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Full Threshold

• Scheme can be instantiated with any t <= n


• Adversary corrupts up to t-1 parties
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sign(m, 𝗌𝗄, k) =

R = k ⋅ G

ECDSA Recap

Non-linearity makes ‘thresholdization’ difficult

k
+𝗌𝗄 ⋅ rxH(m)

x-coordinate of R
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• Limited schemes based on Paillier encryption: [MacKenzie 

Reiter 04], [Gennaro Goldfeder Narayanan 16], [Lindell 17]

•Practical key generation and efficient signing (full threshold):
- [Gennaro Goldfeder 18]: Paillier-based
- [Lindell Nof Ranellucci 18]: El-Gamal based

•Our work last year [DKLs18]: 2-of-n ECDSA under native 
assumptions

•This work: Full-Threshold ECDSA under native assumptions
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Our Approach
• 2-party multipliers: Oblivious Transfer in ECDSA curve

-Pros: 

-With OT Extension (no extra assumptions) just a 
few milliseconds

-Native assumptions (CDH in the same curve)

-Con:  Higher bandwidth (100s of KB/party)
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Our Approach
•OT-MUL secure up to choice of inputs

• Light consistency check (unique to our protocol): 

-Verify shares in the exponent before reveal

-Costs 5 exponentiations+curve points/party

-Subverting checks implies solving CDH in the same 
curve
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Tradeoffs
• Our work avoids expensive zero-knowledge proofs and 

assumptions foreign to ECDSA itself, required by other 
works in the area

• Using OT-MUL is very light on computation, but more 
demanding of bandwidth than alternative approaches; 
we argue this is not an issue for most applications

• Our wall clock times (even WAN) are an order of 
magnitude better than the next best concurrent work
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•Universal Composability [Canetti ’01] (static adv., local RO)

•Functionality (trusted third party emulated by protocol):
-Store secret key
-Compute ECDSA signature when enough parties ask

•Assumption: CDH is hard in the ECDSA curve

•Network: Synchronous, broadcast

•Security with abort

Our Model
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Setup
• Fully distributed

•MUL setup: Pairwise among parties (128 OTs)

•Key generation: (Pedersen-style)

-Every party Shamir-shares a random secret

-Secret key is sum of parties’ contributions

-Verify in the exponent that parties’ shares are on the same 
polynomial
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Obtaining Candidate Shares

•Building Block: Two party MUL with full security 
[DKLs18]

•One approach (implemented):

-Each party starts with multiplicative shares of k and 1/k

-Multiplicative to additive shares: log(t)+c rounds

•Alternative: [Bar-Ilan&Beaver ’89] approach yields 
constant round protocol (work in progress)
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Major challenges from 2 to Multi-party

Can’t use Diffie-Hellman Exchange for R

2-party check does not obviously generalize [LNR18]
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Check in Exponent

• Technique: Each equation is verified in the exponent, 

using ‘auxiliary’ information that’s already available

• Cost: 5 exponentiations, 5 group elements per party 

independent of party count, and no ZK proofs
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Check in Exponent

•Task: verify relationship between [k] and [1/k]

• Idea: verify                   by verifying[ 1
k ][k] = 1 [ 1

k ][k] ⋅ G = G
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R = kAkh ⋅ G

Γi = [( 1
k𝖠

+ϵ) 1
kh ]

i

⋅ R

Public

Broadcast

Verify

Adversary's contribution
Honest Party's contribution

∑
i∈[n]

Γi = G+ϵkA ⋅ G
Easy for Adv. to offset

Attempt at a solution:
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Idea: Randomize Target

• Currently we expect             to hit a fixed target G

• Idea: randomize the multiplication so target is unpredictable

• Compute            instead of

• Reveal       only after every other value is committed

∑ Γi

[ ϕ
k ] [ 1

k ]
ϕ



Check in Exponent
Attempt at a solution:

Γi = [ 1
k𝖠

1
kh ]

i
⋅ R

Public

Broadcast

R = kAkh ⋅ G

Adversary's contribution
Honest Party's contribution



Check in Exponent

Public

Broadcast Γi = [ ϕA

k𝖠

ϕh

kh ]
i
⋅ R

R = kAkh ⋅ G

Adversary's contribution
Honest Party's contribution

Adversary's contributionAdversary's contribution
Attempt at a solution:



Check in Exponent

Public

Broadcast Γi = [ ϕA

k𝖠

ϕh

kh ]
i
⋅ R

R = kAkh ⋅ G

Adversary's contribution
Honest Party's contribution

Adversary's contributionAdversary's contribution

Verify ∑
i∈[n]

Γi = ϕAϕh ⋅ G

Attempt at a solution:



Check in Exponent

Public

Broadcast

Verify

R = kAkh ⋅ G

Adversary's contribution
Honest Party's contribution

Adversary's contributionAdversary's contribution

∑
i∈[n]

Γi = Φ

Γi = [ ϕA

k𝖠

ϕh

kh ]
i
⋅ R

Attempt at a solution:



Check in Exponent

Public

Broadcast

Verify

Γi = [( ϕA

k𝖠
+ϵ) ϕh

kh ]
i

⋅ R

R = kAkh ⋅ G

Adversary's contribution
Honest Party's contribution

Adversary's contributionAdversary's contribution
Attempt at a solution:



Check in Exponent

Public

Broadcast

Verify

Γi = [( ϕA

k𝖠
+ϵ) ϕh

kh ]
i

⋅ R

R = kAkh ⋅ G

Adversary's contribution
Honest Party's contribution

Adversary's contributionAdversary's contribution

∑
i∈[n]

Γi = Φ+ϵϕhkA ⋅ G

Attempt at a solution:



Check in Exponent

Public
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Γi = [( ϕA

k𝖠
+ϵ) ϕh

kh ]
i

⋅ R

R = kAkh ⋅ G

Adversary's contribution
Honest Party's contribution

Adversary's contributionAdversary's contribution

∑
i∈[n]

Γi = Φ+ϵϕhkA ⋅ G
Completely unpredictable

Attempt at a solution:
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Check in Exponent
There are three relations that have to be 
verified

[k] [ 1
k ] [ 𝗌𝗄

k ]
R 𝗉𝗄

R, 𝗉𝗄

Each costs, per party: 

-2 exponentiations 

-2 field elements

Two broadcast rounds
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Our Approach
•Setup: MUL setup, VSS for [sk]


•Signing:


1. Get candidate shares [k], [1/k], and R=k·G


2. Compute [sk/k] = MUL([1/k], [sk])


3. Check relations in exponent


4. Reconstruct sig = [1/k]·H(m)+[sk/k]

Broadcast linear 
combination 

of shares
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Dominant Costs
Rounds Public Key Bandwidth

Setup

Signing

5 520n 21n KB

log(t)+6 5 <100t KB

Journal version (in progress): 8 round signing
(à la [Bar-Ilan Beaver 89])
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Benchmarks
• Implementation in Rust

• Ran benchmarks on Google Cloud

• One node per party

• LAN and WAN tests (up to 16 zones)

• Low Power Friendliness: Raspberry Pi 
(~93ms for 3-of-3)
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WAN Benchmarks

66.5 ms
348 ms

87.1 ms

235 ms

Fig. 4: Map of Datacenter Locations used for WAN Benchmarks,
with latency figures along a few of the longer routes. The subgroup
of five zones inside the US are highlighted in red.

Parties/Zones Signing Rounds Signing Time Setup Time

5/1 9 13.6 67.9

5/5 9 288 328

16/1 10 26.3 181

16/16 10 3045 1676

40/1 12 60.8 539

40/5 12 592 743

128/1 13 193.2 2300

128/16 13 4118 3424

TABLE IV: Wall-clock Times in Milliseconds over WAN. The
benchmark configurations used are described in Section VIII-C. For
signing we varied t according to these parameters, and for setup we
varied n, fixing t = b(n+1)/2c. Benchmarks involving only a single
zone are LAN benchmarks, for comparison.

instances with current-generation CPUs; these are located on
a map in Figure 4. Five were located inside the United States,
in South Carolina, Virginia, Oregon, California, and Iowa.
Among these, the longest leg was between Oregon and South
Carolina, with a round-trip latency of 66.5 ms and bandwidth
of 353 Mbits/sec. The remaining 11 were located in Montreál,
London, Frankfurt, Belgium, the Netherlands, Finland, Sydney,
Taiwan, Tokyo, Mumbai, and Singapore. Among the complete
set, the longest leg was between Belgium and Mumbai, with
a round-trip latency of 348 ms and a bandwidth of 53.4
MBits/sec. We tested two configurations: one with only the
five US datacenters participating, and another with all 16. For
each configuration, we performed benchmarks with one party
in each participating datacenter, and with eight parties in each
participating datacenter. In all cases, we collected 125 samples.
Results are reported in Table IV, along with comparative data
from our LAN benchmarks.

It is worth noting that Wang et al. [33] recently made the
claim that they performed the largest-scale demonstration of
multiparty computation to date. Their benchmark involves
128 parties split among eight datacenters around the world,
who jointly compute an AES circuit using the actively-secure
multiparty garbling protocol that they developed. Our WAN
benchmark involves 128 parties split among 16 datacenters,

and thus we claim that we have also evaluated one of the
largest secure multiparty protocols to date, at least so far
as party count and geographic distribution are concerned.
We also note that the in the clear setting, AES is generally
considered to have a much lower circuit complexity than
ECDSA; this is reflected in the significantly lower computation
time for a single AES operation as compared to signing a
single message using ECDSA. Interestingly, in the context of
evaluating these primitives securely among multiple parties,
our protocol for realizing F

n,t
ECDSA performs considerably better

than Wang et al.’s realization of F
n
AES

. In the LAN setting
with 128 parties (each much more powerful than the ones we
employ), they report a 17-second wall clock time, including
preprocessing, and in the global WAN setting with 128 parties,
their protocol requires 2.5 minutes. When the setup and signing
costs are combined for our protocol, it requires 2.5 seconds
and 7.5 seconds with 128 parties in the LAN and global
WAN settings, respectively. This discrepancy in performance
is counterintuitive, but unsurprising in light of the fact that
the algebraically structured nature of ECDSA allows custom
protocols such as our own to be devised. We believe that this
serves to demonstrate that there are multiparty functionalities
for which specially tailored protocols are warranted in practice,
as opposed to the blind use of generic MPC for all tasks.

D. Low-power Benchmarks

Finally, we performed a set of benchmarks on a group of
three Raspberry Pi model 3B+ single-board computers in order
to demonstrate the feasibility of evaluating our protocol (and the
protocols of Doerner et al. [1]) on small, low-powered devices.
Each board has a single, quad-core ARM-based processor
clocked at 1.4 GHz. The boards were loaded with Raspbian
Linux (kernel 4.14) and connected to one another via ethernet.
As an optimization for the embedded setting, we abandoned
SHA-256 (except where required by ECDSA) in favor of the
BLAKE2 hash function [34], using assembly implementations
provided by the BLAKE2 authors. To simulate the setting
wherein an embedded device signs with a more powerful one,
we used a 2013 15" Macbook Pro running Mac OS 10.13
(i.e. one author’s laptop). This machine was engaged in other
tasks at the time of benchmarking, and no attempt was made to
prevent this. We benchmarked 2-of-2 signing and setup between
the Macbook and a single Raspberry Pi, and t-of-n setup and
signing among the group of Pis, with n set as 3 and t as both
2 and 3. When n = 2, we used the slightly more efficient
protocols of Doerner et al. [1] without modification, and when
t = 3 we used the protocols presented in this paper. For setup,
we collected 50 samples, and for signing, we collected 250.
Results are presented in Table V. We observe that in spite of
the limitations of the hardware on which these benchmarks
were run, the signing time remains much less than a second,
and setup requires only a few seconds. Thus we expect our
protocol to be computationally efficient enough to run even on
embedded devices such as hardware tokens or smartwatches,
and certainly on more powerful mobile devices such as phones.
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Fig. 4: Map of Datacenter Locations used for WAN Benchmarks,
with latency figures along a few of the longer routes. The subgroup
of five zones inside the US are highlighted in red.
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Each board has a single, quad-core ARM-based processor
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SHA-256 (except where required by ECDSA) in favor of the
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wherein an embedded device signs with a more powerful one,
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signing among the group of Pis, with n set as 3 and t as both
2 and 3. When n = 2, we used the slightly more efficient
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Results are presented in Table V. We observe that in spite of
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were run, the signing time remains much less than a second,
and setup requires only a few seconds. Thus we expect our
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embedded devices such as hardware tokens or smartwatches,
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n/t Range n/t Step Samples (Signing) Samples (Setup)

[2, 8] 1 16000 2000

(8, 16] 2 8000 1000

(16, 32] 4 4000 500

(32, 64] 8 2000 250

(64, 128] 16 1000 125

(128, 256] 32 500 62

TABLE III: LAN Benchmark Parameters. For signing we varied
t according to these parameters, and for setup we varied n, fixing
t = b(n+ 1)/2c.

Fig. 2: Wall Clock Times for n-Party Setup over LAN. Note that
all parties reside on individual machines in the same datacenter, and
latency is on the order of a few tenths of a millisecond.

only t, the number of parties actually participating in signing.
For setup, only computation costs depend upon t, and not
bandwidth; consequently we varied n and set t = b(n+1)/2c,
which we determined to be the most expensive value relative
to a particular choice of n. Our aim in choosing sample counts
was to ensure each benchmark took five to ten minutes in
total, in order to smooth out artifacts due to transient network
conditions. Our results for setup are reported in Figure 2, and
our results for signing are reported in Figure 3.

B. Comparison
We note that our method only slightly underperforms that of

Doerner et al. [1] for 2-of-n signing, in spite of the fact that
our protocol implements a somewhat stronger functionality.
Specifically, we require 9.52 ms, whereas an evaluation of their
protocol (with no parallelism) in our benchmarking environment
requires 5.83 ms. In the arbitrary-threshold context, a number
of prior and concurrent works exist. We did not benchmark their
protocols in our environment, and so no truly fair comparison
is possible. Nevertheless, all of them report benchmarks among
2 to 20 LAN-connected parties on hardware broadly similar
to our own, and we believe it possible to draw some loose
conclusions by comparing their results. We reproduce setup
and signing times from a selection of publications in Table ??.

The protocol of Gennaro and Goldfeder [31] appears to be
the fastest prior or concurrent work for signing, although they
do not report benchmarks for their key-generation protocol.

Fig. 3: Wall Clock Times for t-Party Signing over LAN. Note that
all parties reside on individual machines in the same datacenter, and
latency is on the order of a few tenths of a millisecond.

Signing Setup
Protocol t = 2 t = 20 n = 2 n = 20

This Work 9.5 31.6 45.6 232
GG18 77 509 – –

LNR18 304 5194 ⇠11000 ⇠28000

BGG17 ⇠650 ⇠1500 – –
GGN16 205 1136 – –

Lindell17 36.8 – 2435 –
DKLs18 3.8 – 43.4 177

Their benchmarks were perfomed using 3.4 GHz processors
from the Intel Skylake family, but they used only a single thread
and did not count network costs. In another concurrent work,
Lindell and Nof [32] present a different protocol and perform
benchmarks using reasonably recent 2.4 GHz processors from
the Intel Haswell family. Their benchmarks do count network
costs, but like Gennaro and Goldfeder, they use only a single
thread. Among prior works, the most efficient techniques are
those of Gennaro et al. [10] and Boneh et al. [11] (who
provide an improved implementation Gennaro et al.’s protocol
in addition to developing new techniques). Boneh et al. provide
benchmarks for both protocols, with no network costs recorded.
In all parameter regimes reported, all prior and concurrent
works are at least one order of magnitude slower than our own
in terms of both key-generation and signing, and in some cases
we improve upon them by two or more orders of magnitude.
We stress again that as these benchmarks were not run in
identical environments, they do not constitute a fair comparison.
Nevertheless, we do not believe that environmental differences
account for the performance discrepancy.

C. WAN Benchmarks

As we have previously noted, our protocol is at a disadvan-
tage relative to other approaches in terms of round count. In
order to demonstrate the practical implications of this fact, we
ran an additional benchmark in the WAN setting. We chose
16 Google datacenters (otherwise known as zones) that offer

Note: Our figures are wall-clock 
times; includes network costs
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• Large-scale automated distributed signing:

- Threshold 2:    3.8ms/sig    <= ~263  sig/second

- Threshold 20:  31.6ms/sig  <= ~31    sig/second

• Both settings need <500Mb bandwidth
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• Paradigm: ‘produce candidate shares, verify by exponent check’ 
costs 5 exponentiations (+ many hashes) to sign, no ZK online

• Instantiation: Cryptographic assumptions native to ECDSA itself 
(CDH in the same curve)

• Lightweight computation but communication well within 
practical range (<100t KB/party) 

• Wall-clock times: Practical in realistic scenarios
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