Two-party ECDSA Signing
at
Constant Communication Overhead

Yashvanth Kondi
% [w] yash (at) ykondi.net
- T
(=] ﬁ: S L ENCE NIST MPTS 2026
eprint.iacr.org/2025/1813 p ABORATORIES

Presented Jan 27 2026

http://eprint.iacr.org/2025/1813

ECDSA

Elliptic Curve Digital Signature Algorithm
Devised by Scott Vanstone in 1992, standardised by NIST
Differs from Schnorr enough so that patent doesn’t apply

Widespread adoption across the internet

“ .4

e

Threshold ECDSA: Challenges

SchnorrSign(sk, m) : : ECDSASign(sk, m) :
k2, k2,

R=k-G | R=k-G
e = H(R||m) e = H(m)

Threshold ECDSA: Challenges

SchnorrSign(sk, m) : : ECDSASign(sk, m) :

k<2, k< Z, Standard nonce
R=1.-G R=k- -G sampling
e = H(R|lm) e = H(m)

Threshold ECDSA: Challenges

SchnorrSign(sk, m) : : ECDSASign(sk, m) :

k<2, k< Z, Standard nonce
R=1.-G R=k- -G sampling

e = H(R||m) e = H(m)

s=k—sk-e :

6=(s,R)

output o

Threshold ECDSA: Challenges

SchnorrSign(sk, m) : : ECDSASign(sk, m) :

k<2, k< Z, Standard nonce
R=1.-G R=k- -G sampling

e = H(R||m) e = H(m)

s=k—sk-e :

6=(s,R)

output o

Threshold ECDSA: Challenges

SchnorrSign(sk, m) : : ECDSASign(sk, m) :

k<2, k< Z, Standard nonce
R=1.-G R=k- -G sampling

e = H(R||m) e = H(m)

s=k—sk-e e+sk - 7,

6=(s,R) T Tk

output o output ¢ = (s, R)

Threshold ECDSA: Challenges

ECDSASign(sk, m) :

ke« Zq
R=k-G e
- ultiplication o
e = H(m) secret values
e+sk - r,
§ =

output o = (s, R) Division (Modular inverse)

Threshold ECDSA: Challenges

. Reduces to a classic MPC primitive

ECDSASign(S kK,m) : ' without a clear winning instantiation
ke Z, el
R=k-G Multiplication of

B ultiplication o
e = H(m) secret values

e+sk - r,
§ = ——

output o = (s, R) Division (Modular inverse)

Secure Two-Party Multiplication

a.k.a. Oblivious Linear Evaluation (OLE), Mult2Add

. Underlies many dishonest

Sender . majority MPC protocols Receiver
===\ - OLE

: Efficient constructions from:
OT, Paillier, Class Groups

Two-party ECDSA Signing

Bandwidth Computation i

Protocol OLE (KB) | (ms) Rounds
[Lindell 17} Paillier 0.9 12 4
[CCLST 19] éClass sroups 0.57 170 4

(CGGMP 20] | Paillier | 30 | 100+ | 34

[DKLs 23] | OT 106 | 4 3

[ABCGJM 24] Paillier 2 48 2

Two-party ECDSA Signing

Bandwidth Computation

Protocol OLE (KB) (ms) Rounds
[Lindell 17] | Paillier 0.9 12 4
[CCLST 19] EClass groups 0.57 170 4

[CGGMP 20] | Paillier 30 100+ 3-4
[DKLs 23] i OT 106 4 3
[ABCGJM 24] : Paillier 2 48 2
Plain ECDSA | 0.06 0.17

Bandwidth (KB)

Two-party ECDSA Signing

103

102 -

101 -

-

-
-
|

—
N
p—t

- mPlain ECDSA

eDKlLs 23
oCGGMP 20

| eABCGJM 24
el.indell 17 oC'CLST 19

Computation (ms)

Overhead of Two-party ECDSA

e All schemes incur substantial overhead relative to plain ECDSA

o This is (evidently) tolerable for many applications
...but for true ubiquity, orders of magnitude overhead unviable

e Security always comes at some cost—but how much is inherent?

Overhead of Two-party ECDSA

e All schemes incur substantial overhead relative to plain ECDSA

o This is (evidently) tolerable for many applications
...but for true ubiquity, orders of magnitude overhead unviable

e Security always comes at some cost—but how much is inherent?

Central question of this work:

How close to plain ECDSA can two-party signing be?

Overhead of Two-party ECDSA

e Consider asymptotic complexity as a starting point
- O(k) bits to transmit an ECDSA signature

- O(1) EC, scalar operations to compute one

o Existing schemes’ OLE pose an immediate barrier
- OT-OLE: Q(k log k) bits transmitted through OTs

- Homomorphic Encryption: ciphertexts alone w(x) bits in size

e Computation of 2P-schemes difficult to characterize meaningfully

Our New 2P-ECDSA Framework

o Efficiency:

- O(k) bits sent on network to sign = O(1) overhead
Concretely ~2 [ECDSA sig| in each direction (170B total)

- Best known computation, 1.6ms on M1 MacBook (~10X overhead)

o Simple, ECDSA-native tools:

- Any PRF during signing phase
= benefit from hardware acceleration on many platforms

- KeyGen: Oblivious Transfer (w. Diffie-Hellman in ECDSA curve)

Bandwidth (KB)

Two-party ECDSA Now

10°
10% - eDKLs 23
oCGGMP 20
101 -
0 | eABCGJM 24
10 — OLlndeH 17 .CCLST 19
10 mPlain ECDSA
102 | |
101 10V 101 107

Computation (ms)

Bandwidth (KB)

Constructing Our Scheme

10°
102 - eDKlLs 23
oCGGMP 20
101 +
0 . ~ABCGJM 24
10 — oLmdell 17 QCCLST 19
i Our starting point
10 - mPlain ECDSA
10—2 | | |
101 10V 101 107 10°

Computation (ms)

MPC for ECDSA Recipe [DKLs 23]

e Retrospectively interpret protocols per their framework

o Standard recipe in the literature:

1. Rewrite ECDSA signing equation to an "MPC-friendly” equivalent
i.e. only additions and multiplications of secret values

2. Cryptographic Machinery for secure multiplication

3. Verity that all operations were performed honestly

MPC for ECDSA Recipe [DKLs 23]

e Retrospectively interpret protocols per their framework

. Applied to [Lindell 17]:
“Multiplicative” rewriting of ECDSA

2. Paillier-based OLE

3. Verity that all operations were performed honestly

Multiplicative Rewriting of ECDSA

Originally [MRO1], refined by [Lin17] and [ABCGJM24]

R=k-G

r.-sk+h
K

§ =

Multiplicative Rewriting of ECDSA

Originally [MRO1], refined by [Lin17] and [ABCGJM24]

Sk=sko-sk1§ Rzkole
E k=k0’k1

r. - sky - ski+h
Ko - Ki

§ =

Multiplicative Rewriting of ECDSA

Originally [MRO1], refined by [Lin17] and [ABCGJM24]

sk=sko-sk1§ Rzko'kl’G

k=l ko

Bt T T
0{=7‘xSk1/k1 / .
M s'=a - sky+ [

Multiplicative Rewriting of ECDSA

Originally [MRO1], refined by [Lin17] and [ABCGJM24]

sk=sko-sk1§ Rzko'kl'G

k=l ko

Bt T T
0[=FxSk1/k1 / .
M s'=a - sky+ [

J@_ﬁ sky, kg

Multiplicative Rewriting of ECDSA

Originally [MRO1], refined by [Lin17] and [ABCGJM24]

sk=sko-sk1§ Rzko'kl'G

k=l ko

Bt T T
0[=FxSk1/k1 / .
M s'=a - sky+ [

J@_ﬁ sky, kg

s = 51k

Final step

Multiplicative Rewriting of ECDSA

Originally [MRO1], refined by [Lin17] and [ABCGJM24]

sk=sko-sk1§ Rzko'kl'G

- k=ky-k,
SR =k,
a = rsk,/ k1 /
X S =a - k
- p=hlk SKo + P
eeeeeeeeeeeeeeeseeees s eeees e eeeeen OLE correlation

J@_ﬁ sky, kg

s = 51k

Final step

Multiplicative Rewriting of ECDSA

Originally [MRO1], refined by [Lin17] and [ABCGJM24]

sk=sko-sk1§ Rzko'kl'G

- k=ky-k,
Bl 1T
a = rskq/ k1 /
A : S = a9 k + ﬁ
— Wik, U
N ﬁ 1 OLE correlation
D Sk() K-ju ; S_Sk()a k()
o OLE ,
’ — 5 s=s'/k

Final step

OLE Structure

«——3sk
OLE)|

a’ ﬁ . S/ ===\

e [Lin17]: Paillier encryption, following classic protocol [Gil99]

e [Lin17] observation: Paillier-based OLE can be very efficient for
signing, with heavy work offloaded to key generation

OLE Structure

«——3sk
OLE)|

a’ﬁ . S/ ==\

e [Lin17]: Paillier encryption, following classic protocol [Gil99]

e [Lin17] observation: Paillier-based OLE can be very efficient for
signing, with heavy work offloaded to key generation

OLE Structure

ct = Enc}p'(skg)

K
y —
| !
ct = a-ct+ Ency(f))
Dec(ct’)— s’

e [Lin17]: Paillier encryption, following classic protocol [Gil99]

e [Lin17] observation: Paillier-based OLE can be very efficient for
signing, with heavy work offloaded to key generation

OLE Structure

Heavy: One-time during KeyGen
ct = Enc;g'(sk())

_—\

ct” = a- ct + Encx(f)

% /
— >
Light: once per signature Dec(ct)=

e [Linl17]: Paillier encryption, following classic protocol

e [Lin17] observation: Paillier-based OLE can be very efficient for
signing, with heavy work offloaded to key generation

OLE Structure

Heavy: One-time during KeyGen
rVOLE-Setup(x) X

_—\

s =a-x+p

d v r'VOLE-Send(a, f3)

Light: once per signature

This work Generalize the concept to reactive Vector Oblivious Linear Evaluation

OLE Structure

Heavy: One-time during KeyGen
rVOLE-Setup(x) X

_—\

s =a-x+p

d v r'VOLE-Send(a, f3)

Light: once per signature

Sender provides a vector of inputs (@, El-)
applied to a single fixed receiver input x

Well known: VOLE(n) < n X OLE

This work Generalize the concept to reactive Vector Oblivious Linear Evaluation

OLE Structure

Heavy: One-time during KeyGen

p rVOLE-Setup(x) X
\
!
o ﬂ rVOLE-Send(a, f) .,
sS'=a-x+ [

Light: once per signature

Sender provides a vector of inputs (@, El-)
applied to a single fixed receiver input x

Sender’s vector can be extended on demand Well known: VOLE(n) < n X OLE

This work Generalize the concept to reactive Vector Oblivious Linear Evaluation

OLE Structure

Heavy: One-time during KeyGen

p rVOLE-Setup(x) X
\ -
=\
0[ﬁ rVOLE-Send(a, f) .,
sS'=a-x+ [

Light: once per signature

Sender provides a vector of inputs (a El-)

Sender’s vector can be extended on demand applied to a single fixed receiver input x

This work Generalize the concept to reactive Vector Oblivious Linear Evaluation

New construction with general, simple tools

rVOLE-Setup: Oblivious Transfer
rVOLE-Send: Any PRF + small field arithmetic

Constructing rVOLE

o Insight: rVOLE-Send can be instantiated with simpler, weaker
tools than OLE (i.e. no need for homomorphic encryption or OT)

e [Roy22]: rVOLE over Z, (for small p)
- Send is non-interactive, only local PRF eval and Z , add.s

e We need rVOLE over Z per signing curve group order (large g)

How do we boost rVOLE(small p)—-rVOLE(big g)?

Constructing rVOLE

e Chinese Remainder Theorem: Classic method of emulating large
integer arithmetic with smaller integers

M = Hp,- for a set of n primes p,, p,, -, p,

1€|n]

ZM g Zpl X sz X e X an

rVOLE(M) = rVOLE(p,) X rVOLE(p,) X ---rVOLE(p,)

e CRT used to decompose full OLE in [CCDKLRs20], [DHIM25]

Constructing rVOLE

e Chinese Remainder Theorem: Classic method of emulating large
integer arithmetic with smaller integers

rVOLE(M) = rVOLE(p,) X rVOLE(p,) X ---rVOLE(p,)

Roy22 Zero-communication PRF-based rVOLE(p,)

Tcxr
Zero-communication PRF-based rVOLE(M)
l Derandomize to Z inputs

~ 3|q|-bit PRF-based rVOLE(qg)
Target

Constructing rVOLE

e Chinese Remainder Theorem: Classic method of emulating large
integer arithmetic with smaller integers

rVOLE(M) = rVOLE(p,) X rVOLE(p,) X ---rVOLE(p,)

Roy22 Zero-communication PRF-based rVOLE(p,)
Structure of the l CRT

computation
Zero-communication PRF-based rVOLE(M)

l Derandomize to Z inputs

~ 3|q|-bit PRF-based rVOLE(qg)
Target

)’ PRF(sid) (mod p,)

€[p]

Constructing rVOLE

e End result:

rVOLE(M) = rVOLE(p,) X rVOLE(p,) X ---rVOLE(p,,)

Zero-comm. PRF-based rVOLE(p,)

v
Zero-comm. PRF-based rVOLE (M)

v
PRF-based rVOLE(g)

o rVOLE-Send that is cheaper and simpler than full OLE

- O(|g|) bits comm.: same as ECDSA itself

- For a 32-byte curve: rVOLE-Send generates an 80 byte message in 0.5ms
(compare against AHE ciphertexts at hundreds of bytes, several ms compute)

o rVOLE-Setup: OT-based protocol, 550ms, 490KB

MPC for ECDSA Recipe [DKLs 23]

e Retrospectively interpret protocols per their framework

. Applied to [Lindell 17]:
“Multiplicative” rewriting of ECDSA

2. Paillier-based OLE

3. Verity that all operations were performed honestly

MPC for ECDSA Recipe [DKLs 23]

e Retrospectively interpret protocols per their framework

. Applied to [Lindell 17]:

3. Verity output to be a valid signature

MPC for ECDSA Recipe [DKLs 23]

e Retrospectively interpret protocols per their framework

. Applied to [Lindell 17]:

3. Verity output to be a valid signature

We generalize the principle and apply it to prove malicious
security of our scheme as well

Malicious Security Caveats

e Our proof inherits caveats of [Lin17]

e r'VOLE inputs (a, f), x must be in the correct range
- x 1s verified with an explicit one-time range proof at setup
- a, # implicitly when signing: check for valid ECDSA sig
in case of fail, abort all sessions, stop using key

e Security reduces to ECDSA unforgeability, with #sessions loss

e Asin [Lin17], this loss can be avoided with a custom assumption:

(x - G, abortx) 2 (x’- G, abortx)

Notes

e Incorporating nonce sampling, this yields:
- 3-round signing protocol with uniform nonces
- 2-round signing with biased nonces
("doubly enhanced” unforgeability [ABCGJM 24])

e Our fully optimized construction makes use of Knowledge of
Exponent to save some bytes

e Rust implementation, benchmarked ~1.6ms on M1 MacBook

In Conclusion

- New 2P-ECDSA signing that achieves O(1) bandwidth overhead
relative to simply exchanging plain ECDSA signatures.

- Insight: reactive VOLE suffices, simpler than full OLE
= instantiable from OT+PRF, generalized analysis from [Lin17]

- Concrete bandwidth and computation costs (0.17KB, 1.6ms)
closest to plain ECDSA signing so far.

o
.- L&ﬁ ’Ih anks ! Thanks Eysa Lee for
[m] s N&

eprint.iacr.org/2025/1813

