RSA[®]Conference2021 May 17 – 20 | Virtual Experience

SESSION ID: CRYP-R03C

Non-interactive Half-aggregation Of EdDSA And Variants Of Schnorr Signatures

Yashvanth Kondi

PhD Candidate Northeastern University

Joint work with: Konstantinos Chalkias, François Garillot, Valeria Nikolaenko (Novi/Facebook)

In This Work, We:

 Study non-interactive aggregation of Schnorr/EdDSA signatures using methods that are blackbox in the hash function and the group

- Design and implement two constructions:
 - 50% compression, loose security, no computation overhead
 - 50-e% compression, tight security, high computation overhead

Show that 50% compression is optimal for blackbox techniques

RSAConference2021

Schnorr Signatures

Recap of characteristics

What's good:

What's good:

 Security under conservative, well-studied assumption (Discrete Logarithm problem)

What's good:

- Security under conservative, well-studied assumption (Discrete Logarithm problem)
- Individual signatures are compact, fast to generate and verify

What's good:

- Security under conservative, well-studied assumption (Discrete Logarithm problem)
- Individual signatures are compact, fast to generate and verify
- Linear structure allows efficient interactive aggregation (i.e. threshold/multisignature friendly)

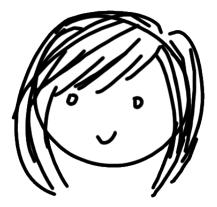
What's good:

- Security under conservative, well-studied assumption (Discrete Logarithm problem)
- Individual signatures are compact, fast to generate and verify
- Linear structure allows efficient interactive aggregation (i.e. threshold/multisignature friendly)


 However, no native non-interactive aggregation procedure (unlike BLS)

RSA[°]Conference2021

Aggregate Signatures


#RSAC

What are they?

 $\frac{\mathsf{pk}_1}{\mathsf{m}_1}$

 pk_1

 m_1

m₁

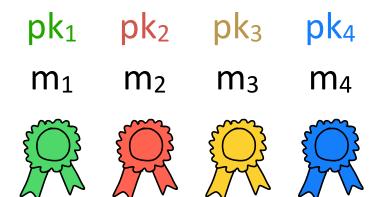
 pk_1

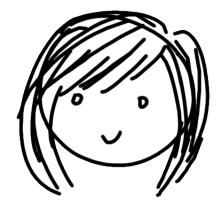
pk₃

pk₂ m₂

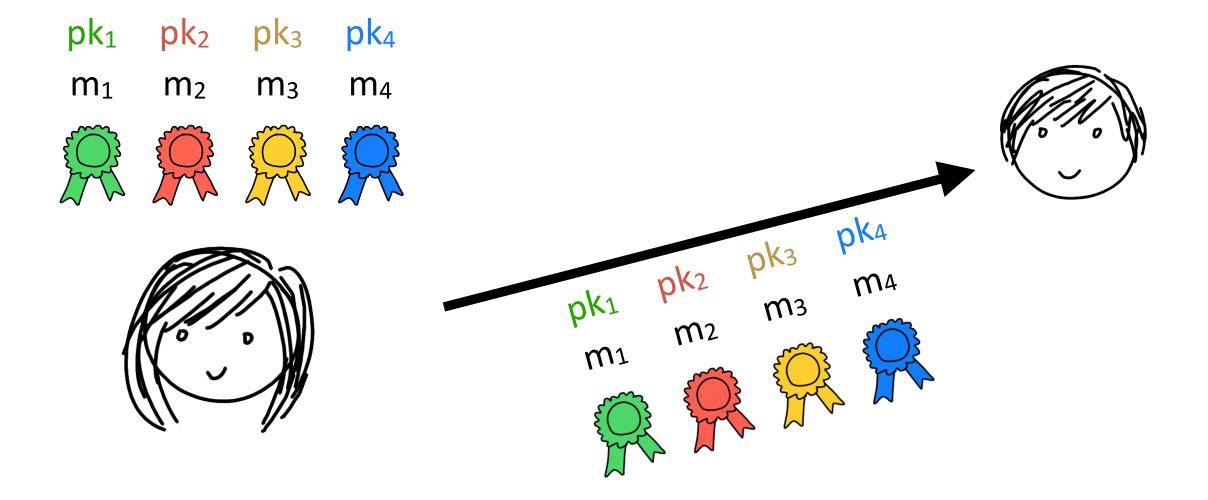
pk₁ m₁

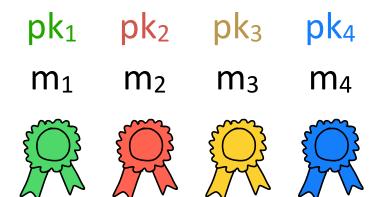
pk₃ m₃

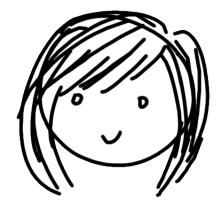



pk₂ m₂

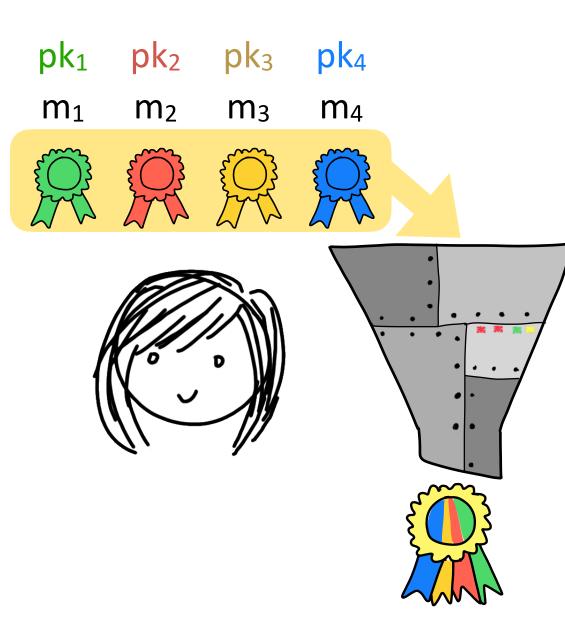
pk₄

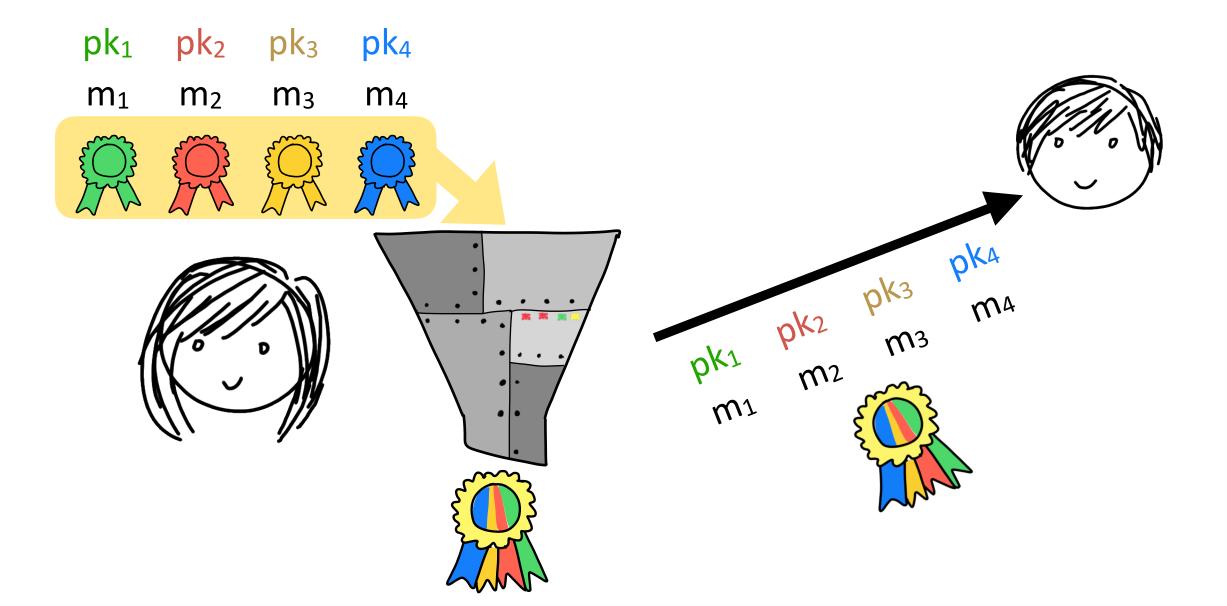

 m_4

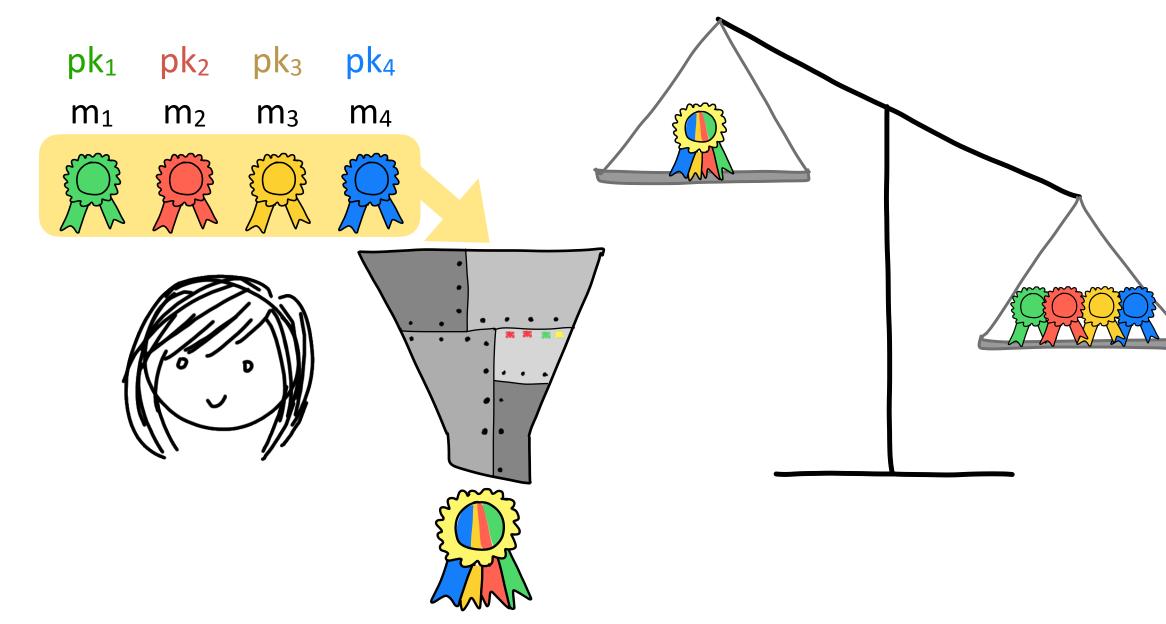












Application: Compressing Blockchains

 We formulate the problem as constructing a "proof of knowledge" (PoK) for the language of Schnorr signatures

- We formulate the problem as constructing a "proof of knowledge" (PoK) for the language of Schnorr signatures
- i.e. Aggregate signature is a (non-interactive) proof that the aggregator has seen corresponding Schnorr signatures

- We formulate the problem as constructing a "proof of knowledge" (PoK) for the language of Schnorr signatures
- i.e. Aggregate signature is a (non-interactive) proof that the aggregator has seen corresponding Schnorr signatures
- Drop-in replacement in any larger protocol

- We formulate the problem as constructing a "proof of knowledge" (PoK) for the language of Schnorr signatures
- i.e. Aggregate signature is a (non-interactive) proof that the aggregator has seen corresponding Schnorr signatures
- Drop-in replacement in any larger protocol
- Nice composition guarantees: don't have to re-prove security of larger protocol upon replacement by PoK

 We already know how to build compressing Proofs of Knowledge: eg. IOPs, Bulletproofs, etc.

- We already know how to build compressing Proofs of Knowledge: eg. IOPs, Bulletproofs, etc.
- Establishes feasibility, but too slow for most applications

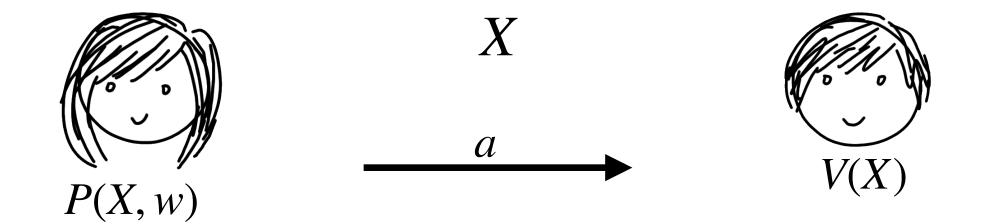
- We already know how to build compressing Proofs of Knowledge: eg. IOPs, Bulletproofs, etc.
- Establishes feasibility, but too slow for most applications
- Bottleneck for such techniques: standard hash functions (eg. SHA2 for EdDSA) and elliptic curve group operations have huge circuit representations

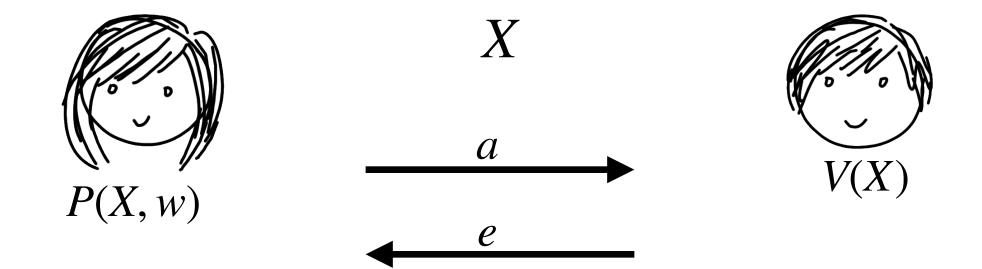
- We already know how to build compressing Proofs of Knowledge: eg. IOPs, Bulletproofs, etc.
- Establishes feasibility, but too slow for most applications
- Bottleneck for such techniques: standard hash functions (eg. SHA2 for EdDSA) and elliptic curve group operations have huge circuit representations
- Constraint: must be blackbox in hash function and curve group (i.e. use them like oracles)

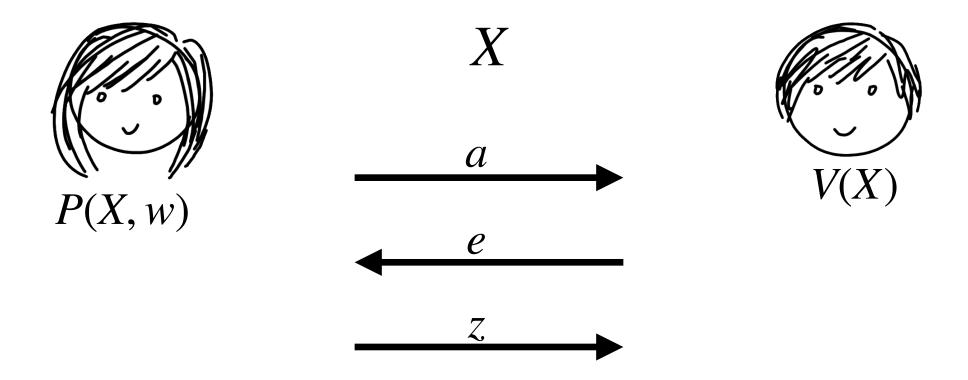
RSAConference2021

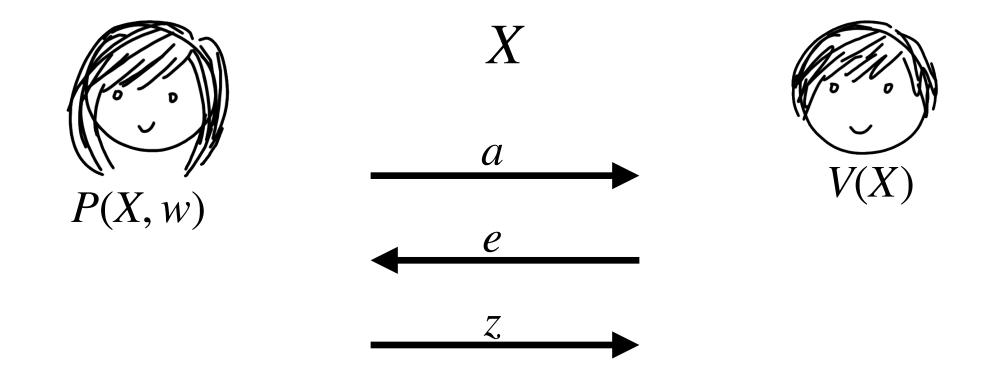
Our Techniques

Sigma protocols and non-interactive proofs


Quick recap: Sigma Protocol for relation R


X


Quick recap: Sigma Protocol for relation R


Quick recap: Sigma Protocol for relation R

Quick recap: Sigma Protocol for relation R

Quick recap: Sigma Protocol for relation R

n-special soundness:

 $Ext(X, a, (e_1, z_1), \dots, (e_n, z_n))$ outputs *w* s.t. R(X, w) = 1

$$pk = x \cdot G \qquad \qquad R = r \cdot G$$
$$e = H(pk, R, m) \qquad \qquad s = xe + r$$

$$pk = x \cdot G \qquad \qquad R = r \cdot G$$

$$e = H(pk, R, m) \qquad \qquad s = xe + r$$

$$Verify(pk, R, s) :$$

$$Compute \ S = e \cdot pk + R$$

$$Output \ S \stackrel{?}{=} s \cdot G$$

$$pk = x \cdot G \qquad R = r \cdot G$$

$$e = H(pk, R, m) \qquad s = xe + r$$

$$Verify(pk, R, s) :$$

$$Compute \ S = e \cdot pk + R$$

$$Output \ S \stackrel{?}{=} s \cdot G$$

$$bk = x \cdot G \qquad R = r \cdot G$$

$$e = H(pk, R, m) \qquad s = xe + r$$

$$Verify(pk, R, s) :$$

$$Compute \ S = e \cdot pk + R$$

$$Output \ S \stackrel{?}{=} s \cdot G$$

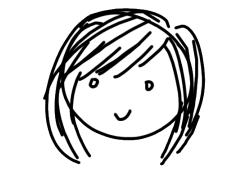
PoK of Schnorr signature of *m* under pk, *R* is equivalent to PoK of discrete logarithm of *S*

[Gennaro, Leigh, Sundaram, Yerazunis '04]

 x_1, x_2, \cdots, x_n

 $X_1, X_2, \cdots X_n$

[Gennaro, Leigh, Sundaram, Yerazunis '04]



 x_1, x_2, \cdots, x_n

 $X_1, X_2, \cdots X_n$

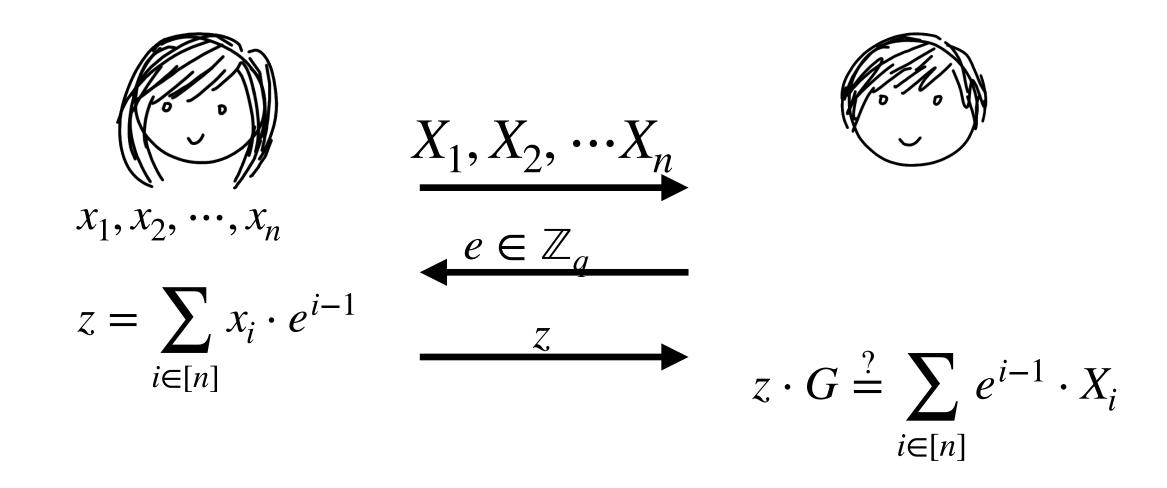
[Gennaro, Leigh, Sundaram, Yerazunis '04]

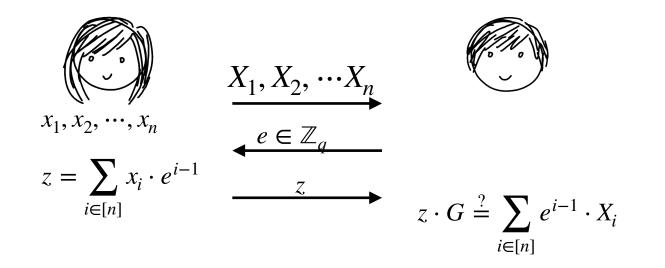
 x_1, x_2, \cdots, x_n

 $i \in [n]$

 $z = \sum x_i \cdot e^{i-1}$

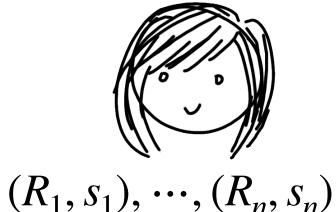
 $X_1, X_2, \cdots X_n$


 $e \in \mathbb{Z}_{a}$


[Gennaro, Leigh, Sundaram, Yerazunis '04]

[Gennaro, Leigh, Sundaram, Yerazunis '04]

[Gennaro, Leigh, Sundaram, Yerazunis '04]



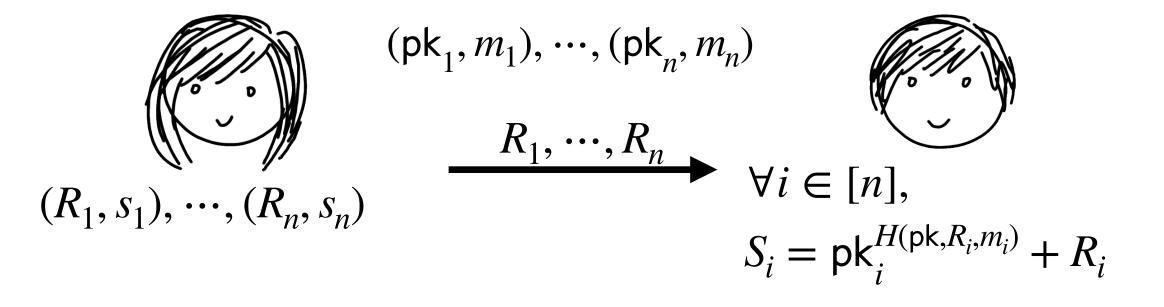
n special soundness:

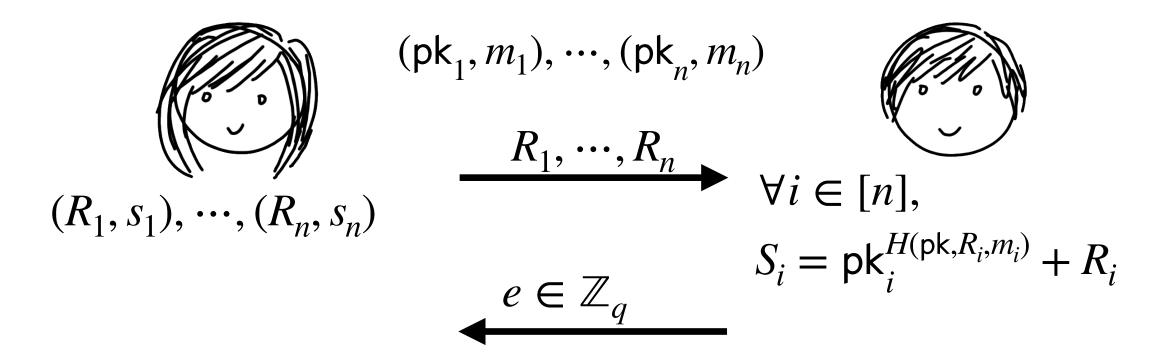
Values $(e_1, z_1), \dots, (e_n, z_n)$

Characterise *n* linearly independent combinations of *x_i*s

Solve for each *x*_{*i*}

 $(\mathsf{pk}_1, m_1), \cdots, (\mathsf{pk}_n, m_n)$




 $(R_1, s_1), \cdots, (R_n, s_n)$

 $(\mathsf{pk}_1, m_1), \cdots, (\mathsf{pk}_n, m_n)$

 R_1, \cdots, R_n

$$(\mathbf{R}_{1}, s_{1}), \cdots, (\mathbf{R}_{n}, s_{n}) \xrightarrow{(\mathbf{pk}_{1}, m_{1}), \cdots, (\mathbf{pk}_{n}, m_{n})} \xrightarrow{\mathbf{R}_{1}, \cdots, \mathbf{R}_{n}} \forall i \in [n],$$

$$(\mathbf{R}_{1}, s_{1}), \cdots, (\mathbf{R}_{n}, s_{n}) \xrightarrow{\mathbf{R}_{1}, \cdots, \mathbf{R}_{n}} \forall i \in [n],$$

$$S_{i} = \mathbf{pk}_{i}^{H(\mathbf{pk}, \mathbf{R}_{i}, m_{i})} + \mathbf{R}_{i}$$

$$z = \sum_{i \in [n]} s_{i} \cdot e^{i-1}$$

$$(\mathsf{pk}_{1}, m_{1}), \cdots, (\mathsf{pk}_{n}, m_{n})$$

$$(\mathsf{pk}_{1}, m_{1}), \cdots, (\mathsf{pk}_{n}, m_{n})$$

$$(\mathsf{R}_{1}, s_{1}), \cdots, (\mathsf{R}_{n}, s_{n})$$

$$(\mathsf{R}_{1}, \cdots, \mathsf{R}_{n})$$

$$\forall i \in [n],$$

$$S_{i} = \mathsf{pk}_{i}^{H(\mathsf{pk}, \mathsf{R}_{i}, m_{i})} + \mathsf{R}_{i}$$

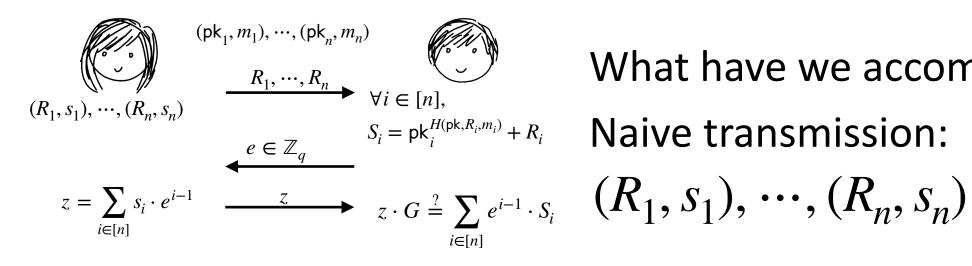
$$z = \sum_{i \in [n]} s_{i} \cdot e^{i-1}$$

$$z \rightarrow$$

$$(\mathsf{pk}_{1}, m_{1}), \cdots, (\mathsf{pk}_{n}, m_{n})$$

$$(\mathsf{pk}_{1}, m_{1}), \cdots, (\mathsf{pk}_{n}, m_{n})$$

$$(\mathsf{R}_{1}, s_{1}), \cdots, (\mathsf{R}_{n}, s_{n})$$


$$(\mathsf{R}_{1}, \cdots, \mathsf{R}_{n})$$

$$\forall i \in [n],$$

$$S_{i} = \mathsf{pk}_{i}^{H(\mathsf{pk}, \mathsf{R}_{i}, m_{i})} + \mathsf{R}_{i}$$

$$z = \sum_{i \in [n]} s_{i} \cdot e^{i-1}$$

$$z \cdot G \stackrel{?}{=} \sum_{i \in [n]} e^{i-1} \cdot S_{i}$$

What have we accomplished? $e \in \mathbb{Z}_q$ $S_i = \mathsf{pk}_i^{H(\mathsf{pk},R_i,m_i)} + R_i$ Naive transmission:

Compressed Sigma protocol:

$$z, (R_1, \cdots, R_n)$$

i.e. ~50% compression!

RSAConference2021

 Sigma protocols are interactive, but our target is a noninteractive proof

- Sigma protocols are interactive, but our target is a noninteractive proof
- Standard compilers,

- Sigma protocols are interactive, but our target is a noninteractive proof
- Standard compilers,
 - Fiat-Shamir: optimal efficiency, loose security proof

- Sigma protocols are interactive, but our target is a noninteractive proof
- Standard compilers,
 - Fiat-Shamir: optimal efficiency, loose security proof
 - Fischlin: reduced efficiency (compression approaches 50%), tight security proof

#RSAC **Benchmarks**

RSAConference2021

 We measured the performance of both constructions using the Ed25519-dalek library

- We measured the performance of both constructions using the Ed25519-dalek library
- Takeaway:

- We measured the performance of both constructions using the Ed25519-dalek library
- Takeaway:
 - Fiat-Shamir: aggregates 1024 sigs in <1ms, and verifying the aggregate signature costs the same as batch verifying the same number of signatures

- We measured the performance of both constructions using the Ed25519-dalek library
- Takeaway:
 - Fiat-Shamir: aggregates 1024 sigs in <1ms, and verifying the aggregate signature costs the same as batch verifying the same number of signatures
 - Fischlin: 10s of seconds to aggregate 100s of sigs with >40% compression, order of magnitude slower verification

Can we do better?

Can we do better?

 We show that 50% compression is optimal for any aggregation scheme that makes oracle use of the hash function in Schnorr

Can we do better?

- We show that 50% compression is optimal for any aggregation scheme that makes oracle use of the hash function in Schnorr
- Implication: compressing Schnorr sigs beyond 50% must depend on the code of the hash function. All known techniques are expensive, eg. Ed25519 will need SNARKs for n SHA2 pre-images

See the paper for...

- Discussions on how to use these constructions
- Optimisations for concrete efficiency
- Detailed proofs
- Detailed benchmarks
- Discussion on related work

Apply these constructions

 Identify protocols that involve transmitting or storing multiple Schnorr (eg. Ed25519) signatures in a batch

Question if the exact bit representation is important for some reason (eg. having to un-batch the signatures later, or compare with a digest for an integrity check). Can the physical signatures be replaced by a proof-of-knowledge oracle?

 Consider cutting bandwidth/storage cost in half by aggregating the signatures

Thanks!

ia.cr/2021/350

github.com/novifinancial/ed25519-dalek-fiat/tree/half-aggregation

