
Two-party ECDSA Signing
at

Constant Communication Overhead

Yashvanth Kondi

eprint.iacr.org/2025/1813

yash (at) ykondi.net

NIST MPTS 2026
Presented Jan 27 2026

http://eprint.iacr.org/2025/1813

ECDSA
• Elliptic Curve Digital Signature Algorithm

• Devised by Scott Vanstone in 1992, standardised by NIST

• Differs from Schnorr enough so that patent doesn’t apply

• Widespread adoption across the internet

Threshold ECDSA: Challenges

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

ECDSASign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R)

Threshold ECDSA: Challenges

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

ECDSASign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R)

Standard nonce
sampling

Threshold ECDSA: Challenges

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

ECDSASign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R)

Standard nonce
sampling

Threshold ECDSA: Challenges

ECDSASign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R)

Standard nonce
sampling

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

Threshold ECDSA: Challenges

ECDSASign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R)

Standard nonce
sampling

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

Threshold ECDSA: Challenges

ECDSASign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R) Division (Modular inverse)

Multiplication of
secret values

Threshold ECDSA: Challenges

ECDSASign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R) Division (Modular inverse)

Multiplication of
secret values

Reduces to a classic MPC primitive
without a clear winning instantiation

Secure Two-Party Multiplication

𝖮𝖫𝖤α, β
x

α ⋅ x + β

Efficient constructions from:
OT, Paillier, Class Groups

a.k.a. Oblivious Linear Evaluation (OLE), Mult2Add

Underlies many dishonest
majority MPC protocolsSender Receiver

Two-party ECDSA Signing
Bandwidth

(KB)
Computation

(ms)

0.9

Rounds

4

4

[DKLs 23]

[CCLST 19]

[ABCGJM 24]

Protocol

[Lindell 17] Paillier

Class groups

OT

Paillier

𝖮𝖫𝖤

[CGGMP 20]

Paillier

12

100+

4

48

0.57

30

106

2

170

3-4

3

2

Two-party ECDSA Signing
Bandwidth

(KB)
Computation

(ms)

0.9

Rounds

4

4

[DKLs 23]

[CCLST 19]

[ABCGJM 24]

Protocol

[Lindell 17] Paillier

Class groups

OT

Paillier[CGGMP 20]

Paillier

12

100+

4

48

0.57

30

106

2

170

3-4

3

2

Plain ECDSA 0.06 0.17

𝖮𝖫𝖤

Lindell 17 CCLST 19

CGGMP 20
DKLs 23

ABCGJM 24

This work
Plain ECDSA

10→2

10→1

100

101

102

103

10→1 100 101 102 103

C
om

p
u
ta
ti
on

BandwidthComputation (ms)

Ba
nd

w
id

th
 (K

B)
Two-party ECDSA Signing

Overhead of Two-party ECDSA

• All schemes incur substantial overhead relative to plain ECDSA

• This is (evidently) tolerable for many applications
…but for true ubiquity, orders of magnitude overhead unviable

• Security always comes at some cost—but how much is inherent?

Overhead of Two-party ECDSA

• All schemes incur substantial overhead relative to plain ECDSA

• This is (evidently) tolerable for many applications
…but for true ubiquity, orders of magnitude overhead unviable

• Security always comes at some cost—but how much is inherent?

Central question of this work:

How close to plain ECDSA can two-party signing be?

• Consider asymptotic complexity as a starting point

- bits to transmit an ECDSA signature

- EC, scalar operations to compute one

• Existing schemes’ OLE pose an immediate barrier

- OT-OLE: bits transmitted through OTs

- Homomorphic Encryption: ciphertexts alone bits in size

• Computation of 2P-schemes difficult to characterize meaningfully

O(κ)
O(1)

Ω(κ log κ)
ω(κ)

Overhead of Two-party ECDSA

Our New 2P-ECDSA Framework
• Efficiency:

- bits sent on network to sign overhead
Concretely ~2 |ECDSA sig| in each direction (170B total)

- Best known computation, 1.6ms on M1 MacBook (~10 overhead)

• Simple, ECDSA-native tools:

- Any PRF during signing phase
 benefit from hardware acceleration on many platforms

- KeyGen: Oblivious Transfer (w. Diffie-Hellman in ECDSA curve)

O(κ) ⇒ O(1)

×

⇒

Lindell 17 CCLST 19

CGGMP 20
DKLs 23

ABCGJM 24

This work
Plain ECDSA

10→2

10→1

100

101

102

103

10→1 100 101 102 103

C
om

p
u
ta
ti
on

BandwidthComputation (ms)

Ba
nd

w
id

th
 (K

B)
Two-party ECDSA Now

Lindell 17 CCLST 19

CGGMP 20
DKLs 23

ABCGJM 24

This work
Plain ECDSA

10→2

10→1

100

101

102

103

10→1 100 101 102 103

C
om

p
u
ta
ti
on

BandwidthComputation (ms)

Ba
nd

w
id

th
 (K

B)
Constructing Our Scheme

Lindell 17•
Our starting point

•

MPC for ECDSA Recipe [DKLs 23]

• Retrospectively interpret protocols per their framework

• Standard recipe in the literature:

1. Rewrite ECDSA signing equation to an “MPC-friendly” equivalent
i.e. only additions and multiplications of secret values

2. Cryptographic Machinery for secure multiplication

3. Verify that all operations were performed honestly

MPC for ECDSA Recipe [DKLs 23]

• Retrospectively interpret protocols per their framework

• Standard recipe in the literature:

1. Rewrite ECDSA signing equation to an “MPC-friendly” equivalent
i.e. only additions and multiplications of secret values

2. Cryptographic Machinery for secure multiplication

3. Verify that all operations were performed honestly

Applied to [Lindell 17]:

“Multiplicative” rewriting of ECDSA

Paillier-based OLE

Multiplicative Rewriting of ECDSA

R = k ⋅ G

s =
rx ⋅ 𝗌𝗄 + h

k

Originally [MR01], refined by [Lin17] and [ABCGJM24]

Multiplicative Rewriting of ECDSA

R = k0 ⋅ k1 ⋅ G

s =
rx ⋅ 𝗌𝗄𝟢 ⋅ 𝗌𝗄𝟣+h

k0 ⋅ k1

 𝗌𝗄 = 𝗌𝗄𝟢 ⋅ 𝗌𝗄𝟣
k = k0 ⋅ k1

Originally [MR01], refined by [Lin17] and [ABCGJM24]

Multiplicative Rewriting of ECDSA

R = k0 ⋅ k1 ⋅ G
s = s′￼/k0

 𝗌𝗄 = 𝗌𝗄𝟢 ⋅ 𝗌𝗄𝟣
k = k0 ⋅ k1

Originally [MR01], refined by [Lin17] and [ABCGJM24]

s′￼ = α ⋅ sk0 + β α = rx𝗌𝗄𝟣/k1
β = h/k1

Multiplicative Rewriting of ECDSA

R = k0 ⋅ k1 ⋅ G
s = s′￼/k0

 𝗌𝗄 = 𝗌𝗄𝟢 ⋅ 𝗌𝗄𝟣
k = k0 ⋅ k1

Originally [MR01], refined by [Lin17] and [ABCGJM24]

s′￼ = α ⋅ sk0 + β α = rx𝗌𝗄𝟣/k1
β = h/k1

𝗌𝗄𝟢, k0𝗌𝗄1, k1

Multiplicative Rewriting of ECDSA

R = k0 ⋅ k1 ⋅ G
s = s′￼/k0

 𝗌𝗄 = 𝗌𝗄𝟢 ⋅ 𝗌𝗄𝟣
k = k0 ⋅ k1

Originally [MR01], refined by [Lin17] and [ABCGJM24]

s′￼ = α ⋅ sk0 + β α = rx𝗌𝗄𝟣/k1
β = h/k1

𝗌𝗄𝟢, k0𝗌𝗄1, k1
s = s′￼/k0Final step

Multiplicative Rewriting of ECDSA

R = k0 ⋅ k1 ⋅ G
s = s′￼/k0

 𝗌𝗄 = 𝗌𝗄𝟢 ⋅ 𝗌𝗄𝟣
k = k0 ⋅ k1

Originally [MR01], refined by [Lin17] and [ABCGJM24]

s′￼ = α ⋅ sk0 + β α = rx𝗌𝗄𝟣/k1
β = h/k1

𝗌𝗄𝟢, k0𝗌𝗄1, k1
s = s′￼/k0Final step

OLE correlation

Multiplicative Rewriting of ECDSA

R = k0 ⋅ k1 ⋅ G
s = s′￼/k0

 𝗌𝗄 = 𝗌𝗄𝟢 ⋅ 𝗌𝗄𝟣
k = k0 ⋅ k1

Originally [MR01], refined by [Lin17] and [ABCGJM24]

s′￼ = α ⋅ sk0 + β α = rx𝗌𝗄𝟣/k1
β = h/k1

𝗌𝗄𝟢, k0𝗌𝗄1, k1
s = s′￼/k0Final step

𝖮𝖫𝖤α, β
𝗌𝗄0

s′￼

OLE correlation

OLE Structure

𝖮𝖫𝖤α, β
𝗌𝗄0

s′￼

• [Lin17]: Paillier encryption, following classic protocol [Gil99]

• [Lin17] observation: Paillier-based OLE can be very efficient for
signing, with heavy work offloaded to key generation

OLE Structure

𝖮𝖫𝖤
𝗌𝗄0

s′￼

• [Lin17]: Paillier encryption, following classic protocol [Gil99]

• [Lin17] observation: Paillier-based OLE can be very efficient for
signing, with heavy work offloaded to key generation

α β,

𝖼𝗍* = α ⋅ 𝖼𝗍 + 𝖤𝗇𝖼K(β)
s′￼

• [Lin17]: Paillier encryption, following classic protocol [Gil99]

• [Lin17] observation: Paillier-based OLE can be very efficient for
signing, with heavy work offloaded to key generation

𝖼𝗍 = 𝖤𝗇𝖼𝗌𝗉𝗅
K (𝗌𝗄0)𝗌𝗄0

α β
𝖣𝖾𝖼(𝖼𝗍*)

K

OLE Structure

𝖼𝗍 = 𝖤𝗇𝖼𝗌𝗉𝗅
K (𝗌𝗄0)𝗌𝗄0

𝖼𝗍* = α ⋅ 𝖼𝗍 + 𝖤𝗇𝖼K(β)β

• [Lin17]: Paillier encryption, following classic protocol

• [Lin17] observation: Paillier-based OLE can be very efficient for
signing, with heavy work offloaded to key generation

α

Heavy: One-time during KeyGen

Light: once per signature s′￼𝖣𝖾𝖼(𝖼𝗍*)

OLE Structure

s′￼ = α ⋅ x + β

• [Lin17]: Paillier encryption, following classic protocol

• [Lin17] observation: Paillier-based OLE can be very efficient for
signing, with heavy work offloaded to key generation

𝖼𝗍 = 𝖤𝗇𝖼K(𝗌𝗄0)𝗌𝗄0

𝖼𝗍′￼ = α ⋅ 𝖼𝗍 + 𝖤𝗇𝖼K(β)α β

Heavy: One-time during KeyGen

Light: once per signature

This work Generalize the concept to reactive Vector Oblivious Linear Evaluation

-𝗋𝖵𝖮𝖫𝖤 𝖲𝖾𝗍𝗎𝗉(x)

-𝗋𝖵𝖮𝖫𝖤 𝖲𝖾𝗇𝖽(α, β)βα

x

OLE Structure

s′￼ = α ⋅ x + β

• [Lin17]: Paillier encryption, following classic protocol

• [Lin17] observation: Paillier-based MUL can be very efficient for
signing, with heavy work offloaded to key generation

𝖼𝗍 = 𝖤𝗇𝖼K(𝗌𝗄0)𝗌𝗄0

𝖼𝗍′￼ = α ⋅ 𝖼𝗍 + 𝖤𝗇𝖼K(β)α β

Heavy: One-time during KeyGen

Light: once per signature

This work

-𝗋𝖵𝖮𝖫𝖤 𝖲𝖾𝗍𝗎𝗉(x)

-𝗋𝖵𝖮𝖫𝖤 𝖲𝖾𝗇𝖽(α, β)βα

x

Sender provides a vector of inputs
applied to a single fixed receiver input

(⃗α i, ⃗βi)
x

Generalize the concept to reactive Vector Oblivious Linear Evaluation

OLE Structure

Well known: < 𝖵𝖮𝖫𝖤(n) n × 𝖮𝖫𝖤

s′￼ = α ⋅ x + β

• [Lin17]: Paillier encryption, following classic protocol

• [Lin17] observation: Paillier-based MUL can be very efficient for
signing, with heavy work offloaded to key generation

𝖼𝗍 = 𝖤𝗇𝖼K(𝗌𝗄0)𝗌𝗄0

𝖼𝗍′￼ = α ⋅ 𝖼𝗍 + 𝖤𝗇𝖼K(β)α β

Heavy: One-time during KeyGen

Light: once per signature

This work

-𝗋𝖵𝖮𝖫𝖤 𝖲𝖾𝗍𝗎𝗉(x)

-𝗋𝖵𝖮𝖫𝖤 𝖲𝖾𝗇𝖽(α, β)βα

x

Sender’s vector can be extended on demand

Generalize the concept to reactive Vector Oblivious Linear Evaluation

OLE Structure

Well known: < 𝖵𝖮𝖫𝖤(n) n × 𝖮𝖫𝖤

Sender provides a vector of inputs
applied to a single fixed receiver input

(⃗α i, ⃗βi)
x

s′￼ = α ⋅ x + β

• [Lin17]: Paillier encryption, following classic protocol

• [Lin17] observation: Paillier-based MUL can be very efficient for
signing, with heavy work offloaded to key generation

𝖼𝗍 = 𝖤𝗇𝖼K(𝗌𝗄0)𝗌𝗄0

𝖼𝗍′￼ = α ⋅ 𝖼𝗍 + 𝖤𝗇𝖼K(β)α β

Heavy: One-time during KeyGen

Light: once per signature

This work

-𝗋𝖵𝖮𝖫𝖤 𝖲𝖾𝗍𝗎𝗉(x)

-𝗋𝖵𝖮𝖫𝖤 𝖲𝖾𝗇𝖽(α, β)βα

x

Sender’s vector can be extended on demand

Generalize the concept to reactive Vector Oblivious Linear Evaluation

 - : Oblivious Transfer
 - : Any PRF + small field arithmetic

𝗋𝖵𝖮𝖫𝖤 𝖲𝖾𝗍𝗎𝗉
𝗋𝖵𝖮𝖫𝖤 𝖲𝖾𝗇𝖽

New construction with general, simple tools

OLE Structure

Sender provides a vector of inputs
applied to a single fixed receiver input

(⃗α i, ⃗βi)
x

Constructing 𝗋𝖵𝖮𝖫𝖤

• Insight: can be instantiated with simpler, weaker
tools than OLE (i.e. no need for homomorphic encryption or OT)

• [Roy22]: over (for small)
- is non-interactive, only local PRF eval and add.s

• We need over per signing curve group order (large)

𝗋𝖵𝖮𝖫𝖤-𝖲𝖾𝗇𝖽

𝗋𝖵𝖮𝖫𝖤 ℤp p
𝖲𝖾𝗇𝖽 ℤp

𝗋𝖵𝖮𝖫𝖤 ℤq q

How do we boost ?𝗋𝖵𝖮𝖫𝖤(small p)→𝗋𝖵𝖮𝖫𝖤(big q)

Constructing 𝗋𝖵𝖮𝖫𝖤
• Chinese Remainder Theorem: Classic method of emulating large

integer arithmetic with smaller integers

ℤM ≅ ℤp1
× ℤp2

× ⋯ × ℤpn

M = ∏
i∈[n]

pi for a set of primes n p1, p2, ⋯, pn

𝗋𝖵𝖮𝖫𝖤(M) ≅ 𝗋𝖵𝖮𝖫𝖤(p1) × 𝗋𝖵𝖮𝖫𝖤(p2) × ⋯𝗋𝖵𝖮𝖫𝖤(pn)

• CRT used to decompose full OLE in [CCDKLRs20], [DHIM25]

Constructing 𝗋𝖵𝖮𝖫𝖤
• Chinese Remainder Theorem: Classic method of emulating large

integer arithmetic with smaller integers

𝗋𝖵𝖮𝖫𝖤(M) ≅ 𝗋𝖵𝖮𝖫𝖤(p1) × 𝗋𝖵𝖮𝖫𝖤(p2) × ⋯𝗋𝖵𝖮𝖫𝖤(pn)

Roy22 Zero-communication PRF-based 𝗋𝖵𝖮𝖫𝖤(pi)

Zero-communication PRF-based 𝗋𝖵𝖮𝖫𝖤(M)

| |-bit PRF-based ≈ 3 q 𝗋𝖵𝖮𝖫𝖤(q)

CRT

Derandomize to inputsℤq

Target

Constructing 𝗋𝖵𝖮𝖫𝖤
• Chinese Remainder Theorem: Classic method of emulating large

integer arithmetic with smaller integers

𝗋𝖵𝖮𝖫𝖤(M) ≅ 𝗋𝖵𝖮𝖫𝖤(p1) × 𝗋𝖵𝖮𝖫𝖤(p2) × ⋯𝗋𝖵𝖮𝖫𝖤(pn)

Roy22 Zero-communication PRF-based 𝗋𝖵𝖮𝖫𝖤(pi)

Zero-communication PRF-based 𝗋𝖵𝖮𝖫𝖤(M)

| |-bit PRF-based ≈ 3 q 𝗋𝖵𝖮𝖫𝖤(q)

CRT

Derandomize to inputsℤq

Target

∑
i∈[p]

𝖯𝖱𝖥ki(𝗌𝗂𝖽) (mod pi)

Structure of the
computation

• that is cheaper and simpler than full OLE

- | | bits comm.: same as ECDSA itself

- For a 32-byte curve: generates an 80 byte message in 0.5ms
(compare against AHE ciphertexts at hundreds of bytes, several ms compute)

• : OT-based protocol, 550ms, 490KB

𝗋𝖵𝖮𝖫𝖤-𝖲𝖾𝗇𝖽
O(q)

𝗋𝖵𝖮𝖫𝖤-𝖲𝖾𝗇𝖽

𝗋𝖵𝖮𝖫𝖤-𝖲𝖾𝗍𝗎𝗉

Constructing 𝗋𝖵𝖮𝖫𝖤
• End result:

𝗋𝖵𝖮𝖫𝖤(M) ≅ 𝗋𝖵𝖮𝖫𝖤(p1) × 𝗋𝖵𝖮𝖫𝖤(p2) × ⋯𝗋𝖵𝖮𝖫𝖤(pn)

Zero-comm. PRF-based 𝗋𝖵𝖮𝖫𝖤(pi)

Zero-comm. PRF-based 𝗋𝖵𝖮𝖫𝖤(M)

PRF-based 𝗋𝖵𝖮𝖫𝖤(q)

MPC for ECDSA Recipe [DKLs 23]

• Retrospectively interpret protocols per their framework

• Standard recipe in the literature:

1. Rewrite ECDSA signing equation to an “MPC-friendly” equivalent
i.e. only additions and multiplications of secret values

2. Cryptographic Machinery for secure multiplication

3. Verify that all operations were performed honestly

Applied to [Lindell 17]:

“Multiplicative” rewriting of ECDSA

Paillier-based OLE

MPC for ECDSA Recipe [DKLs 23]

• Retrospectively interpret protocols per their framework

• Standard recipe in the literature:

1. Rewrite ECDSA signing equation to an “MPC-friendly” equivalent
i.e. only additions and multiplications of secret values

2. Cryptographic Machinery for secure multiplication

3. Verify that all operations were performed honestly

Applied to [Lindell 17]:

“Multiplicative” rewriting of ECDSA

Paillier-based OLE

Verify output to be a valid signature

MPC for ECDSA Recipe [DKLs 23]

• Retrospectively interpret protocols per their framework

• Standard recipe in the literature:

1. Rewrite ECDSA signing equation to an “MPC-friendly” equivalent
i.e. only additions and multiplications of secret values

2. Cryptographic Machinery for secure multiplication

3. Verify that all operations were performed honestly

Applied to [Lindell 17]:

“Multiplicative” rewriting of ECDSA

Paillier-based OLE

Verify output to be a valid signature
We generalize the principle and apply it to prove malicious

security of our scheme as well

Malicious Security Caveats
• Our proof inherits caveats of [Lin17]

• inputs must be in the correct range
- is verified with an explicit one-time range proof at setup
- implicitly when signing: check for valid ECDSA sig
 in case of fail, abort all sessions, stop using key

• Security reduces to ECDSA unforgeability, with #sessions loss

• As in [Lin17], this loss can be avoided with a custom assumption:

𝗋𝖵𝖮𝖫𝖤 (α, β), x
x
α, β

(x ⋅ G, 𝖺𝖻𝗈𝗋𝗍x) ≈c (x′￼⋅ G, 𝖺𝖻𝗈𝗋𝗍x)

Notes

• Incorporating nonce sampling, this yields:
- 3-round signing protocol with uniform nonces
- 2-round signing with biased nonces
 (“doubly enhanced” unforgeability [ABCGJM 24])

• Our fully optimized construction makes use of Knowledge of
Exponent to save some bytes

• Rust implementation, benchmarked ~1.6ms on M1 MacBook

In Conclusion
- New 2P-ECDSA signing that achieves bandwidth overhead

relative to simply exchanging plain ECDSA signatures.

- Insight: reactive VOLE suffices, simpler than full OLE
 instantiable from OT+PRF, generalized analysis from [Lin17]

- Concrete bandwidth and computation costs (0.17KB, 1.6ms)
closest to plain ECDSA signing so far.

O(1)

⇒

Thanks! Thanks Eysa Lee for

eprint.iacr.org/2025/1813

