Threshold ECDSA from ECDSA assumptions: the multiparty case

Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat

j@ckdoerner.net

ykondi@ccs.neu.edu

Northeastern University

eysa@ccs.neu.edu

abhi@neu.edu

Traditional Signature

pk

Traditional Signature

Threshold Signature

 $\{sk_A, sk_B, sk_C\} \leftarrow Share(sk)$

pk

Threshold Signature $\{sk_A, sk_B, sk_C\} \leftarrow Share(sk)$

pk

Threshold Signature

 $\{sk_A, sk_B, sk_C\} \leftarrow Share(sk)$

Threshold Signature

pk

 $\{sk_A, sk_B, sk_C\} \leftarrow Share(sk)$

INDISTINGUISHABLE FROM ORDINARY SIGNATURE

sk_B

sk_F

pk

sk_C

Full Threshold

Scheme can be instantiated with any t <= n

Adversary corrupts up to t-1 parties

ECDSA

- Elliptic Curve Digital Signature Algorithm
- Devised by David Kravitz, standardized by NIST
- Widespread adoption across the internet

ECDSA

- Elliptic Curve Digital Signature Algorithm
- Devised by David Kravitz, standardized by NIST
- Widespread adoption across the internet

Notation

Notation

Elliptic curve parameters G

Notation Elliptic curve parameters GSecret values SK

pk R

Notation Elliptic curve parameters GSecret values Sk Public values

sign(m, sk, k) =

sign(m, sk, k) = H(m)

 $sign(m, sk, k) = H(m) + sk \cdot r_x$

ECDSA Recap x-coordinate of R $R = k \cdot G$ $sign(m, sk, k) = H(m) + sk \cdot r_x$

Non-linearity makes 'thresholdization' difficult

 Limited schemes based on Paillier encryption: [MacKenzie] Reiter 04], [Gennaro Goldfeder Narayanan 16], [Lindell 17]

- Limited schemes based on Paillier encryption: [MacKenzie Reiter 04], [Gennaro Goldfeder Narayanan 16], [Lindell 17]
- Practical key generation and efficient signing (full threshold):

- Limited schemes based on Paillier encryption: [MacKenzie Reiter 04], [Gennaro Goldfeder Narayanan 16], [Lindell 17]
- Practical key generation and efficient signing (full threshold):
 [Gennaro Goldfeder 18]: Paillier-based

- Limited schemes based on Paillier encryption: [MacKenzie Reiter 04], [Gennaro Goldfeder Narayanan 16], [Lindell 17]
- Practical key generation and efficient signing (full threshold):
 [Gennaro Goldfeder 18]: Paillier-based
 [Lindell Nof Ranellucci 18]: El-Gamal based

- Limited schemes based on Paillier encryption: [MacKenzie Reiter 04], [Gennaro Goldfeder Narayanan 16], [Lindell 17]
- Practical key generation and efficient signing (full threshold):
 [Gennaro Goldfeder 18]: Paillier-based
 [Lindell Nof Ranellucci 18]: El-Gamal based
- Our work last year [DKLs18]: 2-of-n ECDSA under native assumptions

- Limited schemes based on Paillier encryption: [MacKenzie Reiter 04], [Gennaro Goldfeder Narayanan 16], [Lindell 17]
- Practical key generation and efficient signing (full threshold):
 [Gennaro Goldfeder 18]: Paillier-based
 [Lindell Nof Ranellucci 18]: EI-Gamal based
- Our work last year [DKLs18]: 2-of-n ECDSA under native assumptions
- This work: Full-Threshold ECDSA under native assumptions

Our Approach

Our Approach

2-party multipliers: Oblivious Transfer in ECDSA curve

2-party multipliers: Oblivious Transfer in ECDSA curve

- Pros:

2-party multipliers: Oblivious Transfer in ECDSA curve

– Pros:

- With OT Extension (no extra assumptions) just a few milliseconds

2-party multipliers: Oblivious Transfer in ECDSA curve

– Pros:

- With OT Extension (no extra assumptions) just a few milliseconds

- Native assumptions (CDH in the same curve)

- - Pros:

- With OT Extension (no extra assumptions) just a few milliseconds

-Con: Higher bandwidth (100s of KB/party)

2-party multipliers: Oblivious Transfer in ECDSA curve

- Native assumptions (CDH in the same curve)

OT-MUL secure up to choice of inputs

OT-MUL secure up to choice of inputs

Light consistency check (unique to our protocol):

OT-MUL secure up to choice of inputs

Light consistency check (unique to our protocol): Verify shares in the exponent before reveal

OT-MUL secure up to choice of inputs

Light consistency check (unique to our protocol):

Verify shares in the exponent before reveal

- Costs 5 exponentiations+curve points/party

OT-MUL secure up to choice of inputs

Light consistency check (unique to our protocol):

- Verify shares in the exponent before reveal
- Costs 5 exponentiations+curve points/party
- Subverting checks implies solving CDH in the same curve

works in the area

Our work avoids expensive zero-knowledge proofs and assumptions foreign to ECDSA itself, required by other

- works in the area
- we argue this is not an issue for most applications

 Our work avoids expensive zero-knowledge proofs and assumptions foreign to ECDSA itself, required by other

 Using OT-MUL is very light on computation, but more demanding of bandwidth than alternative approaches;

- works in the area
- we argue this is not an issue for most applications
- Our wall clock times (even WAN) are an order of

 Our work avoids expensive zero-knowledge proofs and assumptions foreign to ECDSA itself, required by other

 Using OT-MUL is very light on computation, but more demanding of bandwidth than alternative approaches;

magnitude better than the next best concurrent work

• Universal Composability [Canetti '01] (static adv., local RO)

• Universal Composability [Canetti '01] (static adv., local RO) Functionality (trusted third party emulated by protocol):

• Universal Composability [Canetti '01] (static adv., local RO) • Functionality (trusted third party emulated by protocol): -Store secret key

•Universal Composability [Canetti '01] (static adv., local RO) • Functionality (trusted third party emulated by protocol): -Store secret key -Compute ECDSA signature when enough parties ask

•Universal Composability [Canetti '01] (static adv., local RO) • Functionality (trusted third party emulated by protocol): -Store secret key -Compute ECDSA signature when enough parties ask Assumption: CDH is hard in the ECDSA curve

•Universal Composability [Canetti '01] (static adv., local RO) • Functionality (trusted third party emulated by protocol): -Store secret key -Compute ECDSA signature when enough parties ask Assumption: CDH is hard in the ECDSA curve

- Network: Synchronous, broadcast

- -Store secret key
- Assumption: CDH is hard in the ECDSA curve
- Network: Synchronous, broadcast
- Security with abort

Our Model

•Universal Composability [Canetti '01] (static adv., local RO) • Functionality (trusted third party emulated by protocol): -Compute ECDSA signature when enough parties ask

- Setup: MUL setup, VSS for [sk]
- Signing:
 - 1. Get candidate shares [k], [1/k], and $R=k \cdot G$
 - 2. Compute [sk/*k*] = MUL([1/*k*], [sk])
 - 3. Check relations in exponent
 - 4. Reconstruct $sig = [1/k] \cdot H(m) + [sk/k]$

Fully distributed

• Fully distributed

• **MUL setup**: Pairwise among parties (128 OTs)

- Fully distributed
- MUL setup: Pairwise among parties (128 OTs)
- Key generation: (Pedersen-style)

- Fully distributed
- MUL setup: Pairwise among parties (128 OTs)
- Key generation: (Pedersen-style)
 - Every party Shamir-shares a random secret

- Fully distributed
- **MUL setup**: Pairwise among parties (128 OTs)
- Key generation: (Pedersen-style)
 - Every party Shamir-shares a random secret
 - Secret key is sum of parties' contributions

- Fully distributed
- **MUL setup**: Pairwise among parties (128 OTs)
- Key generation: (Pedersen-style)
 - Every party Shamir-shares a random secret
 - Secret key is sum of parties' contributions
 - Verify in the exponent that parties' shares are on the same polynomial

- Setup: MUL setup, VSS for [sk]
- Signing:
 - 1. Get candidate shares [k], [1/k], and $R = k \cdot G$
 - 2. Compute [sk/*k*] = MUL([1/*k*], [sk])
 - 3. Check relations in exponent
 - 4. Reconstruct $sig = [1/k] \cdot H(m) + [sk/k]$

 Building Block: Two party MUL with full security [DKLs18]

- Building Block: Two party MUL with full security [DKLs18]
- One approach (implemented):

- Building Block: Two party MUL with full security [DKLs18]
- One approach (implemented):

- Each party starts with multiplicative shares of k and 1/k

- Building Block: Two party MUL with full security [DKLs18]
- One approach (implemented):
 - Each party starts with multiplicative shares of k and 1/k
 - Multiplicative to additive shares: log(t)+c rounds
Obtaining Candidate Shares

- Building Block: Two party MUL with full security [DKLs18]
- One approach (implemented):
 - Each party starts with multiplicative shares of k and 1/k
 - Multiplicative to additive shares: log(t)+c rounds
- Alternative: [Bar-Ilan&Beaver '89] approach yields constant round protocol (work in progress)

Our Approach

- Setup: MUL setup, VSS for [sk]
- Signing:
 - 1. Get candidate shares [k], [1/k], and $R = k \cdot G$
 - 2. Compute [sk/k] = MUL([1/k], [sk])
 - 3. Check relations in exponent
 - 4. Reconstruct sig = $[1/k] \cdot H(m) + [sk/k]$

Our Approach

• Setup: MUL setup, VSS for [sk]

- Signing:
 - 1. Get candidate shares [k], [1/k], and $R = k \cdot G$

 - 3. Check relations in exponent

4. Reconstruct $sig = [1/k] \cdot H(m) + [sk/k]$

2. Compute [sk/k] = MUL([1/k], [sk]) => Standard GMW

Our Approach

- Setup: MUL setup, VSS for [sk]
- Signing:
 - 1. Get candidate shares [k], [1/k], and $R = k \cdot G$
 - 2. Compute [sk/k] = MUL([1/k], [sk])
 - 3. Check relations in exponent
 - 4. Reconstruct $sig = [1/k] \cdot H(m) + [sk/k]$

Major challenges from 2 to Multi-party

Major challenges from 2 to Multi-party

2-party check does not obviously generalize [LNR18]

Major challenges from 2 to Multi-party

2-party check does not obviously generalize [LNR18]

Can't use Diffie-Hellman Exchange for R

There are three relations that have to be verified

Check in Exponent[k] $\begin{bmatrix} 1\\ k \end{bmatrix}$ $\begin{bmatrix} \frac{sk}{k} \\ \frac{k}{k} \end{bmatrix}$

Technique: Each equation using 'auxiliary' information

- Technique: Each equation is verified in the exponent,
 - using 'auxiliary' information that's already available

Check in Exponent[k] $\begin{bmatrix} 1\\ k \end{bmatrix}$ $\begin{bmatrix} \frac{sk}{k} \\ \frac{k}{k} \end{bmatrix}$

- **Technique**: Each equation is verified in the exponent, using 'auxiliary' information that's already available
- **Cost**: 5 exponentiations, 5 group elements per party independent of party count, and no ZK proofs

• Task: verify relationship between [k] and [1/k]

• Task: verify relationship between [k] and [1/k]

• Idea: verify $\left|\frac{1}{k}\right|[k] = 1$ by verifying $\left|\frac{1}{k}\right|[k] \cdot G = G$

Attempt at a solution:

Attempt at a solution: Public

R

Attempt at a solution: Public

Broadcast

R

 $\Gamma_i = \begin{bmatrix} 1 \\ -\frac{1}{k} \end{bmatrix}_i \cdot R$

Attempt at a solution: Public

Broadcast

Attempt at a solution: Public

Broadcast

Attempt at a solution: Public

Broadcast

Verify

Attempt at a solution: Public

Broadcast

Adversary's contribution $R = k_A k_h \cdot G$

 $\sum \Gamma_i = G + \epsilon k_A \cdot G$

Attempt at a solution: Public

Broadcast

Adversary's contribution $R = k_A k_h \cdot G$

 $\Gamma_i = G + \epsilon k_A \cdot G$

Easy for Adv. to offset

• Currently we expect $\sum \Gamma_i$ to hit a fixed target G

• Currently we expect $\sum \Gamma_i$ to hit a fixed target G

• Idea: randomize the multiplication so target is unpredictable

• Currently we expect $\sum \Gamma_i$ to hit a fixed target G

• Compute $\left| \frac{\phi}{k} \right|$ instead of

- Idea: randomize the multiplication so target is unpredictable

f
$$\begin{bmatrix} 1 \\ -k \end{bmatrix}$$

• Currently we expect $\sum \Gamma_i$ to hit a fixed target G

• Idea: randomize the multiplication so target is unpredictable

• Compute
$$\begin{bmatrix} \phi \\ -k \end{bmatrix}$$
 instead of

• Reveal ϕ only after every other value is committed

of $\begin{vmatrix} 1 \\ - \\ k \end{vmatrix}$

Public

Broadcast

Adversary's contribution Attempt at a solution: Honest Party's contribution $R = k_A k_h \cdot G$

Attempt at a solution: Public

Broadcast

 $\Gamma_{i} = \begin{bmatrix} \phi_{A} & \phi_{h} \\ \frac{k}{k} & \frac{k}{k} \end{bmatrix} \cdot R$

Attempt at a solution: Public

Broadcast

 $\Gamma_{i} = \left[\frac{\phi_{A} \phi_{h}}{k_{A} k_{h}} \right] \cdot R$

 $\sum \Gamma_i = \phi_A \phi_h \cdot G$

Attempt at a solution: Public

Broadcast

 $\Gamma_{i} = \begin{bmatrix} \phi_{A} & \phi_{h} \\ \frac{k_{A}}{k_{A}} & k_{h} \end{bmatrix} \cdot R$

Attempt at a solution: Public

Broadcast

Verify

Attempt at a solution: Public

Broadcast

Adversary's contribution $R = k_A k_h \cdot G$

 $\sum \Gamma_i = \Phi + \epsilon \phi_h k_A \cdot G$

Attempt at a solution: Public

Broadcast

Adversary's contribution $R = k_A k_h \cdot G$

 $\Gamma_i = \Phi + \epsilon \phi_h k_A \cdot G$

Completely unpredictable

There are **three** reverified

There are three relations that have to be

There are **three** reverified

There are three relations that have to be

There are **three** reverified

There are **three** reverified

Each costs, per party:

There are **three** reversified

Each costs, per party:

-2 exponentiations

verified

- Each costs, per party:
- -2 exponentiations
- -2 field elements

Check in Exponent There are **three** relations that have to be verified рk sk k

- Each costs, per party:
- -2 exponentiations
- -2 field elements
- Two broadcast rounds

Our Approach

- Setup: MUL setup, VSS for [sk]
- Signing:
 - 1. Get candidate shares [k], [1/k], and $R = k \cdot G$
 - 2. Compute [sk/k] = MUL([1/k], [sk])
 - 3. Check relations in exponent
 - Reconstruct sig = $\left[\frac{1}{k} \cdot H(m) + \frac{sk}{k}\right]$ 4.

Our Approach

- Setup: MUL setup, VSS for [sk]
- Signing:
 - 1. Get candidate shares [k], [1/k], and $R = k \cdot G$
 - 2. Compute [sk/k] = MUL([1/k], [sk])
 - 3. Check relations in exponent
 - Reconstruct $sig = [1/k] \cdot H(m) + [sk/k]$ 4.

Broadcast linear combination of shares

Setup

Signing

Rounds

Setup

Signing

Rounds Pu

Setup

Signing

Public Key

Rounds Public Key Bandwidth

Setup

Signing

ublic Key	Bandwidth

ublic Key	Bandwidth

ublic Key	Bandwidth
520 <i>n</i>	

ublic Key	Bandwidth	
520 <i>n</i>	21 <i>n</i> KB	

ublic Key	Bandwidth	
520 <i>n</i>	21 <i>n</i> KB	

ublic Key	Bandwidth
520 <i>n</i>	21 <i>n</i> KB
5	

Iblic Key	Bandwidth
520n	21 <i>n</i> KB
5	<100 <i>t</i> KB

Journal version (in progress): 8 round signing (à la [Bar-Ilan Beaver 89])

ublic Key	Bandwidth	
520 <i>n</i>	21 <i>n</i> KB	
5	<100 <i>t</i> KB	

Implementation in Rust

- Implementation in Rust
- Ran benchmarks on Google Cloud

- Implementation in Rust
- Ran benchmarks on Google Cloud
- One node per party

- Implementation in Rust
- Ran benchmarks on Google Cloud
- One node per party
- LAN and WAN tests (up to 16 zones)

- Implementation in Rust
- Ran benchmarks on Google Cloud
- One node per party
- LAN and WAN tests (up to 16 zones)
- Low Power Friendliness: Raspberry Pi (~93ms for 3-of-3)

Broadcast PoK (DLog), Pairwise: 128 OTs

LAN Signing

LAN Signing

LAN Signing

WAN Benchmarks

Parties/Zones	Signing Rounds	Signing Time	Setup Time
5/1	9	13.6	67.9
5/5	9	288	328
16/1	10	26.3	181
16/16	10	3045	1676
40/1	12	60.8	539
40/5	12	592	743
128/1	13	193.2	2300
128/16	13	4118	3424

All time values in milliseconds

WAN Benchmarks

Parties/Zones	Signing Rounds	Signing Time	Setup Time
5/1	9	13.6	67.9
5/5	9	288	328
16/1	10	26.3	181
16/16	10	3045	1676
40/1	12	60.8	539
40/5	12	592	743
128/1	13	193.2	2300
128/16	13	4118	3424

All time values in milliseconds

WAN Benchmarks

Parties/Zones	Signing Rounds	Signing Time	Setup Time
5/1	9	13.6	67.9
5/5	9	288	328
16/1	10	26.3	181
16/16	10	3045	1676
40/1	12	60.8	539
40/5	12	592	743
128/1	13	193.2	2300
128/16	13	4118	3424

All time values in milliseconds

Comparison

All time figures in milliseconds

	Signing		Set	tup
Protocol	t = 2	t = 20	n=2	n = 20
This Work	9.5	31.6	45.6	232
GG18	77	509	_	
LNR18	304	5194	$\sim \! 11000$	$\sim \! 28000$

Note: Our figures are wall-clock times; includes network costs
Comparison

All time figures in milliseconds

	Signing		Setup	
Protocol	t = 2	t = 20	n = 2	n = 20
This Work	9.5	31.6	45.6	232
GG 18	77	509	_	
LNR18	304	5194	$\sim \! 11000$	$\sim \! 28000$

Note: Our figures are wall-clock times; includes network costs

Mobile applications (human-initiated):

Mobile applications (human-initiated):

Mobile applications (human-initiated):

- eg. t=4, <4Mb transmitted per party

Mobile applications (human-initiated):

- eg. t=4, <4Mb transmitted per party

- Well within LTE envelope for responsivity

Large-scale automated distributed signing:

Large-scale automated distributed signing:

- Large-scale automated distributed signing:

- Threshold 2: 3.8ms/sig <= ~263 sig/second

- Large-scale automated distributed signing:
 - Threshold 2: 3.8ms/sig <= ~263 sig/second
 - Threshold 20: 31.6ms/sig <= ~31 sig/second

- Large-scale automated distributed signing:
 - Threshold 2: 3.8ms/sig <= ~263 sig/second
 - Threshold 20: 31.6ms/sig <= ~31 sig/second
- Both settings need <500Mb bandwidth

Efficient full-threshold ECDSA with fully distributed keygen

Efficient full-threshold ECDSA with fully distributed keygen

 Paradigm: 'produce candidate shares, verify by exponent check' costs 5 exponentiations (+ many hashes) to sign, no ZK online

- (**CDH** in the same curve)

Efficient full-threshold ECDSA with fully distributed keygen

 Paradigm: 'produce candidate shares, verify by exponent check' costs 5 exponentiations (+ many hashes) to sign, no ZK online

Instantiation: Cryptographic assumptions native to ECDSA itself

- (**CDH** in the same curve)
- Lightweight computation but communication well within practical range (<100t KB/party)

Efficient full-threshold ECDSA with fully distributed keygen

 Paradigm: 'produce candidate shares, verify by exponent check' costs 5 exponentiations (+ many hashes) to sign, no ZK online

Instantiation: Cryptographic assumptions native to ECDSA itself

- (**CDH** in the same curve)
- Lightweight computation but communication well within practical range (<100t KB/party)
- Wall-clock times: Practical in realistic scenarios

Efficient full-threshold ECDSA with fully distributed keygen

 Paradigm: 'produce candidate shares, verify by exponent check' costs 5 exponentiations (+ many hashes) to sign, no ZK online

Instantiation: Cryptographic assumptions native to ECDSA itself

Thank you!

eprint.iacr.org/2019/523