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ECDSA
• Elliptic Curve Digital Signature Algorithm 

• Devised by Scott Vanstone in 1992, standardised by NIST 

• Differs from Schnorr enough so that patent doesn’t apply 

• Widespread adoption across the internet



Threshold ECDSA: Challenges

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

ECDSASign(𝗌𝗄, m) :
k ← ℤq
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s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R)



Threshold ECDSA: Challenges

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

ECDSASign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R)

Standard nonce 
sampling



Threshold ECDSA: Challenges

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

ECDSASign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R)

Standard nonce 
sampling



Threshold ECDSA: Challenges

ECDSASign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R)

Standard nonce 
sampling

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ



Threshold ECDSA: Challenges

ECDSASign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R)

Standard nonce 
sampling

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ



Threshold ECDSA: Challenges

ECDSASign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R) Division (Modular inverse)

Multiplication of 
secret values



Threshold ECDSA: Challenges

ECDSASign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R) Division (Modular inverse)

Multiplication of 
secret values

Reduces to a classic MPC primitive 
without a clear winning instantiation



Secure Two-Party Multiplication

𝖮𝖫𝖤α, β
x

α ⋅ x + β

Efficient constructions from: 
OT, Paillier, Class Groups

a.k.a. Oblivious Linear Evaluation (OLE), Mult2Add

Underlies many dishonest 
majority MPC protocolsSender Receiver
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Overhead of Two-party ECDSA

• All schemes incur substantial overhead relative to plain ECDSA  

• This is (evidently) tolerable for many applications 
…but for true ubiquity, orders of magnitude overhead unviable 

• Security always comes at some cost—but how much is inherent?



Overhead of Two-party ECDSA

• All schemes incur substantial overhead relative to plain ECDSA  

• This is (evidently) tolerable for many applications 
…but for true ubiquity, orders of magnitude overhead unviable 

• Security always comes at some cost—but how much is inherent?

Central question of this work:

How close to plain ECDSA can two-party signing be?



• Consider asymptotic complexity as a starting point 

-  bits to transmit an ECDSA signature 

-  EC, scalar operations to compute one 

• Existing schemes’ OLE pose an immediate barrier 

- OT-OLE:  bits transmitted through OTs 

- Homomorphic Encryption: ciphertexts alone  bits in size  

• Computation of 2P-schemes difficult to characterize meaningfully

O(κ)
O(1)

Ω(κ log κ)
ω(κ)

Overhead of Two-party ECDSA



Our New 2P-ECDSA Framework
• Efficiency: 

-  bits sent on network to sign   overhead 
Concretely ~2 |ECDSA sig| in each direction (170B total) 

- Best known computation, 1.6ms on M1 MacBook (~10  overhead) 

• Simple, ECDSA-native tools: 

- Any PRF during signing phase 
 benefit from hardware acceleration on many platforms 

- KeyGen: Oblivious Transfer (w. Diffie-Hellman in ECDSA curve)

O(κ) ⇒ O(1)

×

⇒
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MPC for ECDSA Recipe [DKLs 23]

• Retrospectively interpret protocols per their framework  

• Standard recipe in the literature: 

1. Rewrite ECDSA signing equation to an “MPC-friendly” equivalent 
i.e. only additions and multiplications of secret values 

2. Cryptographic Machinery for secure multiplication 

3. Verify that all operations were performed honestly
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• Standard recipe in the literature: 

1. Rewrite ECDSA signing equation to an “MPC-friendly” equivalent 
i.e. only additions and multiplications of secret values 

2. Cryptographic Machinery for secure multiplication 

3. Verify that all operations were performed honestly

Applied to [Lindell 17]:

“Multiplicative” rewriting of ECDSA

Paillier-based OLE
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OLE correlation
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s′￼

• [Lin17]: Paillier encryption, following classic protocol [Gil99] 

• [Lin17] observation: Paillier-based OLE can be very efficient for 
signing, with heavy work offloaded to key generation
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𝗌𝗄0

s′￼

• [Lin17]: Paillier encryption, following classic protocol [Gil99] 

• [Lin17] observation: Paillier-based OLE can be very efficient for 
signing, with heavy work offloaded to key generation

α β,



𝖼𝗍* = α ⋅ 𝖼𝗍 + 𝖤𝗇𝖼K(β)
s′￼

• [Lin17]: Paillier encryption, following classic protocol [Gil99] 

• [Lin17] observation: Paillier-based OLE can be very efficient for 
signing, with heavy work offloaded to key generation

𝖼𝗍 = 𝖤𝗇𝖼𝗌𝗉𝗅
K (𝗌𝗄0)𝗌𝗄0

α β
𝖣𝖾𝖼(𝖼𝗍*)

K

OLE Structure
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• [Lin17]: Paillier encryption, following classic protocol 

• [Lin17] observation: Paillier-based OLE can be very efficient for 
signing, with heavy work offloaded to key generation

α

Heavy: One-time during KeyGen

Light: once per signature s′￼𝖣𝖾𝖼(𝖼𝗍*)
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• [Lin17]: Paillier encryption, following classic protocol 

• [Lin17] observation: Paillier-based MUL can be very efficient for 
signing, with heavy work offloaded to key generation

𝖼𝗍 = 𝖤𝗇𝖼K(𝗌𝗄0)𝗌𝗄0

𝖼𝗍′￼ = α ⋅ 𝖼𝗍 + 𝖤𝗇𝖼K(β)α β

Heavy: One-time during KeyGen

Light: once per signature

This work

-𝗋𝖵𝖮𝖫𝖤 𝖲𝖾𝗍𝗎𝗉(x)

-𝗋𝖵𝖮𝖫𝖤 𝖲𝖾𝗇𝖽(α, β)βα

x

Sender’s vector can be extended on demand 

Generalize the concept to reactive Vector Oblivious Linear Evaluation 

     - :    Oblivious Transfer 
     - :     Any PRF + small field arithmetic

𝗋𝖵𝖮𝖫𝖤 𝖲𝖾𝗍𝗎𝗉
𝗋𝖵𝖮𝖫𝖤 𝖲𝖾𝗇𝖽

New construction with general, simple tools

OLE Structure

Sender provides a vector of inputs 
applied to a single fixed receiver input 

( ⃗α i, ⃗βi)
x



Constructing  𝗋𝖵𝖮𝖫𝖤

• Insight:  can be instantiated with simpler, weaker 
tools than OLE (i.e. no need for homomorphic encryption or OT) 

• [Roy22]:  over  (for small ) 
-  is non-interactive, only local PRF eval and  add.s 

• We need  over  per signing curve group order (large )

𝗋𝖵𝖮𝖫𝖤-𝖲𝖾𝗇𝖽

𝗋𝖵𝖮𝖫𝖤 ℤp p
𝖲𝖾𝗇𝖽 ℤp

𝗋𝖵𝖮𝖫𝖤 ℤq q

How do we boost ?𝗋𝖵𝖮𝖫𝖤(small p)→𝗋𝖵𝖮𝖫𝖤(big q)



Constructing 𝗋𝖵𝖮𝖫𝖤
• Chinese Remainder Theorem: Classic method of emulating large 

integer arithmetic with smaller integers

ℤM ≅ ℤp1
× ℤp2

× ⋯ × ℤpn

M = ∏
i∈[n]

pi for a set of  primes n p1, p2, ⋯, pn

𝗋𝖵𝖮𝖫𝖤(M) ≅ 𝗋𝖵𝖮𝖫𝖤(p1) × 𝗋𝖵𝖮𝖫𝖤(p2) × ⋯𝗋𝖵𝖮𝖫𝖤(pn)

• CRT used to decompose full OLE in [CCDKLRs20], [DHIM25]
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𝗋𝖵𝖮𝖫𝖤(M) ≅ 𝗋𝖵𝖮𝖫𝖤(p1) × 𝗋𝖵𝖮𝖫𝖤(p2) × ⋯𝗋𝖵𝖮𝖫𝖤(pn)

Roy22 Zero-communication PRF-based 𝗋𝖵𝖮𝖫𝖤(pi)

Zero-communication PRF-based 𝗋𝖵𝖮𝖫𝖤(M)

| |-bit PRF-based ≈ 3 q 𝗋𝖵𝖮𝖫𝖤(q)

CRT

Derandomize to  inputsℤq

Target

∑
i∈[p]

𝖯𝖱𝖥ki(𝗌𝗂𝖽) (mod pi)

Structure of the 
computation



•  that is cheaper and simpler than full OLE 

- | |  bits comm.: same as ECDSA itself 

- For a 32-byte curve:  generates an 80 byte message in 0.5ms 
(compare against AHE ciphertexts at hundreds of bytes, several ms compute) 

• : OT-based protocol, 550ms, 490KB

𝗋𝖵𝖮𝖫𝖤-𝖲𝖾𝗇𝖽
O( q )

𝗋𝖵𝖮𝖫𝖤-𝖲𝖾𝗇𝖽

𝗋𝖵𝖮𝖫𝖤-𝖲𝖾𝗍𝗎𝗉

Constructing 𝗋𝖵𝖮𝖫𝖤
• End result:

𝗋𝖵𝖮𝖫𝖤(M) ≅ 𝗋𝖵𝖮𝖫𝖤(p1) × 𝗋𝖵𝖮𝖫𝖤(p2) × ⋯𝗋𝖵𝖮𝖫𝖤(pn)

Zero-comm. PRF-based 𝗋𝖵𝖮𝖫𝖤(pi)

Zero-comm. PRF-based 𝗋𝖵𝖮𝖫𝖤(M)

PRF-based 𝗋𝖵𝖮𝖫𝖤(q)
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• Standard recipe in the literature: 
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i.e. only additions and multiplications of secret values 

2. Cryptographic Machinery for secure multiplication 

3. Verify that all operations were performed honestly

Applied to [Lindell 17]:
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MPC for ECDSA Recipe [DKLs 23]

• Retrospectively interpret protocols per their framework  

• Standard recipe in the literature: 

1. Rewrite ECDSA signing equation to an “MPC-friendly” equivalent 
i.e. only additions and multiplications of secret values 

2. Cryptographic Machinery for secure multiplication 

3. Verify that all operations were performed honestly

Applied to [Lindell 17]:

“Multiplicative” rewriting of ECDSA

Paillier-based OLE

Verify output to be a valid signature
We generalize the principle and apply it to prove malicious 

security of our scheme as well



Malicious Security Caveats
• Our proof inherits caveats of [Lin17] 

•  inputs  must be in the correct range 
-  is verified with an explicit one-time range proof at setup 
-  implicitly when signing: check for valid ECDSA sig 
  in case of fail, abort all sessions, stop using key 

• Security reduces to ECDSA unforgeability, with #sessions loss 

• As in [Lin17], this loss can be avoided with a custom assumption:

𝗋𝖵𝖮𝖫𝖤 (α, β), x
x
α, β

(x ⋅ G, 𝖺𝖻𝗈𝗋𝗍x) ≈c (x′￼⋅ G, 𝖺𝖻𝗈𝗋𝗍x)



Notes

• Incorporating nonce sampling, this yields: 
- 3-round signing protocol with uniform nonces 
- 2-round signing with biased nonces 
  (“doubly enhanced” unforgeability [ABCGJM 24]) 

• Our fully optimized construction makes use of Knowledge of 
Exponent to save some bytes 

• Rust implementation, benchmarked ~1.6ms on M1 MacBook



In Conclusion
- New 2P-ECDSA signing that achieves  bandwidth overhead 

relative to simply exchanging plain ECDSA signatures. 

- Insight: reactive VOLE suffices, simpler than full OLE 
 instantiable from OT+PRF, generalized analysis from [Lin17] 

- Concrete bandwidth and computation costs (0.17KB, 1.6ms) 
closest to plain ECDSA signing so far.

O(1)

⇒

Thanks! Thanks Eysa Lee for

eprint.iacr.org/2025/1813


