de,Ev(C̃, X̃)) = fu(x) in both experiments. Therefore:

Pr
[
De(de, Ẑ) = Y : Ẑ ← A(C̃, X̃), (C̃, X̃, de)← H3(fu,x)

]
= Pr

[
De(de, Ẑ) = Y : Ẑ ← A(C̃, X̃), (C̃, X̃, de)← H4(fu,x)

] (5.4)

We can now bound the probability that an adversary is able to forge an output: consider
any Ŷ ∈ G such that Ŷ 6= Y . In order to induce De(de, Ẑ) = Ŷ , the adversary A(C̃, X̃) must
output Ẑ such that Ẑ − Z = a(Ŷ − Y ). As Ŷ − Y 6= 0 and a is sampled uniformly from Z∗q
only after Ẑ, Z, Ŷ , Y have already been defined, the probability that this relation is satisfied
is exactly 1/(q − 1).

More precisely, for any fu, x ∈ {0, 1}η, Ŷ ∈ G such that Ŷ 6= fu(x) and unbounded
adversary A,

Pr
[
De(de, Ẑ) = Ŷ : Ẑ ← A(C̃, X̃), (C̃, X̃, de)← H4(fu,x)

]
= 1/(q − 1) (5.5)

For our choice of parameters, we have 1/(q − 1) ≤ 2−κ which is negligible in κ.

Combining equations 5.1-5.5 we conclude that for any fu, x ∈ {0, 1}η, Ŷ ∈ G such that
Ŷ 6= fu(x) and PPT adversary A, the following probability is negligible in κ:

Pr
[
De(de, Ẑ) = Ŷ : Ẑ ← A(C̃, X̃), (C̃, en, de)← Gb(fu), X̃ ← En(en,x)

]
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The garbling scheme Gexp is therefore correct, verifiable, and authentic, and so the theorem
is hence proven.

5.5 Committed OT from UC Commitments

In this section, we give the details of our approach to constructing our committed OT from
UC commitments. Recall that we need an OT protocol where the receiver commits to its
choice bits during an offline phase, and the sender is able to send (and subsequently open)
message pairs relative to the same choice bit. This is because the receiver’s choice bits will
correspond to the prover’s witness (i.e. the PRF key for nonce derivation) which can be
committed once during key generation; signing corresponds to proving different statements
about the same witness.

We give here the exact functionality F∗COT for unlockable oblivious transfer.

Functionality 5.5.1. F∗COT. Unlockable Committed OT
This functionality allows a receiver R to commit to a choice bit, and subsequently
allows a sender S to send indexed message pairs, of which the receiver obtains the
one corresponding its choice bit. S provides a key key to lock its messages, which R may
present to unlock both messages. The sender’s messages remain secure iff an index is
never reused for two different message pairs. Additionally any index that is ‘revealed’
subsequently offers no security when reused. All messages are adversarially delayed.

Choose: Upon receiving (sid, choose, b) from R, and if b ∈ {0, 1} and no such message
was previously received, store (sid, chosen, b) in memory and send (chosen) to S.

Transfer: Upon receiving (sid, transfer, ind, key, m0,m1) from S, if (sid, chosen, b)
exists in memory then:

• If R is not corrupt, store (sid, ind, key,m0,m1) and send (sid, message, ind, mb) to R

• Otherwise:

1. If (sid, ind,m′0,m′1) exists in memory such that m0 6= m′0 or m1 6= m′1 then send
(sid, reused-index,m0,m1,m

′
0,m

′
1) to R

2. If (sid, index-used, ind) exists in memory, then send (sid, revealed- index, ind,
m0,m1) to R.
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3. If neither of the previous conditions hold, then store (sid, ind, key, m0,m1) and
send (sid, message, ind,mb) to R.

Reveal: Upon receiving (sid, reveal, ind, key) from R, if (sid, ind, key,m0,m1) exists
in memory, then send (sid, messages,m0,m1) to R. Store (sid, index- used, ind) in
memory.

Why is this challenging? Consider the following simple attempt at instantiating this
object: during the preprocessing phase, the sender samples two PRF keys k0, k1, of which the
receiver obtains kb via OT. In order to transmit a message pairm0,m1 online, assuming some
public instance-specific information x, the sender computes c0 = Fk0(x)⊕m0, c1 = Fk1(x)⊕m1

and sends them to the receiver, who is able to decrypt mb. In order to ‘open’ the messages,
the sender gives Fk0(x),Fk1(x) to the receiver, who then obtains m1−b. While this protects
the sender against a malicious receiver, the flaw lies in that it doesn’t bind the sender to
any particular message pair m0,m1. For instance during the opening phase, the sender could
provide Fk0(x), r∗ (for some r∗ 6= Fk1(x)). If the receiver’s choice bit was 0, it does not
notice this deviation and outputs m∗1 = c1 ⊕ r∗, as opposed to m1 = c1 ⊕ Fk1(x) which
would have been the output if the receiver’s choice bit was 1. Inconsistencies of this flavour
propagate upwards to induce selective failure attacks in the ZKGC protocol. We leave the
exact attack implicit. This issue is easily solved by using a PRF which allows outputs to be
efficiently verified such as a Verifiable Random Function [MRV99]. However to the best of
our knowledge, all such known primitives require public key operations, which would defeat
the purpose of having moved the OTs offline.

To recap our idea: assume that C is a commitment scheme that permits straight-line
extraction. In particular there exists an extractor which, given a commitment and an extrac-
tion key ek (corresponding to the commitment key ck), outputs the committed message. This
is a property that is conducive to arguing security under concurrent composition [Can01].
However in the ‘real’ protocol no party has ek; the receiver has a verification key vk which
it uses to validate openings to commitments, but the existence of ek is only required for the
proof. We will characterize the commitment scheme as a collection of concrete algorithms
(rather than working in an FCommit hybrid model) and so in principle the trapdoor ek can
created by a generic setup functionality and given to the receiver. We use such a commitment
scheme to realize the notion of committed OT that we need as follows: create two pairs of
keys (ck0, vk0, ek0) and (ck1, vk1, ek1), and provide sender S with both ck0, ck1 and receiver
R with ekb, vk1−b. In order to send a message pair m0,m1, S commits to m0 using ck0 and
m1 using ck1. Then R is able to extract mb using ekb immediately. Subsequently when it’s
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time to reveal both messages, S provides decommitment information for m0,m1, and R uses
vk1−b to validate m1−b.

In more detail, the commitment scheme C comprises the following algorithms:

• One-time setup:

– Gen-ck(1κ; ρS) 7→ ck. Samples the committer’s key with randomness ρS.

– Gen-vk(ck; ρR) 7→ vk. Samples the receiver’s verification key using ck with randomness
ρR.

– Gen-ek(ck) 7→ ek. Determines the extraction key given ck.

– Gen-td(vk) 7→ td. Determines the trapdoor for equivocation given vk.

• Per message with index ind:

– Commit(ck, ind,m) 7→ C, δ. Produces commitment C and decommitment information δ
for message m and index ind.

– DecomVrfy(vk, ind,C, δ,m) 7→ {0, 1}. Commitment verification by R.

– Ext(ek, ind,C) 7→ m ∪ {⊥}. Extracts the committed message from C.

– SCom,R∗(td). A simulator that produces and equivocates commitments.

Rather than enumerating a series of definitions that the scheme must satisfy, we use the
above interface to construct a protocol, and require that the protocol must UC-realize our
commitment functionality. The structure of the commitment functionality FCom and the
protocol πCom and Simulator SCom are straightforward in their usage of C. Protocol πCom

makes use of a helper functionality F setup
Com which simply runs the one-time setup algorithms.

We give the formal details in Appendix B.1.
Commitment schemes that are of interest to us allow protocol πCom to be simulated by

simulator SCom with respect to functionality FCom. Also note that by virtue of the defini-
tion, commitment is inherently stateless; no state has to be maintained across commitment
instances that use different ind values.

Definition 5.5.2. A commitment scheme C is a preprocessable UC commitment if
protocol πCom[C] can be simulated by SCom[C] with respect to functionality FCom in the UC
experiment where an adversary statically corrupts up to one party, in the F setup

Com -hybrid model.

We stress that while we refer to C as the preprocessable UC commitment scheme, the
actual protocol for the UC experiment is πCom[C], which is merely a wrapper for the algorithms
specified by C.
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Instantiating FCom

Efficiently instantiating the UC commitment functionality (of which FCom is a relaxation)
has been studied extensively in the literature [DN02, Lin11, CJS14]. However the subset of
such works most relevant here are those that operate in the offline-online paradigm, where
expensive message-independent public key operations are pushed to an offline phase and
(de)committments online only require cheap symmetric key operations. Such protocols have
been constructed in a line of works [DDGN14, GIKW14, CDD+15, FJNT16] where a num-
ber of oblivious transfers are performed offline to establish correlations, and (de)committing
online derives security from the fact that the receiver knows some subset (but not all) of the
sender’s secrets. Some of these works [CDD+15, FJNT16] are quite practical; their technique
is roughly to have the sender commit to a message by first encoding it using an error cor-
recting code, then producing additive shares of each component of the resulting codeword,
and finally sending the receiver each additive share encrypted by a pseudorandom one-time
pad derived by extending a corresponding PRG seed. The receiver has some subset of these
seeds (chosen via OT offline) and obtains the corresponding shares of the codeword. The
committed message stays hidden as the receiver is missing one additive share of each com-
ponent. To decommit, the sender reveals the entire codeword and its shares, and the receiver
checks consistency with the shares it already knows. Soundness comes from the property that
changing the committed message requires changing so many components of the codeword
that the receiver will detect such a change with overwhelming probability. The trapdoor for
extraction is the entire set of PRG seeds that are used to encrypt the codeword components.
As the sender must encrypt a value that is close to a codeword using these seeds, the ex-
tractor is able to decrypt and decode the near-codeword to retrieve the committed message.
Extraction is possible as the simulator knows all PRG seeds, and the sender must have en-
crypted a value sufficiently close to a real codeword in order to have a non-negligible chance
of the receiver accepting it later.

Cascudo et al. [CDD+15] report a concretely efficient instantiation of this idea by us-
ing binary BCH codes. However existing constructions are designed to amortize the cost of
(de)committing large numbers of messages, and as such they are heavily reliant on main-
taining state for the PRG. It is feasible to modify their constructions to be stateless by
the standard method of replacing the PRG with a PRF, but the resulting cost per instance
would save little compared to exponentiation; for instance the protocol of Frederiksen et
al. [FJNT16] would require over 800 PRF invocations per instance at a 40 bit security level.
While this cost disappears over many simultaneous instances in their setting, we unfortu-
nately can not amortize our costs as independent instances must not share state.
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Our Technique. Our commitment scheme essentially implements the same high-level idea,
but with a repetition code. The sender S has ` PRF keys k1, · · · , k`, of which the receiver
R is given a random subset of ` − 1 (say all but i ∈ [`]). In order to commit to a message
µ for index ind, S sends Fk1(ind)⊕ · · · ⊕ Fk`(ind)⊕ µ to the receiver. In order to decommit,
S reveals µ and Fk1(ind), · · · ,Fk`(ind), given which R computes F∗ki = µ

⊕
j∈[`]\i Fkj(ind) and

verifies that it matches Fki claimed by S. Intuitively, S has to guess exactly which key R
is missing in order to fool it. This has soundness error 1/`, however simply repeating this
procedure sufficiently many times in parallel (with independent keys) boosts the protocol to
have negligble soundness error. This description omits some details, such as how the repe-
titions are bound together, and optimizing communication, so we describe the commitment
scheme itself in terms of the language we laid out earlier.

Algorithm 5.5.3. C. Commitment scheme
This set of algorithms instantiates a commitment scheme C. The security parameter
κ fixes statistical security parameter s and integers ` and r such that r log2(`) = s.
The (de)commitment protocols make use of a random oracle RO for equivocation, but
notably the extractor does not observe queries to the RO (meaning that it can be run
without a backdoor for RO). The protocols additionally use a collision resistant hash
function CRHF.

Gen-ck(1κ; ρS): .

1. For each j ∈ [r] and l ∈ [`], sample kj,l ← {0, 1}κ

2. Sample k∗ ← {0, 1}κ

3. Output ck = k∗, {kj,l}j∈[r],l∈[`]

Gen-vk(ck; ρR): .

1. Parse {kj,l}j∈[r],l∈[`] from ck, and for each j ∈ [r], sample integer ij ← [`]

2. Output vk =
{

(kj,l)l∈[`]\ij

}
j∈[r]

Gen-ek(ck): Output ck
Gen-td(vk): Output {ij}j∈[`]

CommitRO(ck, ind,m): .

1. Compute µ = Fk∗(ind), and for each j ∈ [r] set ctj = µ
⊕
l∈[`]

Fkj,l(ind)
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2. Set ct = {ctj}j∈[r] , h = RO(µ), ξ = µ⊕m

3. Set δ = CRHF
({

Fkj,l(ind)
}
j∈[r],l∈[`]

)
, and output C = (ct, h, ξ), δ

DecomVrfy(vk, ind,C, δ,m): .

1. Parse {ij}j∈[`] = vk, and ct, h, ξ from C

2. Compute µ = m⊕ ξ and verify RO(µ) ?= h

3. For each j ∈ [r] compute F∗j,kij = µ⊕ ctj
⊕

l∈[`]\ij
Fkj,l(ind)

4. For each j ∈ [r], set F[j, l] = Fkj,l(ind) for l ∈ [`]\ij and F[j, ij] = µ⊕ctj
⊕

l∈[`]\ij
Fkj,l(ind)

5. Verify δ ?= CRHF
(
{F[j, l]}j∈[r],l∈[`]

)
Ext(ek, ind,C): .

1. Parse {kj,l}j∈[r],l∈[`] from ck, and ct, h, ξ from C

2. For each j ∈ [r], compute µ∗j = ctj
⊕
l∈[`]

Fkj,l(ind)

3. If ∃j ∈ [r] such that RO(µ∗j) = h, then output m = µ∗j ⊕ ξ

4. If no such µ∗j exists, then output ⊥

SCom,R∗(td): See proof of Theorem 5.5.4.

Theorem 5.5.4. Assuming F is a pseudorandom function and CRHF is a collision resistant
hash function, C is a preprocessable UC commitment in the local random oracle model.

Proof. (Sketch.) Recall that the actual protocol for the UC experiment is πCom[C]. We first
argue why the extractor Ext succeeds except with probability 2−s. First note that except
with negligible probability, there is at most one µ queried to RO such that RO(µ) = h.
The extractor iteratively computes µ∗j = ctj

⊕
l∈[`]

Fkj,l(ind) to find this µ. We analyze the exact

event in which the extractor fails but the sender produces an accepting decommitmentm∗, δ∗.
Define µ∗ = m⊕ ξ. Consider the state induced by running DecomVrfy on these inputs but a
pair of distinct vk, vk′: as vk 6= vk′ there must exist j ∈ [`] such that ij 6= i′j (where i, i′ are
parsed from vk, vk′ respectively). As the extractor failed, we know that

ctj
⊕
l∈[`]

Fkj,l(ind) 6= µ∗
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This means that when using vk, DecomVrfy computes

F[j, ij] = µ∗ ⊕ ctj
⊕

l∈[`]\ij

Fkj,l(ind) 6= Fkj,ij (ind)

whereas when using vk′, DecomVrfy computes F[j, ij] = Fkj,ij (ind). As this induces a disagree-
ment about the set {F[j, l]}j∈[r],l∈[`] when using vk, vk′, DecomVrfy will not accept on both
inputs (unless there’s a collision in CRHF). As there are 2s different choices of vk and no two
choices lead to DecomVrfy accepting the same m∗, δ∗, the probability that the adversary is
successful in inducing the extractor to fail is at most 2−s.

Equivocation is easier to show: the simulator can run the honest algorithm with a dummy
message, and by PRF security the value µ is hidden from the verifier (as vk omits one PRF
key in each set). In order to equivocate to a message m, the simulator simply programs RO
on input µ so that RO(µ)⊕ ξ = m.

How to implement the setup? Observe that the structure of the verification key is to
choose all but one out of the ` keys in each of the r batches. This is directly achieved by r
invocations of F( `

`−1)OT.
Efficiency. A commitment to a message m (assume |m| = κ) is of size (r + 3) · κ bits,

and in terms of computation requires r · ` PRF evaluations and hashing a r · ` ·κ bit message
via CRHF. Decommitment requires the same effort.

Parameters. Looking ahead, we will introduce a privacy amplifying optimization in the
ZKGC protocol so that for s bits of statistical security, the receiver’s security in the Commit-
ted OT protocol it uses (and therefore soundness of the Commitment scheme under the hood)
need only achieve s/2 bits of statistical security. We therefore calibrate our parameters here
appropriately. A reasonable instantiation of parameters would be ` = 4, s = 30, κ = 128, and
r = 15 (i.e. a 30-bit statistical soundness level) with AES-128 as the PRF, and SHA-512 as
the CRHF and RO. This means that a single commitment to a 128-bit message requires 288
bytes (32 bytes to decommit), 60 AES-128 evaluations, and hashing a 0.96 kilobyte message
via SHA-512. The work done by R in verifying a commitment is almost the same. Looking
ahead, we will use a pair of these commitments to replace a single OT instance, providing a
significant improvement in computation time.

5.5.1 Committed OT from Preprocessable UC Commitments

Using commitment scheme C, we now have an clean template for a protocol to build com-
mitted OT. We first define a helper functionality F setup

COT to handle the preprocessing stage.
Intuitively, F setup

COT samples two commitment keys ck0, ck1 for the sender and corresponding

116



verification and extraction keys vk0, vk1, ek0, ek1, and gives vk0, vk1, ekb to the receiver upon
its choice of bit b. The formalism is straightforward and so we postpone it to Appendix B.2.
Unfortunately it is unclear how to generically construct F setup

COT using the commitment scheme,
but for our specific case we can construct a custom protocol based on the same Bellare-Micali
construction that we used for F( `

`−1)OT. We give the exact construction in Appendix B.2.

Protocol 5.5.5. πCOT[C]. Committed Oblivious Transfer
This protocol is run between a sender S and a receiver R, and is parameterized by a
commitment scheme C. This protocol makes use of the ideal oracle F setup

COT and random
oracle RO : {0, 1}∗ 7→ {0, 1}4κ.

Setup: R has private input b ∈ {0, 1}

1. S and R send (sid, init) to F setup
COT

2. R additionally sends (choose, b) to F setup
COT , and receives

(sid, keys, ekb, vk0, vk1) in response.

3. S receives (sid, ck-keys, ck0, ck1) from F setup
COT

Transfer: S has private inputs m0,m1, key, and ind is public input.

1. S computes C0, δ0 = Commit(ck0, ind,m0) and
C1, δ1 = Commit(ck1, ind,m1)

2. S encrypts the decommitment information with key as ν = RO(key)⊕(m0, δ0,m1, δ1)

3. S sends C0,C1, ν to R

4. R outputs mb = Ext(ekb, ind,Cb)

Reveal: R does the following with inputs ind and key:

1. R computes (m0, δ0,m1, δ1) = RO(key)⊕ ν

2. R outputs
DecomVrfy(vk0, ind,C0, δ0,m0) ∧ DecomVrfy(vk1, ind,C1, δ1,m1)

Theorem 5.5.6. Assuming C is a preprocessable UC commitment (Def. 5.5.2), protocol
πCOT UC-realizes F∗COT in the presence of an adversary corrupting up to one party, in the
F setup

COT -hybrid random oracle model.

117



The theorem directly follows from the definition of preprocessable UC commitments,
and the fact that encryptions with the random oracle carry no information until the correct
pre-image is queried.

Efficiency

There are three components to analyze: the setup, transfer, and reveal phases.
Setup. We do not analyze the exact cost of setup, beyond that it requires O(`rκ/ log κ)

curve multiplications, and as many field elements transmitted.
Transfer and Reveal. This is the important metric, as the transfer and reveal phases are

executed when a message has to be signed. A transfer consists of two independent instances
of preprocessable UC commitments for S, of which R simply receives one and runs Ext on
the other. A reveal requires no work for S, and two decommitment verifications for R. In our
specific instantiation, the work done by S when committing and R when verifying is roughly
the same. Additionally R can reuse the work of Ext in verifying a commitment. Based on
Section 5.5, the work done by each party in total for a transfer and reveal of a message
pair is 120 AES invocations, and hashing a 1.92KB message via SHA-512. The bandwidth
consumed is two UC commitments and their decommitments, so 0.64KB. Note that these
parameters are for a 30-bit statistical security level, which is inadequate by itself, but will
be sufficient in the ZKGC context due to a privacy amplifying technique.

5.6 Provable Nonce Derivation

In order to clarify the target, we give the ideal functionality FF·G for proving deterministic
nonce derivation, with a conditional disclosure property woven in.

Functionality 5.6.1. FF·G. Deterministic Nonce Derivation
This functionality is accessed by a prover P and a verifier V , and is parameterized by
the keyed function F : {0, 1}κ × {0, 1}κ 7→ Zq, and the group (G, G, q). In principle, the
public instance x = (m,R∗m) for which the prover has witness w = k satisfies relation
f(x,w) only when R∗m = Fk(m) ·G. All messages are adversarially delayed.

Key Generation: This phase is run exactly once for each sid. Any requests to the
functionality with an sid for which Key Generation has not yet been run are ignored.

1. Wait to receive (sid, input-key, k) from P .

2. If k ∈ {0, 1}κ, then store (sid, key, k) and send (sid, initialized) to V .
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Verify Nonce: Upon receiving (sid, verify-nonce,m,R∗m) from P and
(sid, verify-nonce,m,R∗m, z) from V , if (sid, key, k) exists in memory, m ∈ {0, 1}κ,
and R∗m ∈ G then:

1. Compute rm = Fk(m) and Rm = rm ·G.

2. If R∗m
?= Rm then send (sid, secret,m, z) to P and then

(sid, verified,m,R∗m) to V . Otherwise send (sid, fail,m,R∗m) to V .

This is essentially a specific instantiation of the standard zero-knowledge functionality,
with the exception that the prover commits its witness w first, and subsequently multiple
statements x are supplied to the functionality, which verifies that R(x,w) = 1. This is
directly achieved by replacing the committed OT functionality used by ZKGC with F∗COT

which allows the receiver to commit to a choice bit and subsequently receive/open multiple
message pairs independently without ever revealing the choice bit. Note that the circuit to
be garbled (C(k, x) = Fk(x) ·G) is supported by HalfGates with our garbling gadget. Finally,
the disclosure of the secret z conditioned on the validity of the statement/witness is the same
as the technique introduced by Ganesh et al. [GKPS18]. We give the explicit protocol below.

Protocol 5.6.2. πF·G. Deterministic Nonce Derivation
This protocol is parameterized by the security parameter κ, elliptic curve group (G, G, q)
(|q| = 2κ), PRF F : {0, 1}κ×{0, 1}κ 7→ Zq, vectoru, and two parties ProverP and Verifier
V . This protocol makes use of the ideal oracle F∗COT, random oracle RO : {0, 1}∗ 7→ Zq,
and garbling scheme G. Denote by F · G the circuit C(k, x) that computes bit vector
y = Fk(x) via the Boolean representation of F, and outputs Y = 〈u,y〉 ·G

Key Registration: Run once, with P using private input k:

1. P computes the bit decomposition of k as k0k1k2, · · · kκ

2. For each i ∈ [κ], P sends (i, choose, ki) to F∗COT

3. V waits to receive (i, chosen) from each i ∈ [κ]

4. V samples kV ← {0, 1}κ

Derive Nonce: With common input m ∈ {0, 1}κ and Rm ∈ G, and secret input z for
V :

1. P and V compute ind = CRHF(m,Rm)
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2. V does the following:

(a) Derive randomness needed for garbling, ρG = RO(kV , ind, Gb)

(b) Generate garbled circuit C̃, en, de = Gb(F ·G; ρG)

(c) Parse encoding and decoding information (eni,0, eni,1)i∈[κ] = en and (a,B) = de
respectively

(d) Compute the OT key key = a ·Rm +B

(e) Compute the CDS ciphertext ζ = RO(key)⊕ z

(f) Send (C̃, ζ) to P

(g) For each i ∈ [κ], send (i, transfer, ind, key, eni,0, eni,1) to F∗COT

3. Upon receiving (C̃, ζ) from V and (i, message, ind, eni,ki) for each i ∈ [κ] from F∗COT,
P does the following:

(a) Assemble garbled input X̃ = (eni,ki)i∈[κ] and evaluate the garbled circuit to
obtain Ỹ = Ev(C̃, X̃). Set key = Ỹ

(b) For each i ∈ [κ]: Send (i, ind, key) to F∗COT and receive (eni,0, eni,1) in response

(c) Assemble encoding information en = (eni,0, eni,1)i∈[κ]

(d) Verify that Ve(C̃, en) = 1, and send key to V if so

(e) Output the CDS value z = ζ ⊕ RO(key)

4. V accepts if the correct key is received from P .

The proof of security for this protocol is essentially identical to that of Jawurek et
al. [JKO13]. We give a sketch here for completeness.

Theorem 5.6.3. Assuming G is a privacy-free garbling scheme and CRHF is a collision-
resistant hash function, πF·G UC-realizes FF·G in the presence of an adversary statically cor-
rupting up to one party, in the F∗COT-hybrid local random oracle model.

Proof. (Sketch) We describe how to simulate when the prover and verifier are corrupt as
separate cases, and subsequently argue indistinguishability from the real execution.

Corrupt prover P ∗. The prover P ∗ has little room to cheat. As the verifier has no private
input, the simulator simply runs the verifier’s code, with the only difference being that rather
than accepting/rejecting based on whether P produces key alone, the simulator rejects any
instance m,R∗ where R∗ 6= Fk(m) · G (as per k received on behalf of F∗COT). In order to
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argue indistinguishability from the real protocol, it suffices to show that P ∗ is unable to
derive key for any instance R∗ 6= Fk(m) · G. Given an adversary P ∗ that claims at most N
derived nonces, runs in time T , and succeeds in falsely proving at least one incorrect nonce
with probability ≥ ε, we construct an efficient adversary for the authenticity property that
succeeds with probability ≥ ε/(NT ). The reduction works as follows:

1. Receive k on behalf of F∗COT, and sample i← [N ]

2. Run the code of honest V for every instance of nonce derivation except instance i

3. Compute the correct nonce for this ith instance, Rm = Fk(m) ·G

4. If the P ∗’s claimed nonce for this instance R∗m = Rm, then abort

5. If not, then send F · G, (k,m,R∗m) to the authenticity challenger, and receive C̃, X̃ in
response.

6. Sample ζ ← {0, 1}κ, and send X̃ to P ∗ component wise on behalf of F∗COT

7. Send C̃, ζ to P ∗ for the ith instance on behalf of V

8. If P ∗ does not send key to V , upon P ∗ terminating (in which case Ŷ = key), choose Ŷ at
random from the set of queries made by P ∗ to RO combined with the set of key values
sent to the ‘reveal’ interface of F∗COT

9. Send Ŷ to the authenticity challenger and halt.

Note that the view of P ∗ in this reduction is the same as in the real protocol, up until the
point that it queries key to RO or F∗COT for the ith instance. Conditioned on the adversary
having created a valid forgery (probability ≥ ε), the reduction finds the correct index for
the forgery with probability ≥ 1/N , and subsequently the correct query made to RO /F∗COT

with probability ≥ 1/T . Overall, the advantage of the reduction is therefore ≥ ε/(NT ). As
N, T ∈ poly(κ) and G is authentic, ε must be negligible.

Corrupt verifier. The simulator for a corrupt verifier receives (eni,0, eni,1)i∈[κ] on behalf
of F∗COT, extracts de = Ve(C̃, en) (aborting if it fails). Finally it parses (a,B) = de, computes
key = a ·R+B, and sends key to V iff it matches key∗ received from V on behalf of F∗COT as
the lock on the transmitted messages. Uniqueness of garbled outputs of the garbling scheme
immediately gives us that the simulation is identical to the real protocol.

121



5.6.1 A Privacy Amplifying Optimization

While the ZKGC protocol makes only oracle use of F∗COT, we can make an instantiation-
specific optimization which will likely apply to any similarly structured instantiation, where
the receiver only has statistical security inherited from statistical soundness of the decom-
mitment/reveal phase. Currently, a naive instantiation would protect each choice bit of the
receiver’s (and hence private witness bit) with s bits of statistical security, i.e. there is at
most a 2−s probability of an adversary subverting the reveal phase by opening its message
to a different one than committed earlier. As each instance of protocol πCOT makes use of
independent randomness, the probability that a malicious sender is able to subvert the reveal
phases of a pair of commitments is 2−2s. Therefore if we are willing to tolerate one bit of
leakage, we can in some sense consider the soundness of the reveal phase to be doubled.

Plugging the leak. The prover samples a random bit r ← {0, 1} during the one-time key
setup phase. Now instead of directly using its witness bits xi as the choice bit to the ith

instance of F∗COT, the prover instead uses x′
i = xi ⊕ r as the choice bit to the ith instance.

Finally the prover also inputs r as the choice bit to the |x| + 1th instance of F∗COT. When
the time comes to evaluate a circuit C(x), the prover and verifier instead use the circuit
C ′(x′, r) = C(x′

1 ⊕ r||x′
1 ⊕ r|| · · · ||x′

|x| ⊕ r) to cancel out the effect of r. Since XOR gates
come for free in a garbled circuit [KS08], this adds essentially no overhead beyond the single
extra instance of F∗COT for r. Now the input to C ′ can tolerate a single bit of leakage; any
one bit leaked from x′||r is perfectly independent of x.

Security. This clearly does not harm security against a corrupt prover, as the encoded
input x′||r supplied to F∗COT unambiguously specify its candidate witness x just as earlier.
As for when simulating for a corrupt verifier, in case one of the extractors for a πCOT in-
stance i reports an extraction error for the key ki,b corresponding to bit b (this happens with
probability 2−s, but recall that the target security level is 2s bits) the simulator tosses a coin
b′. If b′ = b, then the simulator aborts the protocol (corresponding to a cheat being caught
in the real protocol). Otherwise, the simulator simply runs the honest prover’s protocol for
the ith bit going forward, effectively setting x′

i = ¬b. The subtle point is that failing to
extract ki,b does not hamper the simulator’s ability to extract garbled circuits’ embedded
decoding information in the future: in case i = |x| + 1, the value compromised is r, which
does not influence any output wires anyway. In case i ≤ |x|, the simulator still obtains ki,¬b
by running the honest prover’s code, and the availability of both keys on the r wire allow for
the retrieval of both keys for xi by evaluating the garbled circuit with x′

i⊕0 and x′
i⊕1 (i.e.

substituting both values of r). Note that the evaluation will be ‘correct’ since the garbled
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circuit is checked for correctness independently of F∗COT.
Therefore in order to achieve s′ = 60 bits of statistical security for ZKGC, one can

parameterize the underlying OT protocol with s = 30 bits of soundness and remove the
resulting leakage as described above.

5.6.2 Estimated Efficiency

We give estimates for an Ed25519 [BDL+12] style configuration. In particular, we assume
a 256-bit curve, with SHA-512 as the PRF used to derive nonces just as in the EdDSA
specification. SHA-512 has 58k AND gates [AMM+]. The nonce derivation key is 128 bits.

• Garbled Circuit. We can use a privacy-free garbled circuit in this context [FNO15], as
the evaluator knows the entire input. In particular we can use the privacy-free variant of
the Half Gates garbling scheme [ZRE15] which produces only one 128-bit ciphertext per
AND gate. Each ciphertext is computed with two AES-128 invocations, and evaluated with
one. The exponentiation gadget produces one 256-bit ciphertext for each output wire of the
Boolean circuit. Consequently in the course of a single proof, V garbles the circuit (116k
AES invocations), and P evaluates and verifies it (116k AES invocations). The bandwidth
consumed is 928KB to transmit the garbled circuit C̃.

• F∗COT. As discussed in Section 5.5.1, a single transfer and reveal instance costs 120 AES
invocations and hashing a 1.92KB message via SHA-512 to compute, and 0.64KB in band-
width. A single proof here requires 128 concurrent transfers and reveals via F∗COT, bringing
the computation cost to 16k AES invocations and hashing a 245KB message via SHA-512
for each P and V , and 81.92KB of bandwidth consumption.

Overall burden. In summary, P and V have roughly the same workload, dominated
by 132k AES invocations and hashing a 245KB message. Each party additionally performs
up to three curve multiplications, 256 additions in Zq, at little overhead. Bandwidth for
(|C̃|+ |F∗COT|) is 1.01MB.

The figures above are derived assuming SHA-512 is used for nonce derivation as is done
by Ed25519, however it is likely that exploring standardized ciphers with smaller circuits
such as AES will lead to substantial efficiency improvements. As an example, to derive a
256-bit nonce with bias < 2−60 one could replace SHA-512 with three invocations of AES-
128, which would incur a Boolean gate cost of ≈ 19k AND gates [AMM+]. This would bring
the computation and bandwidth cost of C̃ down by a factor of 3, to 39k PRF calls and 307KB
respectively. Note that in both scenarios (AES-128 and SHA-512), C̃ induces the dominant
cost, as opposed to our F∗COT instantiation.
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Given the cost breakup above, it is evident that the logistics for input encoding and
exponentiation are no longer the bottleneck, and the cost of proving correctness of a derived
nonce is now essentially dominated by the cost of garbling/evaluating and verifying the
garbled circuit of the PRF (usually in the order of milliseconds [GLNP15, HK20]) used for
nonce derivation.

5.7 Multiparty Dishonest Majority Threshold Signing

With the most complex component of stateless deterministic threshold signing - verifiable
nonce derivation - instantiated, we are equipped to construct a clean multiparty signing
protocol. The outline is as follows:

• Setup: All parties run canonical distributed key generation [Ped91] to obtain additive
shares ski of a secret key sk (for public pk), and every pair of parties initializes an instance
of FF·G to commit to a nonce derivation key ki. Note that we do not explicitly enforce any
consistency across parties. Each party also samples a key k∗ to derive randomness online.

• Signing m: Each party Pi derives its nonce Rm,i = Fki(m) and sends it to all other parties.
Consistency is verified by standard echo-broadcast [GL05] in parallel with the next round.
Every party derives its local random tape going forward by applying Fk∗ on the digest of
the view from the first round, i.e. v = CRHF(Rm,0||Rm,1||, · · · ||Rm,n). Each party Pi sets
(zi,j)j∈[n]\i = Fk∗(j||v) and instructs FF·G to deliver zi,j to Pj only if Rm,j is the correct
nonce. Finally each Pi sets the nonce to be Rm = ∑

iRm,i and computes its signature share

σi = (ski ·H(pk, Rm,m) + rm,i) +
∑

j∈[n]\i
(zi,j − zj,i)

and sends it to all parties. The signature is then computed as σ = ∑
i σi.

Intuitively, Pi’s share adds the mask zi,j to its contribution, and Pj’s share removes this mask
by subtracting zi,j. Note that this is possible only if Pj obtained zi,j from FF·G by having sent
the correct Rm,j. Adding up all parties’ σis cancels out the z values (if everyone is honest),
and what remains is simply sk ·H(pk, Rm,m) + r which is a valid signature on m.

We first give the exact functionality realized:

Functionality 5.7.1. Fn,Sign. n-party Schnorr Signing
This functionality is run among n parties P1, · · ·Pn, and is parameterized by the group
(G, G, q) and function H : {0, 1}∗ 7→ Zq. All messages are adversarially delayed.

Key Generation: This phase is run exactly once, and must be run before any subse-
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quent requests.

1. Wait to receive (init) from all parties.

2. Sample secret key sk← Zq and set the shared public key pk = sk ·G

3. Send (public-key, pk) to all parties

4. Initialize function F : {0, 1}∗ 7→ Zq ∪ {⊥} to be ⊥ everywhere unless otherwise
specified.

Sign: Upon receiving (sign,m) from all parties,

1. If F(m) = ⊥, then sample F(m)← Zq.

2. Compute rm = F(m) and Rm = rm ·G, and send (nonce,m,Rm) to all parties.

3. Upon receiving (proceed,m) from all parties, compute

σm = sk ·H(pk, Rm,m) + rm

and send (signature,m, (σm, Rm)) to all parties.

We give the n-party threshold signing protocol below.

Protocol 5.7.2. πn,Sign. n-party threshold Schnorr
This protocol is parameterized by the security parameter κ, elliptic curve group (G, G, q)
(|q| = κ), PRF F : {0, 1}κ × {0, 1}κ 7→ Zq, and n parties (Pi)i∈[n]. This protocol
makes use of the ideal oracles FF·G and FRDL

Com−ZK, and collision resistant hash function
CRHF : {0, 1}∗ 7→ {0, 1}κ. The hash function used by Schnorr’s signature scheme is
H : {0, 1}∗ 7→ Zq.

Distributed Key Generation: Each Pi does the following:

1. Sample nonce derivation key ki ← {0, 1}κ

2. Sample secret sharing randomness key k∗ ← {0, 1}κ

3. For each j ∈ [n] \ i, sidi,j will be used for an instance of FF·G where Pi is the
prover, and Pj is the verifier. Send (sidi,j, input-key, ki) to FF·G and wait for
(sidj,i, initialized) in response.

4. Sample secret key share ski ← Zq and set public key share pki = ski ·G
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5. Send (commit, i, pki, ski) to FRDL
Com−ZK

6. Upon receiving (committed, j) from FRDL
Com−ZK for each j ∈ [n] \ i, send (reveal)

to FRDL
Com−ZK

7. Wait to receive (revealed, pkj) from FRDL
Com−ZK for each j ∈ [n] \ i

8. Assemble the shared public key pk = ∑
i∈[n] pki

Sign: With common input msg ∈ {0, 1}∗, each Pi does the following:

• Round 1:

1. Set m = CRHF(msg)

2. Derive nonce share rm,i = Fki(m) and set Rm,i = rm,i ·G

3. Send Rm,i to each Pj for j ∈ [n] \ i

4. Wait to receive Rm,j from each Pj for j ∈ [n] \ i

• Round 2:

5. Compute digest of previous round, vi = CRHF(Rm,1, Rm,2, · · · , Rm,n)

6. For each j ∈ [n], generate CDS value zi,j = Fk∗(j||vi) and conditionally disclose it
to Pj by sending (sidj,i, verify-nonce,m,R∗m,j, zi,j) to FF·G. Prove own nonce by
sending (sidi,j, verify-nonce,m,R∗m,i) to FF·G.

7. Send vi to all parties

8. For each j ∈ [n], wait to receive vj from Pj and (sidj,i, secret,m, zj,i) from FF·G

• Round 3:

9. Abort if a single vj 6= vi

10. Assemble shared nonce Rm = ∑
i∈[n] Rm,i

11. Compute signature share such that it masks/adds every CDS value generated lo-
cally, and unmasks/removes every CDS value received from other parties:

σi = (ski ·H(pk, Rm,m) + rm,i) +
∑

j∈[n]\i
(zi,j − zj,i)

12. Send σi to all parties

126



13. For each j ∈ [n] \ i, wait to receive σj from Pj and (sidj,i, verified,m,R∗m,j) from
FF·G

14. Assemble the signature σ = ∑
j∈[n] σj

15. If (Rm, σ) is not a valid signature on msg, or (sidj,i, fail,m,R∗m,j) is received from
FF·G for any j ∈ [n] then abort.

16. Otherwise, output (Rm, σ)

Theorem 5.7.3. Assuming F is a pseudorandom function and CRHF is a collision-resistant
hash function, πn,Sign UC-realizes Fn,Sign in the presence of an adversary statically corrupting
up to n− 1 parties, in the FF·G,FRDL

Com−ZK-hybrid model.

Proof. (Sketch) Simulating this protocol for an adversary corrupting n − 1 parties is done
as follows: let the honest party by indexed by j ∈ [n]. The simulator receives ki on behalf of
FF·G and ski on behalf of FRDL

Com−ZK from each corrupt Pi, and upon receiving pkfrom Fn,Sign,
reveals pkj = pk − ∑

i∈[n]\j pki to corrupt parties on behalf of FRDL
Com−ZK. When signing a

message msg, with m = CRHF(msg) the simulator first receives nonce Rm from Fn,Sign, and
sends Rm,j = Rm − (∑i∈[n]\j Fki(m)) · G to all parties on behalf of Pj. On receiving Rm,i

from each Pi, if this exact set of Rm,i values has not previously been seen, the simulator
samples a fresh (zj,i)i∈[n]\j ← Zn−1

q (otherwise reuses these values from the last time). For
each i ∈ [n] \ j, if Rm,i = Fki(m) ·G the simulator sends zj,i to Pi on behalf of FF·G. If even
one of the Rm,i values is incorrect, the simulator samples a uniform σj ← Zq and sends it
to each Pi and aborts. Otherwise, the simulator asks Fn,Sign for a signature, receiving σ in
response, and computes σj as follows:

σj = σ −
∑

i∈[n]\j
(ski ·H(pk, Rm,m) + Fki(m)) +

∑
i∈[n]\j

(zj,i − zi,j)

where zi,j is received from Pi on behalf of FF·G. The simulator sends σj to all parties on
behalf of Pj.

Indistinguishability of the simulation is argued as follows: first, by collision resistance
of CRHF, no two messages or sets {Rm,i} induce the same random tape for Pj. Second,
as F is a PRF, the pseudorandom Rm,j values in the real protocol are computationally
indistinguishable from their uniformly random counterparts in the simulation. The same
holds for zj,i values. Finally the only non-syntactic difference between the simulation and
the real protocol is that when ∃i ∈ [n] such that Rm,i 6= Fki(m) ·G, the simulator produces
a uniformly random σj instead of computing it as a function of σ received from Fn,Sign. This
induces no change in the view of the adversary, as in the real protocol FF·G withholds zj,i
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from Pi in this event (so the adversary has no information about this value in its view), and
so zj,i acts as a one-time pad within σj in the real protocol.

Additionally in the event that there is more than one honest party, collision-resistance of
CRHF immediately guarantees that no two parties will have an inconsistent view of {Rm,i}
- any inconsistency will induce honest parties to abort before they reveal any information
about σ in the final round.

5.7.1 Efficiency

The protocol is essentially a thin wrapper on top of FF·G, and consequently the cost is
dominated by running FF·G between every pair of parties. Every pair of parties Pi, Pj shares
two instantiations of FF·G, one in which Pi plays the prover and Pjthe verifier, and another
with the roles reversed. However by the structure of our protocol πF·G, instantiating FF·G in
both directions induces little computational overhead on top of a single instantiation: while
the verifier garbles the circuit the prover sits idle, and while the prover evaluates the garbled
circuit the verifier has nothing to do. This means that when Pi is working as the verifier in
one instance of FF·G with Pj, it will be idling in its role as the prover in the other instance
of FF·G with Pj, and vice versa.

For this reason, we expect a two-party instantiation of πn,Sign to incur the same bandwidth
and computation cost per party as calculated in Section 5.6.2. This cost is multiplied by n
for an n party instantiation.

5.8 Open Problems

The goal of our work has been to a construct computationally light mechanism to realize FF·G.
We explored the ZKGC paradigm in particular for this task, and developed new techniques
to suppress the ‘logistical’ costs associated with the proof, so that the garbled circuit itself
is the heaviest component. There is certainly scope to improve upon our techniques even
within the ZKGC paradigm—in particular, the committed OT realization likely has room to
improve efficiency.

Beyond the ZKGC paradigm, it might be interesting to explore the tradeoffs induced
by different zero-knowledge proof techniques to instantiate FF·G. For instance, the MPC-in-
the-head paradigm [IKOS07, BHH+19] could also be conducive to a computationally light
approach. In settings where bandwidth proves to be more of a constraint than computational
resources, one could explore the many succinct proof systems available [BCR+19, BBB+18,
Gro16] that offer various tradeoffs in bandwidth and computation cost.
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Chapter 6

Proactive Threshold Wallets with
Offline Devices

In this chapter, we begin by carefully formulating a meaningful notion of offline refresh for a
(t, n) cryptosystem, with discussions about tradeoffs, impossibilities, and instantiations, and
then incrementally build our techniques so that we may finally construct a (2, n) threshold
ECDSA construction that achieves offline refresh. We give empirical justification of its prac-
ticality. Finally, we prove that this notion of offline refresh is too strong to satisfy with a
dishonest majority when t > 2.

6.1 Defining Offline Refresh

A notion of offline refresh that is not a priori too restrictive or offers too weak a security
guarantee is tricky to define. Existing definitions (eg. [ADN06]) require that the refresh pro-
cedure always terminate successfully when honest parties receive the instruction. This can
be viewed as the proactive analog of the well-studied MPC notion of Guaranteed Output
Delivery (GOD). It is immediate from foundational results on dishonest majority coin toss-
ing [Cle86] that if there is no honest majority involved in the refresh procedure that achieves
GOD, then the resulting randomness for proactivization is succeptible to unacceptable bias.

One may consider instead a proactive analog of the MPC notion of security with abort.
This notion allows the adversary to abort the computation if it so desires, possibly receiving
output while depriving honest parties of it. Efficient dishonest majority MPC protocols that
achieve security with abort are known in the literature [DPSZ12, KOS16] indicating that
this notion may be the correct one.

However one must be careful when defining exactly what power to allow the adversary in
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aborting the refresh procedure. Security with abort in the standard MPC setting comes with
a fine-grained separation between selective and unanimous abort [FGH+02], the difference
being that in the former some honest parties may get output while others not, while in the
latter all honest parties agree on whether or not to abort. In standard MPC protocol design
the choice between these two security notions offers a meaningful tradeoff: selective abort
while offering strictly weaker security is sufficient for many applications, and is much more
efficient in round complexity and/or use of broadcast [GL05]. When translated to the setting
of proactive security however we argue that this distinction is much more drastic, to the
point of making selective abort patently undesirable.

Refresh with selective abort is insufficient Consider the following adaptation of se-
curity with selective abort: at the end of the refresh protocol, the adversary has the power
to choose exactly which (honest) parties successfully advance to the next epoch. This gives
the adversary the power to execute attacks on the honest parties’ private state that were not
feasible without the proactivization protocol. In particular an adversary could for instance
convince one half of the honest parties to advance to the next epoch while the remaining
honest parties do not. As the parties that advance erase their state from the previous epoch,
their secrets will no longer be correlated with the parties that do not advance. This means
that even if the system has an honest majority of parties (which in the static setting means
the shared secret can always be reconstructed/used if desired), the refresh procedure gives
the adversary a window to throw the parties out of sync and ‘erase’ the common secret from
the system’s distributed state.

Concretely this could translate to attacks where a single malformed message or network
issue causes a threshold wallet to permanently erase the common secret key, which in many
cases could mean an irreversible loss of funds.

Refresh with unanimous erasure We settle on ‘unanimous erasure’ as the correct def-
inition for proactive security, as the analog of security with unanimous abort. Informally,
this means that the adversary has the power to decide whether or not to move to the next
epoch, but crucially all honest parties agree on the epoch with the caveat that they may not
be activated synchronously. Offline refresh is captured by allowing the adversary to advance
the epoch arbitrarily many times (and even change corruptions) without activating all hon-
est parties, however any honest party if activated must ‘catch up’ non-interactively to the
current epoch.
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Corruption Caveats Defining a meaningful model that allows different parties to stay
“offline” (and therefore effectively exist in different epochs at the same time) while simulta-
neously honouring the assumption that only a threshold number of parties are corrupt at any
given epoch requires particular care. We handle this issue by requiring that the adversary
allows a party to “update” before corrupting it. While this appears to weaken the model, a
definition without this restriction would be inherently unachievable, as an adversary would
be able to effectively “travel in time”. For instance, if some party P is offline from epoch
i onward, an adversary who corrupts it after the the system has progressed to epoch i + 1
will obtain this party’s state at epoch i even after that epoch has passed. This would be
problematic if the adversary had already corrupted (and subsequently uncorrupted) t − 1
different parties at epoch i, as gaining P ’s state for epoch i will completely reveal the sys-
tem’s secrets, all without violating the assumption that only t − 1 parties may be corrupt
at any given point in time. See the paragraph on Corruptions in the formal definition that
follows for further discussion.

Parameters The system consists of n parties, of which t are necessary to operate by
accessing the secret. The adversary may corrupt at most t−1 parties. The refresh procedure
is run by activating tρ parties.

With these security notions in mind, we formalize the definition of proactive security with
unanimous erasure and offline refresh in the UC model below.

We build on the definition of Almansa et al. [ADN06] to a notion of mobile adversaries that
accommodates ‘offline’ parties. We do this by having each party maintain a counter epoch
written on a special tape, and define the state of the system relative to these epoch values.
While in our definition the adversary Z may choose to activate parties in sequences that leave
them in different epochs, the definition of Almansa et al. does not permit this. In particular
their definition requires all honest parties to first agree that they have all successfully reached
the latest epoch before the adversary is permitted to change corruptions.

Epochs Each party has a special “epoch tape” on which it writes an integer epoch. At the
start of the protocol, this tape contains the value 0 for all honest parties. We use the term
“system epoch” to refer to the largest epoch value written on any honest party’s tape.

Operations There are two kinds of commands that the environment Z can send to a
party: operate, refresh, and update. Intuitively operate corresponds to use of the system’s
service, refresh the candidate proactivization generation, and update the application of this
proactivization to rerandomize parties’ private state. The operate command will be issued
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to t parties simultaneously (in any realization this will require them to interact), refresh
to tρ parties (also requiring interaction), and operate will be individual and non-interactive
in its realization.

Non-degeneracy Upon being given the refresh command, an honest party must write
the current system epoch on its epoch tape. In order to rule out degenerate realizations, we
also require that if any t honest parties are given the operate command, the next refresh
command sent to an honest party P will result in the system epoch being incremented.

Corruptions At any given time, there can be at most t−1 parties controlled by Z. Mobility
of corruptions must adhere to the following rule: Z may decide to “uncorrupt” a party P at
any time, however before corrupting a new party P ′ ∈ P it must first “leave” P , then send
refresh to any tρ parties without aborting (i.e. increments the epoch counter), and finally
update to P ′ before being given its internal state (and full control over subsequent actions).
Note that omitting this final update message (i.e. allowing Z to corrupt P ′ before it has
refreshed) will give Z the views of both P and P ′ from the same system epoch, in which
case the system will be fully compromised. This is implied by any standard definition of
proactive security. In fact, our revised definition grants Z more power than that of Almansa
et al. [ADN06], as here not every party need refresh before Z changes corruptions.

Crucially we allow the system epoch to be pushed forward by any tρ parties, i.e. consec-
utive epoch increments may be enabled by completely non-overlapping sets of parties. This
captures our notion of “offline refresh” where not all parties in the system need be online to
move the system forward; any tρ parties can keep the epoch counter progressing while the
others catch up at their own speed.

Offline-refresh must be non-interactive A direct implication of our definition is that
one can not wait for offline parties to respond before incrementing the epoch counter. This
inherently rules out standard interactive verifiable secret sharing (VSS) approaches where
parties ‘complain’ if an adversary tries to cheat them. Previous proactive secret sharing
protocols can be viewed as implementing such a VSS between epochs (either explicitly by
complaints against misbehaviour, or implicitly by voting for ‘good’ sharings), and so a fun-
damentally different approach is required for the offline-refresh setting.
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6.2 Instantiating Offline Refresh

With the model and definitions in place, we now incrementally work towards our protocol
via a sequence of stepping stones to introduce which tools we use and why.

6.2.1 Simple Honest Majority Instantiation

We begin by sketching a ‘baby protocol’ for proactive secret sharing with tρ = 2t − 1 and
n = tρ + 1, i.e. where the refresh protocol is run by an honest majority of online parties and
one party (labelled Poff) stays offline.

Network It is immediate that a necessary underlying assumption is a forward secure chan-
nel that supports delivery to offline parties. Formally, this is captured by having offline parties
accumulate messages in a buffer that they read when they become online. In practice an of-
fline party may not literally be disconnected from the network and need a buffer, just that
the refresh protocol does not require its participation. Alternatively message delivery may
be aided by a server as in the Signal protocol [MP, ACD19]. We assume that the tρ online
parties share a broadcast channel (which is not necessarily visible to Poff).

Cryptographic tools As a parameter of the protocol, parties agree on an elliptic curve
G generated by G and of order q, where the Discrete Logarithm problem is assumed to be
hard. We assume two protocol primitives:

• πDKG
Setup is a protocol where at the end each party Pj holds skj = f(j) ∈ Zq where f is a

degree t− 1 polynomial with the common secret defined as sk = f(0). Additionally every
party knows pkj = F (j) = f(j) ·G for each j ∈ [n]. This is a common tool [Fel87b, Ped92]
and we recall a canonical instantiation in Appendix C.1.

• Reshare(i) is a protocol run by tρ parties each of whom have local secret shares f(j) and
public shares F (j) as created by πDKG

Setup above, in order to create a fresh and independent
sharing of the same format where the secret is f(i). In particular, at the end of Reshare(i),
each party Pj holds f ′(j) ∈ Zq where f ′ is a degree t − 1 polynomial with f ′(0) = f(i).
This is a common tool as well, and so we refer the reader to Gennaro et al. [GRR98] for
further details.

As before, let off = tρ + 1 index the offline party. The refresh protocol is run among tρ
online parties as follows:
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1. Parties P1, · · ·Ptρ run Reshare(0) in order to obtain fresh shares the secret key, i.e. they
agree on a public degree t − 1 polynomial F over G and each Pj obtains f(j) such that
f(j) · G = F (j). It holds that F (0) = pk. They overwrite skj = f(j) and pkj = F (j) for
each j ∈ [n].

2. They then run Reshare(off) to jointly sample a fresh degree t− 1 polynomial f ′ such that
f ′(0) = skoff and each Pj knows f ′(j) and every public F ′(j) = f ′(j) ·G.

3. Each Pj for j ∈ [tρ] sends pk = (pkj)j∈[tρ], f
′(j), F ′ privately to Poff .

It holds that since there are t honest parties who execute the final step, upon waking up Poff

will find at least t messages that agree on pk, F ′ accompanied by as many correct evaluations
f ′(j) which can be verified by checking f ′(j) ·G ?= F ′(j). Note that since there are at most
t − 1 malicious parties, they can’t collude to create a sufficiently large set to fool Poff . It
is immediate that Poff can therefore interpolate the correct skoff and ‘catch up’ on all the
refreshes that it missed. This protocol can easily be extended for an arbitrary number of
offline parties by generating a new reshared polynomial for each of them.

Hence we have shown that offline refresh is easy to satisfy in the presence of an online
honest majority.

6.2.2 Dishonest Majority with Offline Broadcast

Folklore techniques such as Cleve [Cle86] give strong evidence that unanimous erasure in a
(2, 3) system is impossible to achieve over private channels alone. We give a rough sketch
here as to why this is the case.

Consider a system comprising P0, P1, Poff in which Poff is offline, one of P0 or P1 may
be corrupt, and the honest party and Poff must either agree on a random bit (successful
termination) or agree to abort. The non-degeneracy requirement is that an honest execution
does not induce an abort. Additionally the parties have access to arbitrary correlated ran-
domness generated in some offline phase, which rules out direct application of the t < n/3
consensus lower bound [PSL80]. This system and its constraints captures a simplified notion
of unanimous erasure.

We will argue that if P0 is corrupt, then P1 and Poff can not meet the constraints of the
system. Observe that in the event of successful termination the private communication from
P0 to Poff is by itself sufficient to ‘convince’ Poff not to abort; if this were not true then
a corrupt P1 could simply erase its entire private channel, which forces Poff to abort while
honest P0 who is unaware of this terminates successfully. We call a transcript from either
one of P0 or P1 to Poff as ‘convincing’ if it induces Poff to terminate successfully with an
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output bit instead of aborting. Without loss of generality there must be some round in the
protocol where P0 gains the ability to produce a convincing transcript, but P1 has not yet
acquired this ability (either party having this ability from round 0 would clearly admit trivial
attacks). Therefore if P0 simply halts the protocol with P1 at this point, P1 will have no way
of knowing whether P0 will choose to convince Poff to abort or to terminate successfully.

Offline Broadcast In order to overcome this challenge we introduce a powerful notion of
an ‘offline broadcast channel’, which is a broadcast channel shared by P0, P1, Poff but crucially
is invisible to the adversary if none of the parties are corrupt. Our final protocol will not use
so strong a tool, but it provides an instructive stepping stone.

Leaking the Difference Polynomial We observe that any proactivization protocol where
an adversary corrupts t parties has the following property: define fδ(i) = f ′(i) − f(i), i.e.
the polynomial that encodes the difference between old and new shares. Given f(i), f ′(i) for
any t− 1 values of i (which the adversary has by virtue of corrupting t− 1 parties) one can
compute fδ(x) for any x. This is because fδ(0) = 0 (as f(0) = f ′(0)) and fδ is a degree t− 1
polynomial of which one now has t points.

Given an offline broadcast channel, designing a refresh protocol for P0, P1, Poff using the
above observation is as simple as sampling the difference polynomial on the broadcast chan-
nel. In particular the refresh protocol proceeds as follows:

1. P0 samples a uniform fδ,0 and offline-broadcasts a commitment to fδ,0.

2. P1 samples a uniform fδ,1 and offline-broadcasts it.

3. P0 decommits fδ on the offline-broadcast channel.

4. Each party (either immediately, or upon waking up) defines fδ = fδ,0 + fδ,1 and updates
its local share as f ′(i) = f(i) + fδ(i)

It is clear that the above offline refresh protocol tolerates a mobile malicious adversary
that corrupts at most one party at any given time (which is optimal in a t = 2 system). In
particular the offline broadcast channel allows for the following properties:

• The online parties and Poff use the same criteria to compute fδ and so are always in
agreement.

• Since the offline broadcast channel is invisible to the adversary when switching corruptions,
the uniform choice of fδ ensures that the resulting refreshed polynomial is distributed
independently of any parties’ view from earlier.
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Unfortunately this offline broadcast primitive is an unreasonably strong assumption to
make in practice. Broadcast is either implemented via interactive protocols, or inherently
public when using a ledger/blockchain. We therefore carefully design a protocol that some-
what achieves the effect of this offline broadcast channel; we will use private channels to
communicate candidate fδ values along with a public ledger to reach agreement on whether
or not to use them, and rely on the intrinsic entropy of certain common threshold signatures
to bind the public and private components.

A Note on Parameters As our subsequent constructions are explicitly for t = tρ = 2,
we drop the t, tρ notation until we revisit the general multiparty setting in Section 6.8.

6.3 Threshold Signature Abstraction

A threshold signature scheme [Des88] allows the power of producing a digital signature to
be delegated to multiple parties, so that a threshold number of them must work together in
order to produce a signature. Specifically a (t, n) signature scheme is a system in which n
parties hold shares of the signing key, of which any t must collaborate to sign a message. In
this section we focus on (2, n) threshold versions of the ECDSA [Kra93] and Schnorr [Sch91]
Signature schemes. As our techniques are general and not specific to any one threshold
signature scheme, we use an abstraction of such protocols for ease of exposition.

6.3.1 Abstraction

We assume that a (2, n) threshold signature over group (G, G, q) can be decomposed in a
triple of algorithms (πDKG

Setup,πR
Sign,πσSign) of the following formats:

• (ski ∈ Zq, pk ∈ G)← πDKG
Setup(κ)

This protocol is run with n parties and has each honest party Pi obtain public output pk
and private output ski. In addition to this, there must exist a degree-1 polynomial f over
Zq such that ∀i ∈ [n], ski = f(i).

• (R ∈ G, stateb ∈ {0, 1}∗)← πR
Sign(pk, skb, 1− b,m)

Run by party Pb with P1−b as counterparty, to sign message m. Both parties output the
same R when honest, with private state stateb.

• (σ ∈ Zq)← πσSign(stateb)
Completes the signature started by πR

Sign when both parties are honest, i.e. σ verifies as a
signature on message m with R as the public nonce and pk as the public key.
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Note that πDKG
Setup captures a specific kind of secret sharing, i.e. the kind where the signing

key is Shamir-shared among the parties. Multiplicative shares for instance are not captured
by this abstraction. The (2,2) threshold ECDSA protocols of Lindell [Lin17] and Castagnos
et al. [CCL+19] are not captured by our abstraction for this reason. Additionally signature
schemes that do not have randomized signing algorithms such as BLS [BLS01] can not be
decomposed as per this abstraction.

Finally these protocols must realize the relevant threshold signature functionality. In
particular let Sign ∈ {SignHECDSA, SignHSchnorr} where

SignHECDSA(sk, k,m) = H(m) + sk · rx
k

SignHSchnorr(sk, k,m) = H(R||m) · sk + k

where rx is the x-coordinate of k · G in the ECDSA signing equation. We therefore define
functionality Fn,2Sign to work as follows:

Functionality 6.3.1.

Discrete Log Based Threshold Signature
(
Fn,2Sign

)
This functionality is parameterized by

the party count n, the elliptic curve (G, G, q), a hash function H, and a signing algorithm
Sign. The setup phase runs once with n parties, and the signing phase may be run many
times between (varying) subgroups of parties indexed by i, j ∈ [n].

Setup On receiving (init) from all parties,

1. Sample and store the joint secret key,

sk← Zq

2. Compute and store the joint public key,

pk := sk ·G

3. Send (public-key, pk) to all parties.

4. Store (ready) in memory.
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Signing On receiving (sign, idsig, (i, j),m) from both parties indexed by i, j ∈ [n]
(i 6= j), if (ready) exists in memory but (complete, idsig) does not exist in memory,
then

1. Sample k ← Zq and store it as the instance key.

2. Wait for (get-instance-key, idsig) from both parties Pi, Pj.

3. Compute
R := k ·G

and send (instance-key, idsig, R) to parties Pi, Pj. Let (rx, ry) = R.

4. Wait for (proceed, idsig) from both parties Pi, Pj.

5. Compute
σ := SignH(sk, k,m)

6. Send (signature, idsig, σ) to both parties Pi, Pj as adversarially-delayed private out-
put.

7. Store (complete, idsig) in memory.

To make concrete the role of each protocol (πDKG
Setup,πR

Sign,πσSign), we restrict access of their
corresponding simulators (SDKG

Setup,SR
Sign,SσSign) to Fn,2Sign. Specifically SDKG

Setup can only send (init)
on behalf of a corrupt party and receive (public-key, pk) in response. The messages (sign,
idsig, (i, j),m) and (get-instance-key, idsig) can be sent and (instance-key, idsig, R) re-
ceived only by SR

Sign. Finally (proceed, idsig) can be sent and (signature, idsig, σ) received
only by SσSign.

An implication of this restriction is that πR
Sign has to be simulatable without the signature

σ, therefore it cannot leak any information about this value. (The approach of splitting the
simulator into several simulators to limit what kind of information can be leaked in different
stages of the protocol has been used before e.g., in secret-sharing based MPC protocols to
claim that the protocol does not leak any information about the output until the recon-
struction phase performed in the last round of the protocol). This abstraction was chosen
deliberately to enforce this property; one of our key techniques in this work (Section 6.5)
relies on πR

Sign keeping σ hidden.

Threshold Schnorr We recall a folklore instantiation ofFn,2Sign for SignSchnorr in Appendix C.1
(note that this also works for EdDSA).
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Threshold ECDSA We note that the recent protocols of Gennaro and Goldfeder [GG18],
Lindell et al. [LNR18], and Doerner et al. [DKLs19] for SignECDSA can also be cast in the
above framework if required. However due to the non-linearity of SignECDSA the correspond-
ing realization of Fn,2ECDSA requires use of a multiplication functionality FMUL (or equivalent
protocol). Since FMUL is expensive to instantiate for one-time use, these threshold ECDSA
protocols run some preprocessing for FMUL in parallel with πDKG

Setup and make use of this pre-
processed state for more efficient online computation. As this adds additional persistent state
to be protected against a mobile adversary, we need to deal with it carefully. We discuss this
in further detail and give an efficient solution to this problem in Section 6.6.

6.4 Coordinating Two Party Refresh

As the final protocol combines two independent concepts: using the blockchain for synchro-
nization, and authenticating communication to offline parties, we first present a base protocol
for the former for a (2, 2) access structure and augment it with the latter to obtain a (2, n)
protocol. In this section, we describe the malicious secure protocol for two parties to coordi-
nate an authenticated refresh of the secret key shares. The (2, 2) protocol is described with
Shamir secret shares (points on a polynomial) rather than just additive shares so as to allow
for a smoother transition to the (2, n) setting.

Intuition The two parties begin by running the first half of the threshold signing protocol
πR

Sign to obtain the signing nonce R that will be used for the subsequent threshold signature
itself. They then sample a new candidate (shared) polynomial f ′ by publicly sampling the
difference polynomial fδ and store their local share sk′b = f ′(b) tagged with R and the epoch
number epoch in a list rpool. Specifically rpool is a list of (R, sk′b, epoch) values that are
indexed by R as the unique identifying element. Following this, they complete the threshold
signing by running πσSign and a designated party sends the resulting signature (and message)
to GLedger, i.e. posts them to the public ledger.

Protocol 6.4.1. π(2,2)
ρ-sign. (2, 2) Schnorr Signing With Refreshment

Parameters: Elliptic Curve Group (G, G, q)
Parties: Pb, P1−b (recall b ∈ {1, 2} is the index of the current party and 1 − b is a
shorthand for the index of the counterparty)
Ideal Oracles: FRDL

Com−ZK, GLedger

Inputs:
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• Common: Message to be signedm ∈ {0, 1}∗, public key pk ∈ G, each party’s share in
the exponent pkb = λ1−b

b (0) · F (b) where F is the polynomial over G passing through
(0, pk) and (b, f(b) ·G), epoch index epoch ∈ Z+

• Private: Each party Pb has private input skb = λ1−b
b (0) · f(b) ∈ Zq

1. Tag R from Threshold Signature:

(a) Run the first half of the threshold signing protocol

(R, stateb)← πR
Sign (skb, 1− b,m)

2. Sample New Polynomial:

(a) Send (sample-element, idcoin, q) to FCoin and wait for response (idcoin, δ)

(b) Define degree-1 polynomial fδ over Zq such that

fδ(0) = 0 and fδ(1) = δ

(c) Compute
sk′b = skb + fδ(b)

3. Store Tagged Refresh:

(a) Retrieve Epoch index epoch

(b) Append (R, sk′b, epoch) to rpool

4. Complete the threshold signature protocol by running σ ← πσSign

5. If σ 6= ⊥ then set tx = (m,R, σ) and send (Submit, sid, tx) to GLedger

Note that in Step 5 it is sufficient for only one party to send the transaction tx to the
ledger.

While the above protocol generates candidate refresh polynomials, choosing which one
to use from rpool (and when to delete old shares) is done separately. The idea is that when
a new block is obtained from GLedger the parties each scan it to find signatures under their
shared public key pk. The signatures are cross-referenced with rpool tuples stored in memory
by matching R (no two signatures will have the same R) and the ones without corresponding
tuples are ignored. If any such signatures are found, the one occurring first in the block is
chosen to signal the next refresh; in particular the corresponding sk′b overwrites skb stored in
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memory, rpool is erased, and the epoch counter is incremented.

Protocol 6.4.2. π(2,2)
ρ-update. Updating (2, 2) Threshold Schnorr State.

Parameters: Elliptic Curve Group (G, G, q)
Parties: Pi (local refresh protocol)
Ideal Oracles: GLedger

Inputs: Epoch counter epoch, a list rpool = {(epoch, sk′i, R)}, private key share ski.

1. Send (Read) to GLedger and receive (Read, b). Set BLK to be the latest block occurring
in b

2. Search for the first signature (σ,R) occurring in BLK under pk such that
∃(R, sk′i, epoch) ∈ rpool

3. Overwrite ski = sk′i and erase rpool

4. Set epoch = epoch + 1

It is clear that this protocol achieves all desired properties when both parties are honest.
We give a proof of the extended (2, n) protocol directly in the next section. However we make
a few observations at this point that will aid in building the proof for the extended protocol.

Before and after a refresh the view of an adversary corrupting Pb when epoch = x

is completely independent of the view when corrupting P1−b after epoch = x + 1. This is
clear as polynomials f and f ′ are independently distributed, and so skb = f(b) can not be
meaningfully combined with sk′1−b = f ′(1− b).

No two entries in rpool will have the same R by virtue of each R being chosen
uniformly for each entry, the likelihood of there being two entries with the same R value in
rpool is negligible, with about √q signatures having to be generated before a collision occurs.

6.5 (2, n) Refresh With Two Online

In this section, we give the malicious secure protocol for two online parties to coordinate an
authenticated refresh of the secret key for arbitrarily many offline parties. We now describe
how to ensure that offline parties can get up to speed upon waking up, crucially in a way that
every party is in agreement about which polynomial to use so that ski erasures are always
safe.
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Goal Observe that if every party is in agreement about rpool, then the rest of the refresh
procedure is deterministic and straightforward. Therefore it suffices to construct a mechanism
to ensure that for each (R, sk′b, epoch) tuple an online party Pb appends to its rpool, each
offline party Pi is able to append a consistent value (R, sk′i, epoch) to its own rpool. Here
‘consistent’ means that the points (0, sk), (b, sk′b), (i, sk′i) are collinear.

An Attempt at a Solution We first note that since either one of the online parties Pb
may be malicious and therefore unreliable, it simplifies matters to design the refresh protocol
so that they both send the same message to an offline Pi. The message itself should deliver
fδ(i) (so that Pi can compute sk′i) along with R. Simultaneously it must be ensured that a
malicious party is unable to spoof such a message and confuse Pi.

In order to solve this problem, we take advantage of the fact that the parties already
share a distributed key setup; as any two parties must be able to sign a message in a (2, n)
threshold signature scheme, we take advantage of this feature to authenticate sent messages
with threshold signatures internal to the protocol. In particular, when any Pb, P1−b agree on
an entry (R, skb) to add to rpool, they also produce a threshold signature z under the shared
public key pkauthenticating this entry. Each Pb is instructed to send the new rpool entry
accompanied by its signature z to every offline party. If at least one of Pb, P1−b follows the
protocol (note that only one may be corrupt), every offline party will have received the new
rpool entry when it wakes up. Additionally due to the same reason that (2, n) signatures are
unforgeable by an adversary corrupting a single party, such an adversary will be unable to
convince any offline Pi to add an entry to rpool that was not approved by an honest party.
An implication of this unforgeability feature is that an offline party can safely ignore received
messages that are malformed.

A Subtle Attack Again the inherent unfairness of two-party computation stands in the
way of achieving a consistent rpool. In particular an adversary corrupting P ∗b may choose to
abort the computation the moment she receives the internal threshold signature z, denying
the online honest party P1−b this value and therefore removing its ability to convince its
offline friends to add the new rpool entry. This is a dangerous situation, as P ∗b now has the
power to control whether the offline parties update rpool or not, i.e. by choosing whether or
not to send the new rpool entry (which it can convince offline parties to use as it has z).
While this will not immediately constitute a breach of privacy, the fact that honest parties
do not agree on rpool could violate unanimous erasure; at best this requires all honest parties
to come online to re-share the secret, and at worst this could mean that the secret key is lost
forever (e.g. in the (2,3) cold storage use case).
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Our Solution This is where it is crucial that the first half of the threshold signing protocol
(πR

Sign) is simulatable without the signature σ itself; in fact it is the entire reason for this
choice of abstraction. Assume that P1−b updates its rpool with the new value before even
producing z. Following this, P1−b will refuse to instruct Fn,2Sign to reveal the signature σ until
it is in possession of the local threshold signature z to send to offline parties. There are now
two choices that P ∗b has when executing the attack described above:

• Update rpool of offline parties: i.e. the adversary chooses to add (R, fδ) to the rpool of
some/all offline parties. In this case, in order to actually exploit the inconsistency between
rpool of different honest parties, the adversary must trigger a refresh that produces different
outcomes for different rpool. Specifically, the signature σ under public key pkand the nonce
R must appear on the blockchain; i.e. the same R that Pb interrupted signing with P1−b

but sent to offline parties. However since protocol πR
Sign by itself keeps σ completely hidden

and P1−b does not continue with πσSign, the task of the adversary is essentially to produce σ
under a specific uniformly chosen R (of unknown discrete logarithm). We show that this
amounts to solving the discrete logarithm problem in the curve G.

• Do not update rpool of offline parties: All honest parties have the same rpool anyway,
and there is no point of concern.

Therefore instead of using complicated mechanisms (eg. forcing everyone to come online,
extra messages on the blockchain, etc.) to ensure that every honest party agrees on the same
rpool, we design our protocol so that any inconsistencies in rpool are inconsequential.

We present the protocol below, which includes some optimizations and notation omitted
from the above explanation.

Protocol 6.5.1. π(2,n)
ρ-sign. (2, n) Schnorr Signing With Refreshment

Parameters: Elliptic Curve Group (G, G, q)
Parties: Pb for b ∈ [n]
Ideal Oracles: FRDL

Com−ZK, GLedger, random oracle RO
Inputs:

• Common: Message to be signed m ∈ {0, 1}∗, public key pk ∈ G, each party’s share in the
exponent pkb = λ1−b

b (0) ·F (b) where F is the polynomial over G passing through (0, pk) and
(b, f(b) ·G), epoch index epoch ∈ Z+

• Private: Each party Pb has private input skb = λ1−b
b (0) · f(b) ∈ Zq

1. Tag R from Threshold Signature: (identical to π(2,2)
ρ-sign)
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2. Sample New Polynomial: (identical to π(2,2)
ρ-sign)

3. Store Tagged Refresh:

(a) Append (R, sk′b, epoch) to rpool

(b) Establish common nonce K ∈ G along with an additive sharing of its discrete loga-
rithm:

i. Sample kb ← Zq, setKb = kb·G and send (com-proof, idcom-zk
b , kb,Kb) to FRDL

Com−ZK

ii. Upon receiving (committed, 1 − b, idcom-zk
1−b ) from FRDL

Com−ZK, send (open, idcom-zk
b )

to FRDL
Com−ZK

iii. Wait to receive (decommitted, 1− b, idcom-zk
1−b ,K1−b ∈ G) from FRDL

Com−ZK

iv. Set K = Kb +K1−b

(c) Compute

e = RO(R||K||δ||epoch)

zb = e · skb + kb

(d) Send zb to P1−b and wait for z1−b, upon receipt verifying that

z1−b ·G = e · pk1−b +K1−b

and compute z = zb + z1−b

(e) Set msg = (R, epoch, δ,K, z)

(f) For each i ∈ [n] \ {b, 1− b}, send msg to Pi

4. Complete the threshold signature protocol by running σ ← πσSign

5. If σ 6= ⊥ then set tx = (m,R, σ) and send (Submit, sid, tx) to GLedger

We now specify the refresh procedure for a party Pi to process its received messages,
reconstruct rpool, and shift to the latest shared polynomial. This refresh procedure is general
so that parties who were offline for a number of epochs can catch up.

Protocol 6.5.2. π(2,n)
ρ-update. Applying Update Packages to (2, n) Schnorr State

Parameters: Elliptic Curve Group (G, G, q)
Parties: Pi (local refresh protocol)
Ideal Oracles: GLedger

Inputs: Epoch counter epoch, a list rpool =
{
(epoch, sk′i, R)

}
, public key pk, private key share

ski (define pki = ski ·G).
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1. For each unique msg received when offline do the following:

(a) Parse
(
R, epoch′, δ,K, z

)
← msg and if epoch′ < epoch ignore this msg

(b) Compute e = RO(R||K||δ||epoch′) and verify that

z ·G = e · pk +K

(c) Define degree-1 polynomial fδ over Zq such that

fδ(0) = 0 and fδ(1) = δ

and interpolate δi = fδ(i)

(d) If epoch′ = epoch, compute
sk′i = ski + δi

and append (R, sk′i, epoch) to rpool

(e) Otherwise epoch′ > epoch so append (epoch′, δi, R) to fpool

2. Send (Read) to GLedger and receive (Read, b) in response. Set BLK to be the latest blocks
occurring in b since last awake, and in sequence from the earliest block, for each (σ,R)
under pk encountered do the following:

(a) Find (R, sk′i, epoch) ∈ rpool (match by R), ignore σ if not found

(b) Overwrite ski = sk′i, set epoch = epoch + 1, and set rpool = ∅

(c) For each (epoch, δi, R) ∈ fpool (i.e. matching current epoch) do:

i. Set sk′i = ski + δi

ii. Append (R, sk′i, epoch) to rpool

iii. Remove this entry from fpool

In the above refresh protocol π(2,n)
ρ-update, the set rpool will always be consistent across honest

parties (except for inconsequential differences) and fpool will be empty by the end. This is
due to the fact that fpool contains candidate refresh values intended for epoch values further
than the one “caught up with” so far; no honest party will approve a candidate with a
higher epoch counter than its own, and every honest party reaches the same epoch value
upon refresh. Further details can be found in the section addressing non-degeneracy of the
protocol in the proof that follows.

Theorem 6.5.3. If (πDKG
Setup, π

R
Sign, π

σ
Sign) is a threshold signature scheme for signing equation

Sign, and the discrete logarithm problem is hard in G, then (πDKG
Setup, π

(2,n)
ρ-update) UC-realizes Fn,2Sign
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in the (GLedger,FRDL
Com−ZK)-hybrid model in the presence of a mobile adversary corrupting one

party, with offline refresh.

Proof. (Sketch) The protocol πDKG
Setup can be simulated the standard way, with the corrupt

party Pi’s key share ski remembered as output. We now describe the simulator S(2,n)
ρ-signfor

protocol π(2,n)
ρ-sign. This simulator is given ski as input, and outputs (R, sk′i).

Simulator 6.5.4. S(2,n)
ρ-sign

Parameters: Elliptic Curve Group (G, G, q)
Ideal Oracles Controlled: FRDL

Com−ZK, random oracle RO
Ideal Oracles Not Controlled: GLedger

Inputs:

• Common: Message to be signed m ∈ {0, 1}∗, public key pk ∈ G, each party’s share
in the exponent F (b) = f(b) ·G, epoch index epoch ∈ Z+

• Private: Pb’s key share skb = f(b) ∈ Zq

1. Tag R from Threshold Signature:

(a) Simulate the first half of the threshold signing protocol

(R, stateb)← SR
Sign (skb, 1− b,m)

relaying (get-instance-key, idsig) and (instance-key, idsig, R) between SR
Sign

and Fn,2Sign when required.

2. Sample New Polynomial: (identical to π(2,2)
ρ-sign)

(a) Sample δ ← Zq and send (idcoin, δ) to Pb on behalf of FCoin

(b) Define degree-1 polynomial fδ over Zq such that

fδ(0) = 0 and fδ(1) = δ

(c) Compute
sk′b = skb + fδ(b)

3. Store Tagged Refresh:

(a) Simulate a signature R, δ, epoch under pk1−b:
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i. Sample z1−b ← Zq and e← Zq uniformly at random
ii. Compute

K = z ·G− e · pk1−b

iii. Program RO(R||K||δ||epoch) = e

(b) Establish common nonce K ∈ G:

i. Send (committed, 1− b, idcom-zk
1−b ) to P ∗b on behalf of FRDL

Com−ZK

ii. Receive (com-proof, idcom-zk
b , kb, Kb) on behalf of FRDL

Com−ZK

iii. Set K1−b = K −Kb

iv. Send (decommitted, 1− b, idcom-zk
1−b , K1−b ∈ G) to P ∗b on behalf of FRDL

Com−ZK

v. Wait for (open, idcom-zk) from Pb, upon receipt sending z1−b in response

(c) Wait for zb, upon receipt verifying that

zb = e · skb + kb

4. Simulate the rest of the threshold signature protocol by running SσSign(stateb) relaying
(proceed, idsig) and (signature, idsig, σ) between P ∗b and Fn,2Sign as necessary.

5. If P ∗b asks Fn,2Sign to release σ to P1−b, then set tx = (m,R, σ) and send (Submit, sid, tx)
to GLedger

6. Output (R, sk′b)

Simulating π(2,n)
ρ-updateis simple: every time the adversary Z sends a (sign,m, i, j) command

to a pair of honest parties, the simulator obtains a signature R, σ from Fn,2Sign, samples δ ← Zq,
and simulates a local signature z under pkto authenticate R, δ, epoch just as in Step 3a of
Simulator S(2,n)

ρ-signabove. It sets msg = (R, epoch, δ,K, z) and makes msg available to the
corrupt party.

We now sketch an argument that the distribution of the real protocol is computationally
indistinguishable from the ideal one.

We can progressively substitute each instance of π(2,n)
ρ-signrun with honest parties belonging

to an epoch with S(2,n)
ρ-signrun with Fn,2Sign. The distinguishing advantage of Z at each step is

bounded by the advantage of a PPT adversary distinguishing (πDKG
Setup,πR

Sign,πσSign) from the
corresponding ideal executions with Fn,2Sign as produced by simulators (SDKG

Setup,SR
Sign,SσSign), which

is assumed to be negligible. In order to extend this strategy to a mobile adversary, it suffices
to argue that the polynomials f, f ′ used to share skappear independently distributed before
and after a refresh. This follows immediately from the fact that an adversary who jumps
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from party Pi to Pj is given f(i) and f ′(j) but does not see the difference fδ between f, f ′,
just as discussed in the (2,2) case in Section 6.4.

It remains to be argued that the protocol is not degenerate. The non-degeneracy property
is achieved by fulfilling two important requirements:

System Epoch Increments When the parties executing π(2,n)
ρ-signare honest, the system

epoch will always increment upon the next refresh command, i.e. if π(2,n)
ρ-signis run by honest

parties with counter epoch, then every subsequent execution of π(2,n)
ρ-updateby any party in the

system will result in a local epoch counter of at least epoch + 1. This is easy to see for
this protocol, as honest parties executing π(2,n)

ρ-signwill always produce a signature σ which
will subsequently appear on the blockchain (after delay T as per GLedger). Simultaneously
every party will find a corresponding update to rpool sent to it, which will be applied by
π(2,n)
ρ-updatewhen σ appears on the blockchain.

Consistency Every honest party outputs the same epoch counter upon executing π(2,n)
ρ-update

simultaneously. As alluded to earlier in Section 6.5 proving this amounts to showing that
the state of rpool maintained by each honest party differs inconsequentially. In particu-
lar, let Pi and Pj be honest parties maintaining rpooli and rpoolj respectively such that
∃(R, sk′i, epoch) ∈ rpooli but @(R, sk′j, epoch) ∈ rpoolj. First we claim that (R, sk′i, epoch) can
be traced to a unique execution of π(2,n)

ρ-signbetween a corrupt party P ∗b and honest party P1−b.
There are only two alternative events: (1) that there is a collision in R values generated by
two protocol instances (occurs with probability |m|2/2q where |m| is the number of messages
signed), or (2) Pi received z authenticating this entry without any honest party’s help in its
creation; the exact same technique to prove (threshold) Schnorr signatures secure can be em-
ployed here to construct a reduction to the Discrete Logarithm problem in curve G (if this
event occurs with probability ε then there is a reduction to DLog successful with probability
ε/|m|). Given that (R, sk′i, epoch) can be traced to a unique execution of π(2,n)

ρ-signbetween P ∗b
and P1−b it must be the case that P ∗b aborted the comptation at Step 3d, i.e. P ∗b received z
to authenticate this entry but withheld this value from P1−b (or else Pj would have received
this entry when offline as well due to P1−b). Observe that this inconsistency in rpooli, rpoolj
is consequential only if (σ,R) appears on GLedger, despite the fact that P1−b will not execute
πσSignto produce this value. We show that if this event happens with probability ε then there
is an adversary for the DLog problem successful with probability ε/|m|. This is because R
is chosen uniformly in π(2,n)

ρ-sign(ie. internally by πR
Sign as it realizes Fn,2Sign) and the task of Z is

to produce σ that verifies under uniformly chosen nonce R and public key pk. We can use
such a Z to solve the DLog problem in G as follows:
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1. Receive X ∈ G from the DLog challenger.

2. Choose sk← Zq, set pk = sk ·G

3. Run SDKG
Setup for Z with pkprogrammed to be the public key.

4. For each message m ∈ m except one, run S(2,n)
ρ-sign as required to simulate π(2,n)

ρ-signwhile also
acting on behalf of Fn,2Sign

5. For one randomly chosen instance of π(2,n)
ρ-sign, use SR

Sign to program X as the signing nonce
R.

6. If the correct instance of π(2,n)
ρ-signis chosen, P ∗b will abort this protocol before the correspond-

ing σ has to be released, and yet σ still appears on GLedger

7. If σ is obtained from GLedger, solve for x such that x · G = X as a function of σ, sk as
per the signing equation Sign. This is dependent on the equation Sign itself, but it is
straightforward how to retrieve the instance key x given the secret key sk and signature
σ as per SignECDSA and SignECDSA.

The above reduction succeeds when Z induces this event (probability ε) and the correct
instance of π(2,n)

ρ-signis chosen (probability 1/|m|) bringing the total success probability to ε/|m|.
As the simulated distribution is indistinguishable from the execution of the real protocol

and the protocol is non-degenerate, this proves the theorem.

An Optimization We note that one can save a query to FCoin and a Zq element from
being having to be sent by defining δ = RO(R||K||epoch) instead of computing it separately
from the internal threshold signature z. As (R,K) guarantee κ bits of entropy, the resulting
δ will be distributed uniformly.

6.6 Proactive (2, n) ECDSA

Computing (2, n) ECDSA signatures is significantly more difficult than Schnorr, due to the
non-linear nature of the ECDSA signing equation. As a result, all such recent threshold
ECDSA protocols [GG18, LNR18, DKLs18, DKLs19] make use of a secure multiplication
functionality (or equivalent protocol) FMUL in their signing phases. If FMUL were to be in-
stantiated independently for each threshold ECDSA signature produced, we could just use
the same strategy as in the previous section, since the πR

Sign protocol would take only key
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shares as arguments. However FMUL is expensive to realize for individual invocations, and
given that threshold signature protocols already need a “preprocessing” phase for key gener-
ation (ie. πDKG

Setup), all the cited works make use of this phase to also run some preprocessing for
FMUL to make its invocation during signing cheaper. Therefore, we also need to change how
we deal with proactively refreshing the shares. In a nutshell, the main technical challenge
we address in this section is that now the parties, on top of their key shares, also include in
their persistent storage some state information for the FMUL protocol and that this state is
a new target for a mobile adversary. Therefore, the state needs to be refreshed as well.

We start by abstracting the two-party multiplication protocol (πSetup
MUL ,πOnline

MUL ) used within
ECDSA threshold protocols. The protocols are run by party Pi with Pj as the counterparty
as follows,

• (statei,jMUL ∈ {0, 1}∗)← πSetup
MUL (j)

• (ti ∈ Zq)← πOnline
MUL

(
statei,jMUL, xj

)
The pair of protocols (πSetup

MUL ,πOnline
MUL ) must realize FMUL. As per the functionality specifica-

tion, ti + tj = xi · xj after πOnline
MUL is run, and this can be done arbitrarily many times for

different inputs. Every pair of parties in the system shares an instantiation of FMUL, and so
Pi maintains statei,jMUL for each j ∈ [n] \ i. Therefore in our abstraction for threshold ECDSA
protocols (πDKG

Setup, π
Setup
MUL , π

R
ECDSA, π

σ
ECDSA) we include the state required by Pi for multiplica-

tion with Pj as an argument for online signing. We avoid rewriting the formal abstraction
for readability, as it is essentially a reproduction of Section 6.3 with the inclusion of statei,jMUL

as an argument/output in the correct places.
The same restrictions on the simulators for these protocols hold, see Section 6.3 for

details. It is not hard to show that the recent protocols of Lindell et al. [LNR18], Gennaro
and Goldfeder [GG18], and Doerner et al. [DKLs19] fit these characterizations. The inclusion
of {statei,jMUL}j∈[n] as persistent state that parties must maintain across signatures creates an
additional target that must be defended from a mobile adversary. We show how here to
refresh {statei,jMUL}j∈[n] required by the OT-based instantiation of FMUL (as in Doerner et
al. [DKLs19]) and consequently upgrade compatible threshold ECDSA protocols [DKLs19,
GG18, LNR18] to proactive security.

Approach The setup used by the multiplier of Doerner et al. consists of a number of base
OTs which are “extended” for use online [KOS15]. These base OTs are the only component
of their multiplier which requires each party to keep private state. Therefore re-randomizing
these OTs in the interval between an adversary’s jump from one party to the other is sufficient
to maintain security. The central idea to implement this re-randomization is to apply the
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approach introduced by Beaver [Bea95] of “adjusting” preprocessed OTs once inputs are
known online.

6.6.1 Proactive Secure Multiplication

We begin by describing how two parties can re-randomize OT itself, and then describe how
to apply this technique to re-randomize OT Extensions.

Re-randomizing Oblivious Transfer Assume that Alice has two uniform κ-bit strings
r0, r1, and Bob has a bit b and correspondingly the string rb. Let rand ← {0, 1}2κ+1 be a
uniformly chosen string that is parsed into chunks r′0, r′1 ∈ {0, 1}κ and b′ ∈ {0, 1} by both
parties. The re-randomization process for Alice (Refresh_OTA) and Bob (Refresh_OTB) is
non-interactive (given rand) and proceeds as follows:

1. Refresh_OTA ((r0, r1), rand): output r′′0 = rb′ ⊕ r′0 and r′′1 = r1−b′ ⊕ r′1

2. Refresh_OTB ((b, rb), rand): output b′′ = b⊕ b′ and r′′b′′ = rb ⊕ r′b′′

3. Alice now holds (r′′0 , r′′1) and Bob holds b′′, r′′b′′

It is clear to see that Alice and Bob learn nothing of each other’s private values, only the
offsets r′0, r′1, b′ between the new and old ones. Consider the view of a mobile adversary that
jumps from one party to the other.

• Alice → Bob: (r0, r1) before the refresh, and (b′′, r′′b′′) after the refresh.

• Bob → Alice: (b, rb) before the refresh, and (r′′0 , r′′1) after the refresh.

Assuming that r′0, r′1, b′ are hidden and that these values are uniformly chosen, in both the
above cases the adversary’s view before and after the refresh are completely independent.

Re-randomizing OT Extensions The persistent state maintained by OT Extension pro-
tocols based on that of Ishai et al. [IKNP03] consists of the result of a number of OTs
performed during a preprocessing phase. Re-randomizing this state can be done by simply
repeating the above protocol for each preprocessed OT instance. Indeed, the instantiation of
OT Extension implemented by Doerner et al. is the protocol of Keller et al. [KOS15] which
is captured by this framework.
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Re-randomizing multipliers There is no further persistent state maintained across FMUL

invocations by the protocol of Doerner et al. [DKLs19], and so we leave implicit the con-
struction of stateMUL

′ ← Refresh_MUL(stateMUL, rand). The only missing piece is how rand

is chosen; in the context of the multipliers in isolation, this value can be thought of coming
from a coin-tossing protocol that is invisible to the adversary (when neither party is corrupt).

6.6.2 Multiplier Refresh in (2, n) ECDSA

The previous subsection describes how to realize FMUL with proactive security when a mech-
anism to agree on when/which rand to use is available. Fortunately the protocol described
in Section 6.5 provides exactly such a mechanism for the (2, n) threshold signature setting.
We briefly describe how to augment Protocol 6.5.1 to produce the randomness rand required
to proactivize multipliers in addition to the distributed key shares.

(2, n) Offline Refresh The two online parties Pb, P1−b engage in a coin-tossing protocol in
the Sample New Polynomial phase to produce a uniform κ-bit value seed. In the Store
Tagged Refresh phase they include seed to be stored in rpool along with corresponding
epoch, sk′b, R (and communicate seed to offline parties along with these values). If the signa-
ture using R is used to signal a refresh, then seed is expanded by every pair of parties to
produce rand as necessary.

We give the entire protocol below for completeness. We give the full proactive ECDSA
protocol below. It shares many similarities with π(2,n)

ρ-signand so we underline changes in this
protocol.

Protocol 6.6.1. π(2,n)
ρ-ECDSA

Parameters: Elliptic Curve Group (G, G, q)
Parties: Pb for b ∈ [n]
Ideal Oracles: FRDL

Com−ZK, GLedger, random oracle RO
Inputs:

• Common: Message to be signedm ∈ {0, 1}∗, public key pk ∈ G, each party’s share in
the exponent pkb = λ1−b

b (0) · F (b) where F is the polynomial over G passing through
(0, pk) and (b, f(b) ·G), epoch index epoch ∈ Z+

• Private: Each party Pb has private input skb = λ1−b
b (0) · f(b) ∈ Zq

1. Tag R from Threshold Signature:
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(a) Run the first half of the threshold signing protocol

(R, stateb)← πR
Sign

(
skb, 1− b, stateb,1−bMUL ,m

)
2. Sample New Polynomial:

(a) Send (sample-element, idcoin
1 , q) and (sample-element, idcoin

2 , q) to FCoin and
wait for responses (idcoin

1 , δ) and (idcoin
2 , seed) respectively

(b) Define degree-1 polynomial fδ over Zq such that

fδ(0) = 0 and fδ(1) = δ

(c) Compute
sk′b = skb + fδ(b)

3. Store Tagged Refresh:

(a) Append (R, sk′b, seed, epoch) to rpool

(b) Establish common nonce K ∈ G along with an additive sharing of its discrete
logarithm:

i. Sample kb ← Zq, set Kb = kb · G and send (com-proof, idcom-zk
b , kb, Kb) to

FRDL
Com−ZK

ii. Upon receiving (committed, 1−b, idcom-zk
1−b ) from FRDL

Com−ZK, send (open, idcom-zk
b )

to FRDL
Com−ZK

iii. Wait to receive (decommitted, 1− b, idcom-zk
1−b , K1−b ∈ G) from FRDL

Com−ZK

iv. Set K = Kb +K1−b

(c) Compute

e = RO(R||K||seed||δ||epoch)

zb = e · skb + kb

(d) Send zb to P1−b and wait for z1−b, upon receipt verifying that

z1−b ·G = e · pk1−b +K1−b

and compute z = zb + z1−b

(e) Set msg = (R, epoch, δ, seed, K, z)
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(f) For each i ∈ [n] \ {b, 1− b}, send msg to Pi

4. Complete the threshold signature protocol by running σ ← πσSign

5. If σ 6= ⊥ then set tx = (m,R, σ) and send (Submit, sid, tx) to GLedger

Update:

1. For each unique msg received when offline do the following:

(a) Parse (R, epoch′, δ, seed, K, z)← msg and if epoch′ < epoch ignore this msg

(b) Compute e = RO(R||K||seed||δ||epoch′) and verify that

z ·G = e · pk +K

(c) Define degree-1 polynomial fδ over Zq such that

fδ(0) = 0 and fδ(1) = δ

and interpolate δi = fδ(i)

(d) If epoch′ = epoch, compute
sk′i = ski + δi

and append (R, sk′i, seed, epoch) to rpool

(e) Otherwise epoch′ > epoch so append (epoch′, δi, seed, R) to fpool

2. Send (Read) to GLedger and receive (Read, b) in response. Set BLK to be the latest
blocks occurring in b since last awake, and in sequence from the earliest block, for
each (σ,R) under pk encountered do the following:

(a) Find (R, sk′i, seed, epoch) ∈ rpool (match by R), ignore σ if not found

(b) Overwrite ski = sk′i, set epoch = epoch + 1, and set rpool = ∅

(c) For each j ∈ [n] \ i compute

randij = RO(i, j, seed)

and overwrite

stateMULij = Refresh_MUL(stateMULij, randij)
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(d) For each (epoch, δi, seed, R) ∈ fpool (i.e. matching current epoch) do:

i. Set sk′i = ski + δi

ii. Append (R, sk′i, seed, epoch) to rpool
iii. Remove this entry from fpool

6.7 Performance and Implementation

We discuss here the concrete overhead our refresh protocol adds to existing state of the
art threshold ECDSA schemes, as most cryptocurrencies today (Bitcoin, Ethereum, etc.)
use ECDSA as their canonical signature scheme. As at this point we are discussing specific
protocols, we make the following observation: In the protocols of Lindell et al. [LNR18],
Doerner et al. [DKLs19], and Gennaro and Goldfeder [GG18] the extra messages added by
π(2,n)
ρ-signcan be sent in parallel with the main ECDSA protocols. In particular, each πR

ECDSA has
at least two rounds which can be used to generate K and δ in parallel, and each πσECDSAhas
at least one round before σ is released during which z can be constructed and verified.

6.7.1 Cost Analysis

In Table 6.7.1 we recall the costs of the (πR
ECDSA,πσECDSA) combined protocols of Doerner

et al. [DKLs19] and Lindell et al. [LNR18] (OT-based) for perspective, and then give the
overhead induced by π(2,n)

ρ-sign.

Protocol Rounds EC Mult.s Comm.

Lindell et al. [LNR18] 8 239 195 KiB

Doerner et al. [DKLs19] 7 6 118 KiB

π(2,n)
ρ-signoverhead 0 6 192 Bytes

Table 6.7.1: Overhead of applying π(2,n)
ρ-signto proactivize (2, n) ECDSA protocols instantiated

with 256-bit curves. Figures are per-party and do not include cost of implementing proactive
channels to communicate 160 bytes to each offline party every refresh.

Finally the update procedure π(2,n)
ρ-updatefirst requires reading the blockchain and scanning

for signatures under the common public key since last awake– essentially the same operation
as required to update balance of funds available in a wallet. Additionally one has to read
messages received when offline and perform two curve multiplications for each refresh missed.
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6.7.2 Implementation

In order to demonstrate the compatibility and efficiency of our refresh procedure, we imple-
mented it to augment two different recent threshold ECDSA protocols; specifically those of
Doerner et al. [DKLs19] and Gennaro and Goldfeder [GG18]. We present the results in this
section.

We ran both sets of experiments on Amazon’s AWS EC2 using a pair of t3.small machines
located in the same datacenter for uniformity. However as the implementations of the base
threshold ECDSA protocols came from different codebases, we stress that the important
metric is the overhead added by our protocol in each case, and that comparison of the concrete
times across the ECDSA protocols is not necessarily meaningful.

Proactivizing Doerner et al. [DKLs19]

As Doerner et al. natively utilize OT based multipliers, augmenting their threshold ECDSA
signing with our refresh procedure yields a fully proactivized ECDSA wallet. We ran three
experiments, during which we measured wall-clock time, including latency costs, collecting
100,000 samples and averaging them. We first ran their signing protocol unmodified, which
took an average of 5.303ms to produce a signature. We then ran the same protocol augmented
with our refresh generation procedure (i.e. π(2,n)

ρ-sign) and found it to take an average of 6.587ms,
i.e. a 24.2% increase. Finally we measured the cost of applying an update upon waking up
(i.e. π(2,n)

ρ-update) to be 0.381ms. Note that this figure does not account for the costs of the
proactive channels or GLedger (which is done anyway to update one’s balance); the point of
this benchmark is to demonstrate the efficiency of applying updates in isolation.

Gennaro and Goldfeder [GG18]

In order to understand the overhead added by the refresh procedure to the communication
pattern of a different (2, n) ECDSA based wallet, we implemented the protocol of Gennaro
and Goldfeder [GG18] and augmented it with our refresh procedure during signing. Note their
protocol makes use of a Paillier-based multiplier which we do not proactivize (see Canetti
et al. [CGG+20] for how this can be done), and the cost of proactivizing an OT-based mul-
tiplier is negligible (0.381ms as shown previously). This is representative of the (2, 3) cold
storage application where the multipliers need not be offline-refreshed. We refer to the orig-
inal (πR

ECDSA,πσECDSA) as GG and the augmented π(2,n)
ρ-signas GG’.

We did not implement forward secure channels, we instead simulated it with reads from
disk. We collected twenty samples for each configuration and found the average execution
time of GG to be 1.433s and that of GG’ to be 1.635s. In particular, π(2,n)

ρ-signincurs a 14.09%
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overhead in computation. Note that this figure does not include network latency, but in the
LAN setting the measurements were within margin of error.

The code can be found in https://gitlab.com/neucrypt/mpecdsa/ (full proactiviza-
tion of [DKLs19] by Jack Doerner) and https://github.com/KZen-networks/multi-par
ty-ecdsa/tree/gg_pss (proactivization in KZen library).

6.8 General (t, n) Impossibility

We showed in Section 6.2.1 that an honest majority protocol is easy to construct, and so we
assume for the rest of the discussion that we are in a setting where there is no online honest
majority.

Many proactive secret sharing protocols in the literature have fundamentally followed
the same approach: the refresh protocol runs roughly the same protocol that was used to
share the secret, with new randomness incorporated to create an independent sharing of the
same value. Therefore the ability to run verifiable secret sharing (VSS) in a given setting has
always translated well to construct a refresh protocol for the same setting. Non-interactive
VSS where only t online parties speak, with resiliency to t− 1 corruptions are known in the
literature [GMW91, Sta96] suggesting that their translation to our setting would yield an
offline refresh protocol.

Unfortunately this intuition turns out to be false. Recall that a central principle in offline
refresh is that all (honest) parties must be in agreement about whether or not to progress
to the next epoch, i.e. ‘unanimous erasure’. We discussed in Section 6.1 why anything less
than this is undesirable, as even a simple network failure could induce permanent loss of the
shared secret. However even this notion turns out to require the power of an honest majority
to realize (barring the (2, n) case) and we give intuition as to why below.

Recall that the refresh protocol πρ is run by tρ online parties, of whom t−1 may be corrupt,
and we define h = tρ − t + 1 to denote how many are honest. Assume the weakest form of
dishonest majority, i.e. one more corrupt party than honest, so h = t−2. The communication
pattern of a single refresh phase is as follows: the online parties run πρ, following which each
online party sends a message to each of the offline parties, who upon waking up will be able to
catch up to the same epoch. The unanimous erasure property requires that all honest parties
stay in agreement about the epoch; i.e. no one party is falsely convinced to prematurely erase
their old state. Informally, we call a message or set of messages ‘convincing’ if they induce
an offline party to progress to the next epoch and erase their old state.
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Relating Unanimous Erasure to πρ It is instructive to view πρ as an MPC protocol
to produce a convincing message for offline parties to progress. As we mandate unanimous
erasure, it must never be the case that πρ permits an adversary to produce a convincing
message while depriving online honest parties of it. In particular if πρ produces a convincing
message then it must be visible and verifiable within the online honest parties’ joint view
(i.e. any subset of size h). Otherwise an adversary could at its discretion choose to induce
an offline party to prematurely erase its state, and honest parties would not be able to tell
either way. This property strongly suggests that πρ must achieve a form of fairness which
does not bode well given that it must tolerate a dishonest majority.

A General Attack Now we hone in on exactly how an adversary can exploit the above
facts. Assume that Poff is an offline party. Observe that the adversary is allowed to corrupt
h+ 1 parties given the dishonest majority setting, and so it has the budget to keep h online
parties corrupt as well as corrupt Poff initially, say in epoch 0. The adversary un-corrupts
Poff and πρ is run successfully to move the system to epoch 1, keeping h parties corrupt (but
behaving honestly) through the process. Now recall that the convincing message to Poff will
be visible to any h online parties. Since the adversary has both: the state of Poff from epoch
0, as well as a ‘convincing message’ addressed to Poff by virtue of corrupting h parties during
πρ, it is able to derive Poff ’s refreshed state for epoch 1 despite not corrupting Poff in that
epoch. Now simply corrupting one additional party in epoch 1 completely reveals the secret,
as h+ 2 = t parties’ private states are available to the adversary for that epoch.

Translating this intuition to a formal proof, or even a well-formed theorem, sees a number
of subtle issues arise. For instance, we can not unconditionally prove that it is impossible to
realize Fn,tECDSA with offline refresh for t > 2; doing so would require proving that ECDSA
itself is a signature scheme.1. To see why, consider a ‘signature scheme’ where the verifi-
cation algorithm Vrfy outputs 1 on all inputs. Clearly, realizing a threshold version of this
‘signature scheme’, even with proactive security, is trivial; all parties simply output “0” when
instructed to sign a message, then there is no private state to refresh. Therefore we formulate
our theorem more carefully: we prove that if it possible to offline-refresh a given threshold
signature scheme (t > 2) with a dishonest online majority, then the given signature scheme
itself is succeptible to forgery.

We state our theorem in the (GLedger,FRO) model, for the following reasons:

• GLedger represents that this barrier can not be circumvented even with a consensus primitive
as strong as an ideal ledger.

1At the moment ECDSA is known to be a signature only in the generic group model [Bro05], and not
even in the random oracle model.
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• FRO gives the power to compute any efficiently computable function [CLOS02] and so
represents the ability to produce arbitrary correlated randomness during the preprocessing
phase (i.e. during key generation) and also compute any function securely (albeit without
robustness [Cle86]) during the refresh protocol itself.

Additionally both ideal oracles are trivial to implement when running the environment in a
reduction.

Theorem 6.8.1. Let Sig = (KeyGen, Sign,Vrfy) be a triple of algorithms that satisfies the
completeness definition of signature schemes. If there exists a protocol π(t,n)

ρ-sign in the (GLedger,
FRO)-hybrid model that UC-realizes Fn,tSign with n > tρ ≥ t > 2 in the presence of a mobile
adversary actively corrupting t− 1 parties where tρ < 2(t− 1), then there exists a forger for
Sig that succeeds with overwhelming probability.

Proof. We prove this theorem by first constructing an attack on the ‘real’ protocol π(t,n)
ρ-sign,

and then using the simulator SSign to translate this attack to the ideal protocol in order to
construct a forger for Sig.

Consider an instantiation with parameters n > tρ ≥ t ≥ 2 such that tρ < 2(t − 1), i.e.
less than half the parties in the refresh protocol are guaranteed to be honest. Define an
experiment EXECπ(t,n)

ρ-sign,Z(1κ) with environment Zn,tρ as follows:

1. Send init to all parties.

2. Send (refresh, [1, tρ]) to each party Pi where i ∈ [1, tρ].

3. Send (wake) to all parties.

All instructions are implemented with the protocol π(t,n)
ρ-sign. Let τi,j denote the transcript of

the private channel from party Pi to Pj. Let statei denote the private state of party Pi after
the init command, and state′i denote the private state of Pi after the (wake) command (note
that state′i is essentially the ‘refreshed’ state for the next epoch). Let ‘off’ index a canonical
offline party, say off = tρ + 1. Finally, let pk denote the public key produced when the init
command is run.

We now show how to construct two algorithms: Ext to extract the state of Poff in an
epoch of the protocol where it is not corrupted, and Sign∗ that uses this state in conjunction
with t− 1 corrupt parties’ states to sign any given message.

Lemma 6.8.2. Define τi,j, statei, state′i for i, j ∈ [n], and off as above, and let and h =
tρ − t+ 1. There is a pair of PPT algorithms Ext and Sign∗ defined as follows:

• Ext : (τi,off)i∈[h], stateoff 7→ state′off
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• Sign∗ : m, state′off , {state′i}i∈I 7→ σ

Where I ⊂ [n] \ {off} and |I| = t− 1, and m ∈ {0, 1}∗.

It holds that the following probability is overwhelming in κ:

Pr

 Vrfy(pk,σ,m)=1 :
state′off ← Ext((τi,off)i∈[h], stateoff)

σ ← Sign∗(m, state′off , {state′i}i∈I)


Proof. In order to prove this lemma, we will show how to construct these algorithms.

First, some clarification on the parameters: Observe that since the maximum number of
corruptions is t−1, the value h = tρ− (t−1) represents the maximum guaranteed number of
honest online parties in the refresh procedure. Additionally since t > btρ/2c+ 1 it holds that
the adversary may corrupt more than h parties. For ease of exposition, assume 2h+1 = tρ so
that the adversary may corrupt up to h+ 1 parties and only h parties in the refresh protocol
are honest in the worst case.

Consider the same experiment EXECπ(t,n)
ρ-sign,Z∗ run with an alternative environment Z∗n,tρ

that corrupts each Pi for i ∈ [h+ 1, 2h+ 1] and issues the same commands as Zn,tρ , with the
caveat that corrupt parties do not transmit anything on their private channels to Poff , i.e.
(τi,off = ⊥)i∈[h+1,2h+1].

Observe that the view of the honest parties P1, · · · , Ph is distributed identically in both
executions. This is because the private channel between each corrupt Pi for i ∈ [h+1, 2h+1]
to Poff is hidden by definition, and Poff itself does not send any messages in this experiment.
This fact has the following implications:

• The transcript of honest parties’ private channels to Poff , i.e. (τi,off)i∈[h] is distributed in
both executions.

• The collection of private states of honest parties at the end of the experiment, i.e. (state′i)i∈[h],
is distributed the same in both experiments. In particular, at the end of both experiments,
parties P1, · · · , Ph successfully advance to the next epoch. As all honest parties must agree
on the epoch when activated, it holds that Poff advances to the next epoch in both ex-
periments. In particular, for any I ⊂ [n] \ off such that |I| = t − 1, it must hold that
implementing the instruction (sign,m, I ∪ {off}) via π(t,n)

ρ-sign produces a valid signature σ
of m under pk.

Note that the view of Poff is characterized entirely by the private channel communication
from P1, · · · , Ph, i.e. (τi,off)i∈[h] which is the same in both experiments, and stateoff its own
private state from the start of the experiment (also the same in both experiments).

As we have argued that Poff must successfully advance to the next epoch in both experi-
ments, we are ready to define Ext and Sign∗ as follows:
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• Ext implements the wake instruction for Poff via π(t,n)
ρ-sign, using as input the entire view of

Poff , characterized by (τi,off)i∈[h], stateoff , and outputs the private state of Poff for the next
epoch, state′off .

• Sign∗ implements the (sign,m, I ∪ {off}) instruction for (Pi)i∈I and Poff via π(t,n)
ρ-sign, using

as input the private states of all of these parties (state′i)i∈I∪{off}

By completeness and unanimous erasure of the protocol π(t,n)
ρ-sign, both the above algorithms

succeed with overwhelming probability. This completes the proof of this lemma.

We now construct the environment that will actually be used by the forger. Consider an
instantiation with the same parameters as earlier, n > tρ ≥ t ≥ 2 such that t > btρ/2c + 1,
i.e. less than half the parties in the refresh protocol are guaranteed to be honest, and define
off = tρ + 1 and h = tρ − t + 1 as earlier. Define the environment Z∗ controlling adversary
A as follows:

1. Instruct A to corrupt P1, P2, · · · , Ph and Poff .

2. Send init to all parties.

3. Instruct A to uncorrupt Poff .

4. Send (refresh, [1, tρ]) to each party Pi where i ∈ [1, tρ].

5. Send (wake) to all parties.

6. Instruct A to corrupt Ph+1.

7. The adversary A outputs its entire view.

8. Z∗ outputs whatever A outputs.

Note that unlike the usual specification for the real/ideal process in UC [Can01] in which
the environment only outputs a bit, the output of Z∗ here is a more complex string. This
is done for ease of exposition as the output of Z∗ will be used by the forger (Z∗ acts as a
passthrough for the output of A), there is no meaningful advantage in the real/ideal distin-
guishing game.

Define τi,j, statei, state′i for i, j ∈ [n] as earlier. The output of A at the end of this exper-
iment is the complete views of parties P1, P2, · · · , Ph, the view of Poff prior to the refresh
instruction, and the view of Ph+1 after the refresh instruction. These values are sufficiently
characterized by (τi,off , statei, state′i)i∈[h], stateoff , and state′h+1 respectively.
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When the instructions of Z∗ are implemented with the protocol π(t,n)
ρ-sign, we denote the out-

put of the resulting experiment as REALπ(t,n)
ρ-sign,A,Z∗ . As π

(t,n)
ρ-sign UC-realizes Fn,tSign, there must exist

a simulator SSign which interacts withZ∗ in place ofA, and queries Fn,tSign instead of interacting
with honest parties, with the output of the resulting experiment denoted IDEALFn,tSign,SSign,Z∗ .
It must hold that REALπ(t,n)

ρ-sign,A,Z∗ ≈ IDEALFn,tSign,SSign,Z∗ . We make use of this fact when con-
structing the forger, i.e. the forger will run the simulator SSign with the adversary to sample
from IDEALFn,tSign,SSign,Z∗ , as it can not sample from REALπ(t,n)

ρ-sign,A,Z∗ without instantiating hon-
est parties in π(t,n)

ρ-sign, for which their secret states (and hence the secret key) must be known.
Additionally the challenger’s public key pk can be embedded in the ideal computation using
Fn,tSign.

We are finally ready to construct the forger for the signature scheme, which forges a sig-
nature on a given message m under a public key pk received from the challenger.

Forge(1κ, pk,m):

1. Sample
(τi,off , statei, state′i)i∈[h], stateoff , state′h+1 ← IDEALFn,tSign,SSign,Z∗ with the caveat that Fn,tSign is
programmed to output pk as the public key when init is queried by SSign. The ideal oracle
GLedger if used, is implemented as per its specification.

2. Compute state′off ← Ext((τi,off)i∈[h], stateoff)

3. Compute σ ← Sign∗(m, state′off , (state′i)i∈[h+1])

4. Output σ

Lemma 6.8.3. For all m ∈ {0, 1}∗, the following probability is overwhelming in κ:

Pr

 Vrfy(pk,σ,m)=1 :
(sk, pk)← KeyGen(1κ)

σ ← Forge(pk,m)


Proof. We have previously shown in Lemma 6.8.2 that it is possible to forge a message under
a public key pk′ produced by running the real protocol π(t,n)

ρ-sign. We now show how to translate
this ability in order to forge a message under a public key pk received from an external
challenger (i.e. the signature experiment) using SSign to replace honest parties from π(t,n)

ρ-sign as
well as program pk into the view of the adversary. We prove this lemma via a sequence of
hybrid experiments.

Hybrid H1. In this hybrid experiment, Forge is run as specified, except that Step 1 is imple-
mented using REALπ(t,n)

ρ-sign,A,Z∗ . Let the public key produced by running π(t,n)
ρ-sign in REAL be pk′.
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By Lemma 6.8.2, the output of Forge is a valid signature on m under pk′ with overwhelming
probability.

Hybrid H2. This hybrid experiment is the same as the last, except that Step 1 is imple-
mented using IDEALFn,tSign,SSign,Z∗ instead. As REALπ(t,n)

ρ-sign,A,Z∗ ≈ IDEALFn,tSign,SSign,Z∗ , the output of
Forge is distributed indistinguishably to the last experiment (i.e. a valid signature under pk′

chosen by Fn,tSign).

Hybrid H3. This hybrid experiment is the same as the last, with the caveat that Fn,tSign is
programmed to output pk as the public key when init is queried by SSign, instead of pk′ that
Fn,tSign sampled internally. As pk and pk′ are both sampled by running KeyGen with uniform
randomness (by the challenger and Fn,tSign respectively) it holds that {pk} ≡ {pk′} which has
the following implication:

Pr

 Vrfy(pk, σ,m) = 1 :
(sk, pk)← KeyGen(1κ)

σ ← H3(m, pk)



= Pr

 Vrfy(pk′, σ′,m) = 1 :
(sk, pk)← KeyGen(1κ)

σ′ ← H2(m, pk)


= 1− negl(κ)

The final hybrid H3 is exactly the code of Forge, and outputs a valid signature on m under
pk supplied by the challenger, which proves the lemma.

The existence of an overwhelmingly successful forger for Sig given the existence of a
protocol realizing Fn,tSign with offline refresh, where n > tρ ≥ t > 2, in the presence of a
mobile adversary where t > btρ/2c+ 1, is guaranteed by Lemma 6.8.3. The theorem is hence
proven.

6.9 Summary

With the increasing adoption of threshold wallets comes the need to defend them against
mobile attackers. In this chapter we defined an “offline refresh” model for proactivizing
threshold wallets with an optimal communication pattern, and studied0 this fine-grained
notion of message complexity in the proactive setting.

We showed feasibility of honest majority offline refresh, and gave a comprehensive treat-
ment of the dishonest majority setting: for the (2, n) setting we devised a novel efficient pro-
tocol to proactivize many standard signature schemes with offline refresh, and implemented
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it to show that it adds little overhead in practice. Finally we showed that it is impossible
to have the refresh protocol tolerate a dishonest majority of participants, without having all
parties come online at least at some point in each epoch. We developed new techniques to
prove this theorem, and believe that they will find application in reasoning about proactive
security in other contexts. However there may be relaxations of the model, physical hardware
assumptions, or nonstandard trust models that are still reasonable in practice; we leave open
the problem of identifying such models and tailoring constructions for them.
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Chapter 7

Conclusion and Future Work

Managing cryptographic keys is a notoriously difficult problem in practice, as they frequently
induce single-point-of-failure vulnerabilities in deployed cryptosystems. Threshold cryptogra-
phy, which draws from the rich theory of Secure Multiparty Computation, presents a promis-
ing method by which to mitigate the single point of failure problem. However, when designing
systems and protocols for real-world use, issues that have not yet been adequately accounted
for in the literature are bound to arise. In this thesis we explored a few such issues, in par-
ticular those relating to state continuity, availability of reliable entropy, interaction patterns,
and long-term security.

Our results in this thesis present new conceptual methods to address some of these issues
for the two most commonly deployed elliptic curve signature schemes—ECDSA and EdDSA–
with empirical or concretely estimated justification of their practicality.

In Chapter 4 we explored how to non-interactively aggregate EdDSA signatures with
computational efficiency that induces tolerable latency for most relevant applications. There
is ample room to improve the efficiency of our tightly secure construction, and we leave
as an interesting open problem how our techniques can be extended to aggregate ECDSA
signatures. We additionally showed Fischlin’s transformation to be insecure when applied to
certain common Sigma protocols, and traced the issue to its deterministic nature. We showed
how to patch this insecurity by means of careful randomization, and leave for future work
to investigate the necessity of randomization when compiling Sigma protocols to NIZKPoKs
with straight-line extraction in the random oracle model.

It is well known that reliable entropy is scarce in practice, which in combination of a high
risk of state reuse in many contexts leads to unique vulnerabilities for distributed signing
with ECDSA/EdDSA. We studied this issue in Chapter 5 and provided a solution for EdDSA
based on tools native to EdDSA itself, that we estimate will in many settings induce a lower
latency than heuristic solutions with trusted hardware. Most practically efficient distributed
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ECDSA/EdDSA protocols today do not account for state incontinuity in conjunction with
poor online entropy, however the tools to solve this problem do exist in the literature—albeit
not necessarily efficient enough for many applications. The design of efficient derandomized
threshold signing protocols that are naturally resilient to state reuse therefore represents a
fruitful direction for future research, perhaps by optimizing MPC and zero-knowledge tech-
niques for the relevant statements.

Finally in Section 3.4, we argued that the interaction patterns induced by most protocols
to refresh the state of threshold cryptosystems today (as a long-term defense mechanism),
are not ideal for many threshold cryptosystems. We gave an empirically justified solution in
Chapter 6 for the (2, n) ECDSA/EdDSA setting in the context of cryptocurrency wallets,
along with some barriers to extending the techniques. We leave as future research how to
circumvent our bounds while still achieving meaningful notions of security.

Overall, we presented several concrete directions for future work in each chapter, with
many open questions around the theory and practical efficiency of distributed signing (and
related tools such as zero-knowledge proofs). Designing distributed signing protocols for
ECDSA and EdDSA that are sensitive to the practical constraints of a given context, can
serve to significantly enhance the security of many deployed cryptosystems that rely upon
them.
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Appendix A

Postponed Proofs of Straight-Line
Extraction Theorems

A.1 Full Proof of Theorem 4.4.5

We first define r-special sound sigma protocols.

Definition A.1.1. Let κ be the security parameter, which is polynomially related to the
instance size. A strongly r-special sound Sigma protocol for relation R is a three move public
coin protocol between a prover PΣ and verifier VΣ that has the following properties:

• Completeness: If PΣ (with private input w) and VΣ with public input x such that (x,w) ∈
R execute the protocol honestly, then the protocol always terminates in poly(κ) time with
V accepting.

• Strong r-special soundness: There exists a PPT extractor Ext which given as input the
accepting conversations {Ti = (a, ei, zi)}i∈[r] for statement x such that Ti 6= Tj for every
distinct pair i, j ∈ [r], outputs w such that (x,w) ∈ R.

• Honest verifier zero-knowledge/r−1 Simulatability: There exists a PPT simulator
S which upon input a statement x and challenges {ei}i∈[r−1] outputs a, {zi}i∈[r−1] such that
each (a, ei, zi) is an accepting conversation.

We restate the theorem below, and give the full proof.

Theorem A.1.2. If Σ is a strongly r+ 1-special sound Sigma protocol and `(r− 1) = κ, the
protocol πNIZK is a straight-line extractable NIZKPoK in the random oracle model, with an
extractor that does not program the random oracle and achieves extraction error Q/2κ for an
adversary making Q queries to the random oracle.
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Extractor ExtNIZK

The extractor is given the statement x, a proof π, and the list of queries to the random oracle
Q that were made by the adversary in the production of this proof. In addition to this, this
extractor has access to the extractor ExtΣ of the strongly r + 1 special sound sigma protocol,
which requires r+1 accepting transcripts (with the same a value) in order to produce a witness
w for the statement.

ExtNIZK(x, π,Q):

1. Parse (a, e, z) = π, and (ei)i∈[r] = e, and (zi)i∈[r] = z

2. Initialize τ = (ei, zi)i∈[r]

3. SearchQ until a query of the form (a, e, z) is found such that (e, z) 6∈ τ , and VΣ (x, (a, e, z)) =
1

4. Output ExtΣ(ai, τ)

Figure A.1: Extracting a witness

Proof. We first argue completeness, then extraction and zero-knowledge.
Completeness: The prover P terminates successfully with a proof when it finds a multi-

collision of size r for a function that maps a domain of size r · 2` to a range of size 2`. By
the pigeonhole principle, there exists at least one such multicollision, and since the prover
checks the domain exhaustively, such a multicollision is always found.

Extraction: We give the straight-line extractor ExtNIZK in Figure A.1 and then argue that
it fails with probability exponentially small in κ.

The event in which this extractor fails is the event in which an adversarial prover P∗

is able to produce a proof π by querying no more than r accepting Sigma protocol tran-
scripts to the random oracle. We first ignore all queries made to H that are not accepting
transcripts, and then separate queries prefixed by different a as they essentially instantiate
independent random oracles (and are not compatible with one another). For a given a, the
event in which the adversary is able to output an accepting proof with fewer than r + 1
accepting transcripts (prefixed by a) queried to H is exactly the event that all of the first
r such accepting transcripts queried to H evaluate to the same value. This is equivalent to
r independent uniformly chosen `-bit strings being equal, which happens with probability
(2−`)(r−1) = 2−κ. For an adversary that makes Q queries to the random oracle, the extraction
error is therefore bounded by Q/2κ.

Zero-knowledge: We describe how to simulate a proof in Figure A.2, and then show its
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Simulator SNIZK

Simulator SNIZK is given the statement x, and has the ability to program the Random Oracle
H. In addition to this SNIZK is given the simulator for the Sigma protoocol SΣ. Let t = `+ log r

SNIZK(x):

1. Uniformly sample ei ← {0, 1}t for each i ∈ [r] and set e = (ei)i∈[r]

2. Run the simulator for the sigma protocol to obtain (a, z)← SΣ(x, r, e)

3. Sample v ← {0, 1}`

4. Program the random oracle H so that H(a, ei, zi) = v for each i ∈ [r]

5. Emulate H as a random oracle ‘honestly’ for every other query

6. Output π = (a, e, z)

Figure A.2: Simulator for Zero-Knowledge

indistinguishability from a real proof.
We argue that the simulation is indistinguishable from a real proof through a sequence

of hybrid experiments, which are defined as follows.

Hybrid H1. The real prover’s algorithm (P from πNIZK) is used to find (a, e, z) such that
H(a, e1, z1) = · · · = H(a, er, zr) where H is emulated as a random oracle by the standard
technique of maintaining a (query, response) table. The difference from the real prover’s
algorithm is merely syntactic.

Hybrid H2. Implement Steps 3 and 4 of SNIZK. In particular in this experiment, the random
oracle H is implemented as follows:

1. Sample v ← {0, 1}`

2. The first r queries by the honest prover Q1, Q2, · · ·Qr (where each Qi = (a, ei, zi) as
generatred by P) will receive v as a response, i.e. H(Q1) = H(Q2) = · · · = H(Qk) = v

3. Emulate H as a random oracle ‘honestly’ for every other query

This hybrid differs from the last in that here the prover P will terminate after the first r
queries it makes to H, whereas in H1 since H is not programmed to shortcut to a multicol-
lision, P will have to ‘work’ to find a multicollision. Since the difference in running time of
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H2 and H1 is invisible to a distinguisher and a are generated identically in both hybrids, the
only component that remains to be analyzed is e (since z is implicitly fixed by w,a, e). In
H1, e represents the indices of the first multicollision found by P relative to H. Since P steps
through pre-images uniformly at random and H is a random oracle (i.e. H has independent
uniformly random outputs for every pair of distinct inputs) e is distributed uniformly in
{0, 1}t×r in H1. In H2, e is clearly uniformly distributed in {0, 1}t×r as it corresponds to the
first r challenges tried by P, which are sampled uniformly and independently.

As a, e, z are distributed identically in H2 and H1, the only distinguishing event corre-
sponds to the programming of H, i.e. if the adversary is able to query H on some index
that H2 subsequently programs to a different value. Since a has at least κ bits of entropy
and is a prefix for all queries programmed in H2, this distinguishing event happens with
probability no greater than Q/2κ, where Q is the number of queries made by the adversary
to the random oracle.

Hybrid H3. Replace the role of P in generating (a, e, z) by Steps 1 and 2 of SNIZK. In
particular while H2 computes a, state← PΣ,a(w), samples each challenge ei ← {0, 1}t×r, and
produces each zi ← PΣ,z(state, ei), this hybrid simply computes (a, e, z) ← SNIZK(x). This
modification still retains perfect correctness, as H2 already programs H to ‘shortcut’ to a
multicollision upon being queried on each (a, ei, zi) produced. Indistinguishability of (a, e, z)
produced in H3 and H2 directly follows from r-simulatability of the Sigma protocol; there is
a trivial lossless reduction to translate a distinguisher for H3 and H2 to a distinguisher for
r-simulatibility of the Sigma protocol.

The final hybrid experiment H2 implements the simulator SNIZK in its entirety, and does
not take the witness w as an input. As we show that for any (x,w) ∈ R, it holds that
PH(w, x) ≡ H0(w, x) ≈ H3(x) ≡ SNIZK(x), zero-knowledge of πNIZK is hence proven.

A.2 Strongly r-special Sound Schnorr

It is easy to modify Schnorr’s proof of knowledge of discrete logarithm protocol [Sch91] to
an r-special sound Sigma protocol with r − 1-simulatability. This is achieved (in spirit) by
instantiating the batched Schnorr protocol of Gennaro et al. [GLSY04] where one ‘batches’
r − 1 random instances with the given instance. Intuitively in order to prove knowledge of
the discrete log x ∈ Zq of a public X ∈ G (where G is say an elliptic curve group), the prover
samples a random degree r − 1 polynomial f ∈ Zq[X] such that f(0) = x, and publishes
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Protocol Σr,DL

The prover P = (PΣ,a, PΣ,z) and verifier V are both given public parameters (G, G, q), r ∈ Z,
and the statement X = x ·G. The prover additionally has witness x as private input.

PΣ,a(X,x):

1. Sample r − 1-degree polynomial f ∈ Zq[X] such that f(0) = x

2. Compute commitment a = (f(i) ·G)i∈[r−1], and set state = f

3. Output (state,a)

PΣ,z(state, e):

1. Parse e ∈ Z∗q and output f(e)

V(X,a, e, z):

1. Parse a1, a2, · · · , ar = a

2. Define degree r − 1 polynomial F ∈ G[X] such that F (0) = X and F (i) = ai

3. Output F (e) ?= z ·G

Figure A.3: r-special sound proof of Discrete Log

a = (f(i) · G)i∈[r−1]. Given a challenge e ∈ Z∗q, the prover reveals f(e), which the verifier
can check is indeed the discrete logarithm of F (e) by interpolation in the exponent, where
F ∈ G[X] is the degree r − 1 polynomial such that F (0) = X and {F (i) = ai}i∈[r−1].

We give the protocol Σr,DL in Figure A.3.

Theorem A.2.1. The protocol Σr,DL is a strongly r-special sound Sigma protocol for the
language DLog.

Proof. Completeness is easy to verify. r − 1-simulatability and r-special soundness are dis-
cussed below.

r−1-simulatability. Transcript a, (zi)i∈[r−1] can be simulated givenX = gx and e1, e2, · · · , er−
1 as follows:

1. Sample zi ← Zq and compute Zi = zi ·G for each i ∈ [r − 1]

2. Define degree r − 1 polynomial F ∈ G[X] such that F (0) = X and F (ei) = Zi
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3. Compute a = {F (i)}i∈[r−1]

4. Output a, (zi)i∈[r−1]

The real prover samples f by choosing {f(i)}i∈[r−1] uniformly, and publishes z = {f(ei)}i∈[r−1]

which is effectively uniform in Zrq. The simulator chooses uniform z = {f(ei)}i∈[r−1] directly,
and so z is distributed identically in both executions. As Zq is isomorphic to G, the a values
are fixed given X, z, which accounts for all components in the view and proves that the
simulated and real values are identically distributed.

Strong r-special soundness. Given r accepting transcripts (ie. correct polynomial evalu-
ations), by the facts that there can exist at most one r−1-degree polynomial passing through
r points that Zq and G are isomorphic, the points (e1, z1), (e2, z2), · · · , (er, zr) fully specify
f ∈ Zq[X] such that {f(i) · G = ai}i∈[r−1] and f(0) · G = X. Therefore x is given by f(0).
Note that ‘strong’ special soundness is achieved trivially as there is a unique z that satisfies
any challenge e.

Efficiency. A single instance of the strongly r-special sound Schnorr is equivalent in band-
width, proving, and verification cost to r copies of the regular 2-special sound Schnorr Sigma
protocol. However each new prover response requires a factor of r more Zq (scalar) multipli-
cations to compute than a single copy of the regular 2-special sound Schnorr Sigma protocol.
Our analysis, however, focuses on minimizing the number of hash queries to the random
oracle.
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Appendix B

Auxiliary Material for Stateless
Deterministic Signing

B.1 UC Commitments

High level idea. As a helper for this protocol we first embed Gen-vk,Gen-ck in a ‘setup’
functionality F setup

Com , which establishes for the committer and receiver their respective keys (a
corrupt party may supply the randomness ρS/ρR to F setup

Com ). The protocol itself consists of
simply having S run Commit to commit to a message, and R verify openings with DecomVrfy.
The simulator for this protocol runs Gen-ek or Gen-td while acting on behalf of F setup

Com during
setup. Subsequently the simulator uses the resulting keys ek or td to extract the message
from commitments produced by a corrupt sender via Ext, or to equivocate messages to a
corrupt receiver via SCom,R∗ respectively.

We begin by giving the exact description of F setup
Com below:

Functionality B.1.1. F setup
COT . Commitment Setup

This is a helper functionality for the UC-secure commitment protocol πCom, run between
a pair of parties S,R (one of whom may be corrupt). Given algorithms Gen-ck,Gen-vk
for commitment scheme C, this functionality simply runs them to distribute the correct
keys to S and R. Let |ρS| and |ρR| be the size of the random tapes required by Gen-ck
and Gen-vk respectively. All messages are adversarially delayed.

Setup: Upon receiving (init) from both parties, do the following:

1. If neither party is corrupt, sample ρS ← {0, 1}|ρS | and ρR ← {0, 1}|ρR|.

2. If S is corrupt, wait for (ck-rand, ρS ∈ {0, 1}|ρS |) from S and sample ρR ← {0, 1}|ρR|.
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If R is corrupt, wait for (vk-rand, ρR ∈ {0, 1}|ρR|) from R and sample ρS ← {0, 1}|ρS |.

3. Compute ck = Gen-ck(1κ; ρS) and vk = Gen-vk(1κ, ck; ρR).

4. Send (com-key, ck) to S and (ver-key, vk) to R.

Accept no further commands.

With the helper functionality in place, we give the protocol for commitment πCom below.

Protocol B.1.2. πCom[C]. Commitment
This protocol is run between a sender S and a receiver R, and is parameterized by a
commitment scheme C. This protocol makes use of the ideal oracle F setup

Com .

Setup: Run once:

1. S and R send (init) to F setup
Com

2. S receives (com-key, ck) and R receives (ver-key, vk) from F setup
Com

Commit: With common input ind and private input m:
S computes C, δ = Commit(ck, ind,m) and sends C to R

Decommit: With common input ind:

1. S sends m, δ to R

2. R validates DecomVrfy(vk, ind,C, δ,m) ?= 1

Equally important is to define the simulator for the above protocol.

Simulator B.1.3. SCom[C]. Simulator for Protocol πCom

The simulator is parameterized by a commitment scheme C, and acts on behalf of the
ideal oracle F setup

Com .

Corrupt sender: S∗

1. Setup:

(a) Receive (init) and (ck-rand, ρS) from S∗ on behalf of F setup
Com

(b) Compute ck = Gen-ck(1κ; ρS) and ek = Gen-ek(ck)

(c) Sample ρR ← {0, 1}|ρR| and set vk = Gen-vk(1κ; ρR)
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(d) Send (com-key, ck) to S∗ on behalf of F setup
Com

2. Commit: With common input ind:

(a) Receive C from S∗ on behalf of R

(b) Compute m = Ext(ek, ind,C) and send (commit, ind,m) to FCom

3. Decommit: With common input ind:

(a) Receive m, δ on behalf of R

(b) Compute b = DecomVrfy(vk, ind,C, δ,m) and send (reveal, b) to FCom

Corrupt receiver R∗: run SCom,R∗ as necessary.

B.2 Committed OT Setup

We first define a functionality F( `
`−1)OT.

Functionality B.2.1. F( `
`−1)OT. All-but-one OT

This functionality allows a sender S to send ` messages and a receiver R to obtain all but
one of them, while keeping S oblivious to which one was omitted. All outgoing messages
are adversarially delayed.

Choose: Upon receiving (choose-all-but, c) from R, and if c ∈ [`] and no such mes-
sage was previously received, store (chosen, c) in memory and send (chosen) to S.

Transfer: Upon receiving (transfer, {ki}i∈[`]) from S, if (chosen, c) exists in memory
then send (messages, {ki}i∈[`]\c) to R.

The functionality F( `
`−1)OT can be realized assuming hardness of the Computational Diffie-

Hellman problem in the same curve as the signature (in the random oracle model), by a simple
adaptation of the classic Bellare-Micali OT protocol [BM90].

We now describe how to realize the all-but-one Oblivious Transfer functionality F( `
`−1)OT.

The functionality F( `
`−1)OT can be realized assuming hardness of the Computational Diffie-

Hellman problem in the same curve as the signature (in the random oracle model), by a
simple adaptation of the classic Bellare-Micali OT protocol [BM90], which we briefly recall:
S samples a← Zq, and sends A = a ·G to R. Then, R samples `− 1 scalars indexed by all
but c, as (bi)i∈[`]\c ← Z`−1

q , and sets Bi = bi ·G for each i ∈ [`] \ c, and Bc = A−∑i∈[`]\c Bi.
R sends (Bi)i∈[`] to S, who verifies that ∑i∈[`] Bi = A, and uses Bi as a public key to encrypt
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message ki. Observe that the receiver will be able to decrypt all messages except the one
encrypted with Bc. In order to make this UC secure, the sender must prove knowledge of
discrete log of A, and the receiver must prove knowledge of all-but-one discrete logs among
(Bi)i∈[`], which is done via FRDL

.ZK

The COT helper functionality is formally defined as follows:

Functionality B.2.2. F setup
Com [C]. Committed OT Setup

This is a helper functionality for the committed OT protocol πCOT, run between a pair of
parties S,R (one of whom may be corrupt). Let |ρS| and |ρR| be the size of the random
tapes required by Gen-ck and Gen-vk respectively. All messages are adversarially delayed.

Setup: Upon receiving (sid, init) from both parties, do the following:

1. If neither party is corrupt, sample ρS0 , ρS1 ← {0, 1}2|ρS | and ρR0 , ρR1 ← {0, 1}2|ρR|.

2. If S is corrupt, wait for (sid, ck-rand, ρS0 , ρS1 ∈ {0, 1})2|ρS | from S and sample ρR0 , ρR1 ←
{0, 1}2|ρR|. If R is corrupt, wait for (sid, vk-rand, ρR0 , ρR1 ∈ {0, 1})2|ρR| from R and
sample ρS0 , ρS1 ← {0, 1}2|ρS |.

3. Set commitment keys ck0 = Gen-ck(1κ; ρS0 ) and ck1 = Gen-ck(1κ; ρS1 )

4. Set verification keys vk0 = Gen-vk(ck0; ρR0 ) and vk1 = Gen-vk(ck1; ρR1 )

5. Compute extraction keys ek0 = Gen-ek(ck0) and ek1 = Gen-ek(ck1)

6. Upon receiving (sid, choose, b ∈ {0, 1}) from R, send (sid, keys, ekb, vk0, vk1) to R,
and (ck-keys, ck0, ck1) to S.

Accept no further commands.

We now give the exact protocol to realize the setup functionality F setup
COT . Intuitively, the

idea is for the sender to supply A ∈ G, which the receiver splits into an additive sharing
C0, C1 so that only one of the corresponding discrete logarithms (specifically that of Cb) is
known. Following this, for each j ∈ [r], R further splits C0, C1 into ` additive shares each.
Since R knows the discrete log of Cb, is also knows the discrete logs of every additive share.
However since R does not know the discrete log of C1−b, it will be missing the discrete log
of exactly one of its additive shares.
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Protocol B.2.3. πsetup
COT . Setup protocol tailored to C

This protocol is run between a sender S and a receiver R. Parameters of the scheme
are κ, and curve group (G, G, q). This protocol makes use of the ideal oracles FRDL

( `
`−1)ZK,

FRDL
ZK , and a random oracle RO.

Setup: P has no private input, and V has private input b ∈ {0, 1}.

1. P samples ck0 ← {k0,j,l ∈ {0, 1}κ}j∈[r],l∈[`] and ck1 ← {k1,j,l ∈ {0, 1}κ}j∈[r],l∈[`]

2. V samples (ij)j∈[r] ← [`]r

3. P samples the OT sender’s key, a← Zq and sends A = a ·G to V and (prove, a, A)
to FRDL

ZK

4. V waits for (proven, A) from FRDL
ZK

5. V samples cb ← Zq and computes Cb = cb ·G, and c1−b = A− C

6. V does the following, for each j ∈ [r]:

(a) Sample (cb,j,l)l∈[`] ← Z`q such that ∑l∈[`] cb,j,l = cb, and set Cb,j,l = cb,j,l · G for
each l ∈ [`]

(b) Derive all keys for instance b as kb,j,l = RO(cb,j,l · A) for each l ∈ [`]

(c) Sample (c1−b,j,l)l∈[`]\ij ← Z`−1
q , and set C1−b,j,l = c1−b,j,l ·G for each l ∈ [`] \ ij

(d) Derive all keys but one for instance 1 − b as k1−b,j,l = RO(c1−b,j,l · A) for each
l ∈ [`] \ ij

(e) Set the remaining C1−b,j,l = C1−b −
∑
l∈[`]\ij C1−b,j,l

(f) Assemble length 2`− 1 vector that has every c·,j,· value except the one indexed
by 1− b, j, ij: cj = {cb,j,l}l∈[`] ∪ {c1−b,j,l}l∈[`]\ij

(g) Send (prove-all-but-one, ij, cj, (C0,j,l, C1,j,l)l∈[`]) to FRDL
( 2`

2`−1)ZK

7. V sends C0, C1, (C0,j,l, C1,j,l)j∈[r],l∈[`] to P

8. P verifies that C0 + C1 = A, and does the following for each j ∈ [r]:

(a) Wait to receive (proven-all-but-one, (C0,j,l, C1,j,l)l∈[`]) from FRDL
( 2`

2`−1)ZK

(b) Verify that ∑l∈[`] C0,j,l = C0 and ∑l∈[`] C1,j,l = C1

(c) For each l ∈ [`]: Compute k0,j,l = RO(a · C0,j,l) and k1,j,l = RO(a · C1,j,l)
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9. P outputs ck = {k0,j,l, k1,j,l}j∈[r],l∈[`]

V outputs vk = {kb,j,l}j∈[r],l∈[`]} ∪ {(k1−b,j,l)l∈[`]\ij}j∈[r]

Theorem B.2.4. Assuming that the Computational Diffie-Hellman problem is hard in G,
protocol πsetup

COT UC-realizes F setup
COT in the FRDL

( 2`
2`−1)ZK,F

RDL
ZK -hybrid local random oracle model.

B.3 Garbling Scheme Definitions

We recall here the formal definitions of garbling schemes.

Definition B.3.1. (Correctness) A garbling scheme G is correct if for all input lengths
n ≤ poly(κ), circuits C : {0, 1}n → {0, 1}m and inputs x ∈ {0, 1}n, the following probability
is negligible in κ:

Pr
(

De(Ev(C̃,En(en, x)), de) 6= C(x) : (C̃, en, de)← Gb(1κ, C)
)
.

Definition B.3.2. (Authenticity) A garbling scheme G is authentic if for all input lengths
n ≤ poly(κ), circuits C : {0, 1}n → {0, 1}m, inputs x ∈ {0, 1}n, and all probabilistic
polynomial-time adversaries A, the following probability is negligible in κ:

Pr

 Ŷ 6= Ev(C̃,X)

∧De(Ŷ , de) 6= ⊥
:
X = En(x, en), (C̃, en, de)← Gb(1κ, C)

Ŷ ← A(C, x, C̃,X)

 .
Definition B.3.3. (Verifiability) A garbling scheme G is verifiable if for all input lengths
n ≤ poly(κ), circuits C : {0, 1}n → {0, 1}m, inputs x ∈ {0, 1}n, and PPT adversaries A, the
following probability is negligible in κ:

Pr

De
(

Ev(C̃,En(x, en)), de
)
6= C(x) :

(C̃, en)← A(1κ, C)

Ve
(
C, C̃, en

)
= de


For completeness, we also require the following property of a verifiable garbling scheme:

∀
(
C̃, en, de

)
← Gb (1κ, C) , Ve

(
C, C̃, en, de

)
= 1
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Appendix C

Auxiliary Material for Proactive
Threshold Signing

C.1 Threshold Schnorr Signing

We recall below the folklore instantiation of threshold Schnorr signatures.

Protocol C.1.1. πDKG
Setup. Distributed Key Generation for Schnorr

Parameters: Elliptic Curve Group (G, G, q)
Parties: Pi for i ∈ [n]
Ideal Oracles: FRDL

Com−ZK

Outputs:

• Common: Public key pk ∈ G

• Private: Secret key share ski

1. Each party Pi samples a random degree-1 polynomial fi over Zq

2. For all pairs of parties Pi and Pj, Pi sends fi(j) to Pj and receives fj(i) in return.

3. Each party Pi computes its point

f(i) :=
∑

j∈[1,n]
fj(i)

4. Each Pi computes
Ti := f(i) ·G
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and sends (com-proof, idcom-zk
i , f(i), Ti) to FRDL

Com−ZK, using a fresh, unique value for
idcom-zk
i .

5. Upon being notified of all other parties’ commitments, each party Pi releases its proof
by sending (decom-proof, idcom-zk

i ) to FRDL
Com−ZK.

6. Each party Pi receives (accept, idcom-zk
j , Tj) from FRDL

Com−ZK for each j ∈ [1, n] \ {i} if
Pj’s proof of knowledge is valid. Pi aborts if it receives (fail, idcom-zk

j ) instead for any
proof, or if there exists an index x ∈ [3, n] such that

λ2
1(x) · T1 + λ1

2(x) · T2 6= Tx

7. The parties compute the shared public key as

pk := λ2
1(0) · T1 + λ1

2(0) · T2

The above protocol is a reproduction of the distributed key generation protocol of Ped-
ersen [? ], adjusted for context.

Protocol C.1.2. πR
Schnorr(pk, skb, 1− b,m). Schnorr Signing—Nonce Generation

Parameters: Elliptic Curve Group (G, G, q)
Parties: Pb, P1−b for b, 1− b ∈ [n]
Ideal Oracles: FRDL

Com−ZK

Inputs:

• Common: Message to be signedm ∈ {0, 1}∗, public key pk ∈ G, each party’s share in
the exponent pkb = λ1−b

b (0) · F (b) where F is the polynomial over G passing through
(0, pk) and (b, f(b) ·G)

• Private: Each party Pb has private input skb = λ1−b
b (0) · f(b) ∈ Zq

Outputs:

• Common: Signing nonce R ∈ G

• Private: Each party Pb has private output stateb ∈ Zq

1. Include all inputs in staten

2. Sample kb ← Zq and send (commit, kb, Rb = kb · G) to FRDL
Com−ZK with fresh identifier

idcom-zk
b
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3. Upon receiving (committed, 1 − b, idcom
1−b) from FRDL

Com−ZK, instruct F
RDL
Com−ZK to release

Rb

4. Upon receiving (decommitted, 1 − b, idcom
1−b, R1−b) from FRDL

Com−ZK if R1−b ∈ G then
compute

R = Rb +R1−b

5. Include kb in stateb

6. Output stateb, R

Protocol C.1.3. πσSchnorr(stateb). Schnorr Signing—Completion
Parameters: Elliptic Curve Group (G, G, q)
Parties: Pb, P1−b for b, 1− b ∈ [n]
Ideal Oracles: FRDL

Com−ZK

Inputs: (Encoded in stateb)

• Common: Message to be signed m ∈ {0, 1}∗, public key pk ∈ G

• Private: Each party Pb has private input skb = λ1−b
b (0) · f(b) ∈ Zq

1. Parse kb,m, skb ← stateb

2. Compute
σb = H(R||m) · skb + kb

and send σb to P1−b

3. Upon receiving σ1−b ∈ Zq from P1−b compute

σ = σb + σ1−b

and if (σ,R) is a valid Schnorr signature under public key pk then output σ
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By the linearity of the Schnorr signing equation, it is easy to verify correctness as

σ = σb + σ1−b

=
(
H(R||m) · λ1−b

b (0) · skb + kb
)

+
(
H(R||m) · λb1−b(0) · sk1−b + k1−b

)
= H(R||m) ·

(
λ1−b
b (0) · skb + λb1−b(0) · sk1−b

)
+ (kb + k1−b)

= H(R||m) · sk + k

Theorem C.1.4. (Informal) The protocol (πDKG
Setup, π

R
Schnorr, π

σ
Schnorr) UC-realizes Fn,2Sign for

Sign = SignSchnorr in the FCom,FRDL
Com−ZK-hybrid model.

The simulation strategy is straightforward: SR
Schnorr upon receiving R from the functional-

ity sends R1−b = R−Rb to Pb (on behalf of FRDL
Com−ZK). The simulator SσSchnorr upon receiving

σ from the functionality sends σ1−b = σ − σb to Pb on behalf of P1−b. Note here that σb is
computed by the simulator as instructed by Step 2 of πσSchnorr using the value kb received on
behalf of FRDL

Com−ZK in Step 2 of πR
Schnorr.
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