Threshold ECDSA in Three Rounds

Jack Doerner

Yashvanth Kondi S, LENCE Aboratories

D D BROWN Ш/

Eysa Lee

abhi shelat

Northeastern University

Ballad of *Bitcoin* Bob

Ballad of *Bitcoin* Bob

Ballad of *Bitcoin* Bob

Ballad of *Bitcoin* Bob

Ballad of Bitcoin Bob

Ballad of *Bitcoin* Bob

Ballad of *Bitcoin* Bob

Ballad of Bitcoin Bob

Ballad of *Bitcoin* Bob

Distributed Risk: Attacker will need to compromise multiple devices

How to distribute ECDSA

Tradeoffs

ECDSA Tuples

<u>New protocol</u>: Simple consistency check

OT vs AHE

• Corruption threshold

Dishonest majority (only one device uncompromised)

• Corruption threshold

Dishonest majority (only one device uncompromised)

• Corruption threshold

• Adversarial behaviour

Dishonest majority (only one device uncompromised)

• Corruption threshold

Dishonest majority (only one device uncompromised)

• Adversarial behaviour

• Corruption threshold

Dishonest majority (only one device uncompromised)

• Adversarial behaviour

• Corruption threshold

Dishonest majority (only one device uncompromised)

• Adversarial behaviour

• Corruption threshold

Dishonest majority (only one device uncompromised)

• Adversarial behaviour

Malicious (arbitrary deviations from protocol)

Concrete Example: Schnorr Signatures

Concrete Example: Schnorr Signatures

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

Concrete Example: Schnorr Signatures

- Tools:

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]
- Tools:
 - Hash function $H: \{0,1\}^* \to \mathbb{Z}_q$

- Tools:
 - Hash function $H: \{0,1\}^* \to \mathbb{Z}_q$
 - Group $(\mathbb{G}, G, q, +)$

- Tools:
 - Hash function $H: \{0,1\}^* \to \mathbb{Z}_q$

• Group -
$$(\mathbb{G}, G, q, +)$$

Group elements

- Tools:

• Hash function - $H: \{0,1\}^* \to \mathbb{Z}_q$

• Group -
$$(\mathbb{G}, G, q, +)$$

Group elements

Points on an Elliptic Curve

- Tools:

• Hash function - $H: \{0,1\}^* \to \mathbb{Z}_q$

• Group -
$$(\mathbb{G}, G, q, +)$$

Group elements
Points on an
liptic Curve

- Tools:

• Hash function - $H: \{0,1\}^* \to \mathbb{Z}_q$

- Tools:

• Hash function - $H: \{0,1\}^* \to \mathbb{Z}_q$

• Group -
$$(\mathbb{G}, G, q, +)$$

Group elements
Points on an
Elliptic Curve
Generator
 $\approx 2^{256}$

- Tools:

• Hash function - $H: \{0,1\}^* \to \mathbb{Z}_q$

- Tools:

• Hash function - $H: \{0,1\}^* \to \mathbb{Z}_a$

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

Sixty Seconds on Cyclic Groups

- Tools:

• Hash function - $H: \{0,1\}^* \to \mathbb{Z}_q$

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

Sixty Seconds on Cyclic Groups

If $X, Y \in \mathbb{G}$ then $X + Y = Z \in \mathbb{G}$

- Tools:

• Hash function - $H: \{0,1\}^* \to \mathbb{Z}_q$

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

Sixty Seconds on Cyclic Groups

If $X, Y \in \mathbb{G}$ then $X + Y = Z \in \mathbb{G}$

Any $X \in \mathbb{G}$ can be written as $x \cdot G$ $x \in \mathbb{Z}_q$ is the *discrete logarithm* of *X*

- Tools:

• Hash function - $H: \{0,1\}^* \to \mathbb{Z}_q$

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

Sixty Seconds on Cyclic Groups

If $X, Y \in \mathbb{G}$ then $X + Y = Z \in \mathbb{G}$

Any $X \in \mathbb{G}$ can be written as $x \cdot G$ $x \in \mathbb{Z}_q$ is the *discrete logarithm* of *X*

$$(x+y)\cdot G = x\cdot G + y\cdot G$$

- Tools:

• Hash function - $H: \{0,1\}^* \to \mathbb{Z}_q$

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

Sixty Seconds on Cyclic Groups

If $X, Y \in \mathbb{G}$ then $X + Y = Z \in \mathbb{G}$

Any $X \in \mathbb{G}$ can be written as $x \cdot G$ $x \in \mathbb{Z}_{q}$ is the *discrete logarithm* of X

- Tools:

• Hash function - $H: \{0,1\}^* \to \mathbb{Z}_q$

Discrete Logarithm Problem: Given random $X \in \mathbb{G}$, find its discrete logarithm

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

Sixty Seconds on Cyclic Groups If $X, Y \in \mathbb{G}$ then $X + Y = Z \in \mathbb{G}$ Any $X \in \mathbb{G}$ can be written as $x \cdot G$ $x \in \mathbb{Z}_q$ is the *discrete logarithm* of *X* Integer addition mod *q* Group addition $(x + y) \cdot G = x \cdot G + y \cdot G$

- Tools:

• Hash function - $H: \{0,1\}^* \to \mathbb{Z}_q$

Discrete Logarithm Problem: Given random $X \in \mathbb{G}$, find its discrete logarithm For certain elliptic curves, best known algorithms for DLP run in time $\Theta\left(\sqrt{q}\right)$

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

Sixty Seconds on Cyclic Groups If $X, Y \in \mathbb{G}$ then $X + Y = Z \in \mathbb{G}$

Any $X \in \mathbb{G}$ can be written as $x \cdot G$ $x \in \mathbb{Z}_q$ is the *discrete logarithm* of *X*

- Tools:

• Hash function - $H: \{0,1\}^* \to \mathbb{Z}_q$

Very informally:

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

Sixty Seconds on Cyclic Groups

If $X, Y \in \mathbb{G}$ then $X + Y = Z \in \mathbb{G}$

Any $X \in \mathbb{G}$ can be written as $x \cdot G$ $x \in \mathbb{Z}_{q}$ is the *discrete logarithm* of X

- Tools:

• Hash function - $H: \{0,1\}^* \to \mathbb{Z}_q$

Very informally: $x \to X$ EASY

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

Sixty Seconds on Cyclic Groups

If $X, Y \in \mathbb{G}$ then $X + Y = Z \in \mathbb{G}$

Any $X \in \mathbb{G}$ can be written as $x \cdot G$ $x \in \mathbb{Z}_{q}$ is the *discrete logarithm* of X

- Tools:

• Hash function - $H: \{0,1\}^* \to \mathbb{Z}_q$

Very informally: $x \to X$ EASY

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

Sixty Seconds on Cyclic Groups

If $X, Y \in \mathbb{G}$ then $X + Y = Z \in \mathbb{G}$

Any $X \in \mathbb{G}$ can be written as $x \cdot G$ $x \in \mathbb{Z}_{q}$ is the *discrete logarithm* of X

- Tools:

• Hash function - $H: \{0,1\}^* \to \mathbb{Z}_q$

Very informally: $x \to X$ EASY

 $30\mu s$

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

Sixty Seconds on Cyclic Groups

If $X, Y \in \mathbb{G}$ then $X + Y = Z \in \mathbb{G}$

Any $X \in \mathbb{G}$ can be written as $x \cdot G$ $x \in \mathbb{Z}_{q}$ is the *discrete logarithm* of X

- Tools:

• Hash function - $H: \{0,1\}^* \to \mathbb{Z}_q$

Very informally:

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

Sixty Seconds on Cyclic Groups If $X, Y \in \mathbb{G}$ then $X + Y = Z \in \mathbb{G}$ Any $X \in \mathbb{G}$ can be written as $x \cdot G$

 $x \in \mathbb{Z}_{q}$ is the *discrete logarithm* of X

Integer addition mod *q* Group addition $(x + y) \cdot G = x \cdot G + y \cdot G$

 $30\mu s$

Many billion billions of years

Schnorr Key Generation

secret kept private

- SchnorrKeyGen(\mathbb{G}, G, q) :
 - $\mathbf{sk} \leftarrow \mathbb{Z}_q$
 - $\mathsf{PK} = \mathsf{sk} \cdot G$
 - output (sk, PK)

Public Key: exposed to the outside world

SchnorrKeyGen(\mathbb{G}, G, q) : $sk \leftarrow \mathbb{Z}_q$ $PK = sk \cdot G$ output (sk, PK) SchnorrSign(sk, m) :

- •
- •
- •
- •
- •
- •
- •
- •

SchnorrKeyGen(\mathbb{G}, G, q) : $\mathbf{sk} \leftarrow \mathbb{Z}_q$ $\mathsf{PK} = \mathbf{sk} \cdot G$ output (\mathbf{sk}, PK)

SchnorrSign(sk, m) : $k \leftarrow \mathbb{Z}_q$

SchnorrKeyGen(\mathbb{G}, G, q) : $\mathbf{sk} \leftarrow \mathbb{Z}_q$ $\mathsf{PK} = \mathbf{sk} \cdot G$ output (\mathbf{sk}, PK)

SchnorrSign(sk, m) : $k \leftarrow \mathbb{Z}_q$ $R = k \cdot G$

SchnorrKeyGen(\mathbb{G}, G, q) : $\mathbf{sk} \leftarrow \mathbb{Z}_q$ $\mathsf{PK} = \mathsf{sk} \cdot G$ output (sk, PK)

SchnorrSign(sk, m) : $k \leftarrow \mathbb{Z}_q$ $R = k \cdot G$

NONCE One-time use value

SchnorrKeyGen(\mathbb{G}, G, q) : $\mathbf{sk} \leftarrow \mathbb{Z}_q$ $\mathsf{PK} = \mathbf{sk} \cdot G$ output (\mathbf{sk}, PK)

SchnorrSign(sk, m): $k \leftarrow \mathbb{Z}_q$ $R = k \cdot G$ NONCE One-time use value e = H(R||m)

SchnorrKeyGen(\mathbb{G}, G, q) : $\mathbf{sk} \leftarrow \mathbb{Z}_q$ $\mathsf{PK} = \mathbf{sk} \cdot G$ output (\mathbf{sk}, PK)

SchnorrSign(sk, m) : $k \leftarrow \mathbb{Z}_q$ $R = k \cdot G$ One-time use value $s = k - \text{sk} \cdot e \pmod{q}$

SchnorrKeyGen(\mathbb{G}, G, q) : $sk \leftarrow \mathbb{Z}_q$ $PK = sk \cdot G$ output (sk, PK)

SchnorrSign(sk, m) : $k \leftarrow \mathbb{Z}_q$ $R = k \cdot G$ e = H(R||m) $s = k - sk \cdot e \pmod{q}$ $\sigma = (s, R)$ output σ

SchnorrKeyGen(\mathbb{G}, G, q) : $\mathbf{sk} \leftarrow \mathbb{Z}_q$ $\mathsf{PK} = \mathsf{sk} \cdot G$ output (sk, PK)

SchnorrKeyGen(\mathbb{G}, G, q) : $\mathbf{sk} \leftarrow \mathbb{Z}_a$ $\mathsf{PK} = \mathsf{sk} \cdot G$ output (sk, PK)

SchnorrKeyGen(\mathbb{G}, G, q) : $\mathbf{sk} \leftarrow \mathbb{Z}_q$ $\mathsf{PK} = \mathsf{sk} \cdot G$ output (sk, PK)

Secret Sharing

- We will only use "linear" secret sharing schemes a[x] + b[y] = [ax + by]

• [x] denotes that a value $x \in \mathbb{Z}_a$ is "secret-shared" across devices

 $x \in \mathbb{Z}_q$ $x_A + x_B = x$

 X_A

 $x \in \mathbb{Z}_q$ $x_A + x_B = x$

 x_B

 X_A

 $x \in \mathbb{Z}_q$ $x_A + x_B = x$

 $\begin{bmatrix} \mathcal{X} \end{bmatrix}$

 X_A

 $x \in \mathbb{Z}_q$ $x_A + x_B = x$

 $\begin{bmatrix} \mathcal{X} \end{bmatrix}$

 X_A

 $x \in \mathbb{Z}_q$ $x_A + x_B = x$

 $\begin{bmatrix} \mathcal{X} \end{bmatrix}$

 X_A

 X_A

 $x \in \mathbb{Z}_q$ $x_A + x_B = x$

 $\boldsymbol{\mathcal{X}}$

V $y_A + y_B = y$

 X_A

 y_A

 $x \in \mathbb{Z}_q$ $x_A + x_B = x$

 $\begin{bmatrix} \mathcal{X} \end{bmatrix}$

 $\boldsymbol{\mathcal{V}}$

 x_B

 y_{B}

 X_A

 y_A

 $x \in \mathbb{Z}_q$ $x_A + x_B = x$

 $\boldsymbol{\chi}$

 $y_{\boldsymbol{B}}$

 $x \in \mathbb{Z}_q$ $x_A + x_B = x$

 $\boldsymbol{\mathcal{X}}$

*Y*_{*R*}

V $\left[z = cx + y\right]$

 $z_{R} = c x_{R} + y_{R}$

Distributing Schnorr w. Additive Secret Sharing

 $x \in \mathbb{Z}_q$ $x_A + x_B = x$ $\boldsymbol{\mathcal{X}}$ X_R \mathcal{V} *Y*_{*R*} z = cx + y $z_R = c x_R + y_R$

Distributing Schnorr w. Additive Secret Sharing

 $\mathbf{sk} \in \mathbb{Z}_q$ $\mathbf{sk}_A + \mathbf{sk}_B = \mathbf{sk}$ sk_B |k| k_{R} $S_R = e \operatorname{sk}_B + k_B$

Distributing Schnorr w. Additive Secret Sharing

 $\mathbf{sk} \in \mathbb{Z}_q$ $\mathbf{sk}_A + \mathbf{sk}_B = \mathbf{sk}$ Sk sk_R |k| k_R $R = k \cdot G$ $e = H(m, \mathbf{R})$ $s_A = e \operatorname{sk}_A + k_A$ $[s = e \operatorname{sk} + k]$ $s_B = c \operatorname{sk}_B + k_B$

3 Round Schnorr Signing Folklore, [Lindell 22] Input : $pk = [sk] \cdot G$, [sk], [k]

Establish $R = [k] \cdot G$

Exchange Commit $(R_i = [k]_i \cdot G)$

Release R_i , set $R = \Sigma_i R_i$

Reveal $s = [sk] \cdot H(m, R) + [k]$

Output (R, s)

(Threshold) Schnorr in Practice?

- easy to distribute with MPC (i.e. thresholdize)
- internet infrastructure does not support Schnorr

• Schnorr signatures are **old** (well-studied), **compact**, **fast**, and

• However it was patented—major barrier for internet adoption

• Patent expired recently; adoption is increasing but much of the

- <u>Elliptic</u> <u>Curve</u> <u>Digital</u> <u>Signature</u> <u>Algorithm</u>
- Devised by Scott Vanstone in 1992, standardized by NIST
- Differs from Schnorr enough so that patent doesn't apply
- Widespread adoption across the internet
 - ... but MPC-unfriendly

ECDSA

 $k \leftarrow \mathbb{Z}_q$ $R = k \cdot G$ $e = H(\mathbf{R} \| m)$ $s = k - \mathbf{sk} \cdot e$ $\sigma = (s, R)$

output σ

SchnorrSign(sk, m): : ECDSASign(sk, m):

SchnorrSign(sk, m) :

 $k \leftarrow \mathbb{Z}_q$ $R = k \cdot G$ $e = H(\mathbf{R} \| m)$ $s = k - \mathbf{sk} \cdot e$ $\sigma = (s, R)$

output σ

ECDSASign(sk, m) :

 $k \leftarrow \mathbb{Z}_q$ $R = k \cdot G$ e = H(m)

Standard 2 round sampling

SchnorrSign(sk, m) :

 $k \leftarrow \mathbb{Z}_q$ $R = k \cdot G$ $e = H(\mathbf{R} \| m)$ $s = k - \mathbf{sk} \cdot e$ $\sigma = (s, R)$

output σ

ECDSASign(sk, m) :

 $k \leftarrow \mathbb{Z}_q$ $R = k \cdot G$

e = H(m)

$$s = \frac{e + \mathbf{s} \mathbf{k} \cdot r_x}{k}$$

output $\sigma = (s, R)$

Standard 2 round sampling

- output $\sigma = (s, R)$

- ECDSASign(sk, m) :
 - $k \leftarrow \mathbb{Z}_q$ $R = k \cdot G$
 - e = H(m)
 - $e + \mathbf{sk} \cdot r_x$ k S =

- e = H(m) $e + \mathbf{sk} \cdot r_x$ $s = \cdot$ k

- ECDSASign(sk, m) : $k \leftarrow \mathbb{Z}_q$ $R = k \cdot G$ output $\sigma = (s, R)$

Multiplication of secret values

Secure Two-Party Multiplication

a.k.a. OLE, Mult2Add Underlies many dishonest majority MPC protocols

α

Secure Two-Party Multiplication a.k.a. OLE, Mult2Add Underlies many dishonest majority MPC protocols 2P-MUL

Secure Two-Party Multiplication a.k.a. OLE, Mult2Add Underlies many dishonest majority MPC protocols 2P-MUL

Secure Two-Party Multiplication a.k.a. OLE, Mult2Add Underlies many dishonest majority MPC protocols 2P-MUL

 $c + d = \alpha \cdot \beta$

Tool to split a product of secret inputs $\alpha\beta$ into additive secrets *c*, *d*

Secure Two-Party Multiplication

a.k.a. OLE, Mult2Add

Underlies many dishonest majority MPC protocols

2P-MUL

 $c + d = \alpha \cdot \beta$

Instantiable efficiently from: OT, Paillier, Class Groups

Threshold ECDSA: State of the Art

• Rough costs with 256-bit curve, for each additional party (computation aggregated across [Gavenda 21, XAXYC 21, BMP 22]):

Protocol	2P - MUL	Rounds	Bandwidth (KB)	Computation (ms)
[DKLs 19] [HLNR 18/23]	OT OT+	log(t) + 6 5	90 40	<10 50—100
[CGGMP 20] [GG 18]	Paillier	4	15 7	Hundreds Hundreds
[CCLST20, YCX21]	Class Groups	4	4	> 1000

• Rough costs with 256-bit curve, for each additional party (computation aggregated across [Gavenda 21, XAXYC 21, BMP 22]):

	2P-MUL	Bandwidth (KB)
1	OT	90
Simple, unified protocol	Paillier	15
	Class Groups	4

• Rough costs with 256-bit curve, for each additional party (computation aggregated across [Gavenda 21, XAXYC 21, BMP 22]):

	2P-MUL	Bandwidth (KB)
1	OT	90
Simple, unified protocol	Paillier	15
	Class Groups	4

This work: 3 Round Signing from 2 round 2P-MUL

• Rough costs with 256-bit curve, for each additional party (computation aggregated across [Gavenda 21, XAXYC 21, BMP 22]):

	2P-MUL	Bandwidth (KB)
1	OT	90
Simple, unified protocol	Paillier	15
	Class Groups	4

This work: 3 Round Signing from 2 round 2P-MUL

mild/no overhead

• Rough costs with 256-bit curve, for each additional party (computation aggregated across [Gavenda 21, XAXYC 21, BMP 22]):

	2P-MUL	Bandwidth (KB)
1	OT	90
Simple, unified protocol	Paillier	15
	Class Groups	4

This work: 3 Round Signing from 2 round 2P-MUL

mild/no overhead

Insight: well-chosen rewriting of ECDSA +simple consistency check

• Rough costs with 256-bit curve, for each additional party (computation aggregated across [Gavenda 21, XAXYC 21, BMP 22]):

This work: 3 Round Signing from 2 round 2P-MUL

mild/no overhead

Insight: well-chosen rewriting of ECDSA +simple consistency check

Intro

MP-Schnorr is easy

but not ECDSA

Evolution of Techniques

How to distribute ECDSA

Tradeoffs

ECDSA Tuples

Our protocol: Simple consistency check

A Brief History of Threshold ECDSA

- rounds), and benchmarks.
- This doesn't tell the full story of *techniques* \Rightarrow necessary context for "simplicity"
- protocol structure has evolved over time

• "End result" protocols are typically compared by security models, assumptions, concrete efficiency (bandwidth,

• <u>Qualitative comparison</u>: trace how Threshold ECDSA

MPC for ECDSA

- Standard recipe in the literature:
 - i.e. only additions and multiplications of secret values
 - Cryptographic Machinery for secure multiplication
 - Verify that all operations were performed honestly

• Computing $[k^{-1}]$ given [k] (as used in ECDSA signing) naively as an arithmetic circuit is prohibitively expensive—warrants custom protocols

- Rewrite ECDSA signing equation to an "MPC-friendly" equivalent
[Langford 95][Gennaro Jarecki Krawczyk Rabin 96]

ECDSASign(sk, m) :

- $[k] \leftarrow \mathbb{Z}_q$ $R = [k] \cdot G$
 - e = H(m)
 - $s = \frac{e + [sk] \cdot r_x}{[k]}$
- output $\sigma = (s, R)$

[Langford 95][Gennaro Jarecki Krawczyk Rabin 96]

- ECDSASign(sk, m) :
 - $[k] \leftarrow \mathbb{Z}_a$
 - $R = [k] \cdot G$
 - e = H(m)

 $s = (e + [sk] \cdot r_x)[k]$ output $\sigma = (s, R)$

[Langford 95][Gennaro Jarecki Krawczyk Rabin 96]

- ECDSASign(sk, m) :
 - $[k] \leftarrow \mathbb{Z}_q$ $R = [k] \cdot G$
 - e = H(m)

 $s = (e + [sk] \cdot r_x)[k]$ output $\sigma = (s, R)$

Inverted Nonce Rewriting [Langford 95][Gennaro Jarecki Krawczyk Rabin 96]

Equivalent to ECDSA But how to securely compute $k^{-1}G$?

ECDSASign(sk, m) :

 $[k] \leftarrow \mathbb{Z}_q$ $\mathbf{R} = [k^{-1}] \cdot \mathbf{G}$ e = H(m)

 $s = (e + [sk] \cdot r_x)[k]$ output $\sigma = (s, R)$

Equivalent to ECDSA But how to securely compute $k^{-1}G$?

- $[k] \leftarrow \mathbb{Z}_a$
- $[\phi] \leftarrow \mathbb{Z}_{a}$
- reveal $[\phi] \cdot [k]$
- reveal $\Phi = \phi \cdot G$ $\mathbf{R} = (\phi k)^{-1} \cdot \Phi = [k^{-1}] \cdot G$

 - e = H(m) $s = (e + [sk] \cdot r_{x})[k]$
- output $\sigma = (s, R)$

[Langford 95][Gennaro Jarecki Krawczyk Rabin 96]

ECDSASign(sk, m) :

First appears in [Bar-Ilan Beaver 89]

1990s	[Lan95, GJKR96]	
Rewriting	Inverted Nonce	
Machinery	Honest Majority Magic	

-		•				
1990s	[Lan95, GJKR96]	[MR01]	[GGN16, BGG17]	[Lin17]	[DKLs 18, 19]	201
Rewriting	Inverted Nonce		Multi	plicativ	e	
Machinery	Honest Majority Magic	(Thre Pai	eshold) illier	Paillier	OT	

Now showing		_	
1990s	[Lan95, GJKR96]	[MR01]	[C B
Rewriting	Inverted Nonce		
Machinery	Honest Majority Magic	(Thre Pai	esh illi

low showing	MacKenz	zie Reite	r 01			
1990s	[Lan95, GJKR96]	[MR01]	[GGN16, BGG17]	[Lin17]	[D <mark>K</mark> Ls 18, 19]	201
Rewriting	Inverted Nonce	Mu	ltiplicativ s	$\stackrel{e:}{=} \left(\frac{a}{k}\right)$	$+\left(\frac{b\mathbf{sk}}{k}\right)$	
Machinery	Honest Majority Magic	(Thre Pa	eshold) illier	Paillier	OT	

	A Brief	fHist	ory	0
No	w showing	Gennaro Go	ldfeder I	Vai
	1990s	[Lan95, GJKR96]	[MR01]	[G B
	Rewriting	Inverted Nonce	Mu	ltij
	Machinery	Honest Majority Magic	(Thre Pai	esh illio

of Threshold ECDSA

rayanan 16, Boneh, Gennaro, Goldfeder 17

Now showing Lindell 17 1990s [Lan95, GJKR96] Inverted Rewriting Nonce Honest (Threshold) Majority Magic Machinery Paillier

ow showing	Doer	ner, <mark>K</mark> , L	.ee
1990s	[Lan95, GJKR96]	[MR01]	[C B
Rewriting	Inverted Nonce	Mu	ilti
Machinery	Honest Majority Magic	(Thre Pai	esh illi

Doerner, K, Lee, shelat 18 & 19

2018

-							
	[Lin17]	[DKLs 18, 19]	[GG 18, 20]	[CGGMP 20]	[HLNR 18, 23]	[ANOSS 22]	[ST19, DOKSS20]
Rewriting	Multij	olicative	Invertee	d Nonce	ECDSA	tuple	<flexible></flexible>
Machinery	Paillier	OT	Pai	llier	OT++	PCG	<flexible></flexible>

now-ish

Nouv	chowing
INOW	Snowing

A Brief History of Threshold ECDSA											
ow showing	Genr	naro Goldfe	eder 18 8	& 20				now-ish			
	[Lin17]	[DKLs 18, 19]	[GG 18, 20]	[CGGM 20]	/IP [F 18	ILNR 3, 23]	[ANOS 22]	S [ST19, DOKSS20]			
Rewriting	Multip	olicative	Inver	ted Nonce	J	ECDSA	tuple	<flexible></flexible>			
Machinery	Paillier	OT	P	aillier	С)T++	PCG	<flexible></flexible>			

No

A Brief History of Threshold ECDSA											
ow showing	Canet	ti, Gennaro	o, Goldfede	er, Makriya	annis, Pele	ed 20	now-ish				
	[Lin17]	[DKLs 18, 19]	[GG 18, 20]	[CGGMP 20]	[HLNR 18, 23]	[ANOS 22]	5 [ST19, DOKSS20]				
Rewriting	Multip	olicative	Inverted	l Nonce	ECDSA	tuple	<flexible></flexible>				
Machinery	Paillier	OT	Pail	lier	OT++	PCG	<flexible></flexible>				

	A Brief History of Threshold ECDSA											
No	w showing	Lindell	indell Nof 18, Haitner, Lindell, Nof, Ranellucci 23 now-ish									
		[Lin17]	[DKLs 18, 19]	[GG 18, 20]	[CGGMP 20]	[HLNR 18, 23]	[ANOS 22]	S [ST19, DOKSS20]				
	Rewriting	Multij	olicative	Invert	ed Nonce	ECDSA	tuple	<flexible></flexible>				
	Machinery	Paillier	OT	Pa	aillier	OT++	PCG	<flexible></flexible>				

N

A Brief History of Threshold ECDSA											
ow showing	-	Abram Nof Orlandi Scholl Shlomovits 22									
	[Lin17]	[DKLs 18, 19]	[GG 18, 20]	[CGGMP 20]	[HLNR 18, 23]	[ANOSS 22]	[ST19, DOKSS20]				
Rewriting	Multij	olicative	Inverte	d Nonce	ECDSA	tuple	<flexible></flexible>				
Machinery	Paillier	OT	Pai	llier	OT++	PCG	<flexible></flexible>				

A Brief History of Threshold ECDSA									
w showing	Smart Talibi 19, Dalskov, Orlandi, Keller, Shrishak, Shulman 20								
	[Lin17]	[DKLs 18, 19]	[GG 18, 20]	[CGGMP 20]	[HLNR 18, 23]	[ANOSS 22]	[ST19, DOKSS20]		
Rewriting	Multi	olicative	Inverted Nonce		ECDSA	tuple	<flexible></flexible>		
Machinery	Paillier	OT	Paillier		OT++	PCG	<flexible></flexible>		

A Brief History of Threshold ECDSA										
No	w showing	Smart Talibi 19, Dalskov, Orlandi, Keller, Shrishak, Shulman 20								
		[Lin17]	[DKLs 18, 19]	[GG 18, 20]	[CGGMP 20]	[HLNR 18, 23]	[ANOSS 22]	[ST19, DOKSS2		
	Rewriting	Multi	olicative	Inverte	d Nonce	ECDSA	tuple	<flexibl< th=""></flexibl<>		
	Machinery	Paillier	OT	Pai	illier	OT++	PCG	<flexibl< th=""></flexibl<>		

	·							
	[Lin17]	[DKLs 18, 19]	[GG 18, 20]	[CGGMP 20]	[HLNR 18, 23]	[ANOSS 22]	[ST19, DOKSS20]	
Rewriting	Multij	plicative	Inverted Nonce		ECDSA tuple		<flexible></flexible>	
Machinery	Paillier	OT	Paillier		OT++	PCG	<flexible></flexible>	
Verification	2P magic	Check relations in exponent	ZK in \mathbb{Z}_N + Masked sig verification	$\begin{array}{c} \text{GMW-} \\ \text{style ZK} \\ \text{in } \mathbb{Z}_N \end{array}$	Replay in committed form ZK in Z	BDOZ MAC	Any \mathbb{Z}_q MAC	

now-ish

-								
	[Lin17]	[DKLs 18, 19]	[GG 18, 20]	[CGGMP 20]	[HLNR 18, 23]	[ANOSS 22]	[ST19, DOKSS20]	
Rewriting	Multij	olicative	Inverted	Nonce	ECDSA	<flexible></flexible>		
Machinery	Paillier	OT	Paill	ier	OT++	PCG	<flexible></flexible>	
Verification	2P magic 2P-only	Check relations in exponent Involved	ZK in \mathbb{Z}_N + Masked sig verification Machiner	GMW- style ZK in \mathbb{Z}_N Expensiv	Replay in committed form e ZK in \mathbb{Z}_q	BDOZ MAC Creat	Any \mathbb{Z}_q MAC	
		Interactive specific proofs UC ZK				is extra work		

now-ish

This work

ECDSA tuple

Any 2P-MUL

Simple statistical check

Straightforward analysis

<u>No extra work</u>: re-uses byproduct of 2P-MUL

Rewriting ECDSA with ECDSA Tuples [Lindell Nof Ranellucci 18] [Abram Nof Orlandi Scholl Shlomovits 22]

ECDSASign(sk, m) : $[k] \leftarrow \mathbb{Z}_a$ $R = [k] \cdot G$ e = H(m) $s = \frac{e + [sk] \cdot r_x}{1 - 1}$ [k]output $\sigma = (s, R)$

Rewriting ECDSA with ECDSA Tuples [Lindell Nof Ranellucci 18] [Abram Nof Orlandi Scholl Shlomovits 22]

ECDSASign(sk, m) : $[k] \leftarrow \mathbb{Z}_a$ $R = [k] \cdot G$ e = H(m) $s = \frac{e + [sk] \cdot r_x}{[k]} \cdot \frac{[\phi]}{[\phi]}$ output $\sigma = (s, R)$

Rewriting ECDSA with ECDSA Tuples

[Lindell Nof Ranellucci 18] [Abram Nof Orlandi Scholl Shlomovits 22] ECDSASign(sk, m) :

- $[k] \leftarrow \mathbb{Z}_q$
 - $R = [k] \cdot G$
 - e = H(m)
 - $\alpha = (e + [\mathbf{sk}] \cdot r_x) [\phi]$
 - $\beta = [k][\phi]$

output $\sigma = (s, R)$

Rewriting ECDSA with ECDSA Tuples

[Lindell Nof Ranellucci 18] [Abram Nof Orlandi Scholl Shlomovits 22] ECDSASign(sk, m) :

- $[k] \leftarrow \mathbb{Z}_q$
 - $R = [k] \cdot G$
 - e = H(m)
 - $\alpha = (e + [\mathbf{sk}] \cdot r_x) [\phi]$
 - $\beta = [k][\phi]$
- output $\sigma = (s, R)$

Rewriting ECDSA with ECDSA Tuples [Lindell Nof Ranellucci 18] [Abram Nof Orlandi Scholl Shlomovits 22] ECDSASign(sk, m) : $[k] \leftarrow \mathbb{Z}_q$ $R = [k] \cdot G$ e = H(m) $[\phi] \leftarrow \mathbb{Z}_a$ $\alpha = (e + [\mathbf{sk}] \cdot r_x) [\phi]$ $\beta = [k][\phi]$

- output $\sigma = (s, R)$

Rewriting ECDSA with ECDSA Tuples [Lindell Nof Ranellucci 18] [Abram Nof Orlandi Scholl Shlomovits 22] ECDSASign(sk, m) : $[k] \leftarrow \mathbb{Z}_q$ $R = [k] \cdot G$ e = H(m) $[\phi] \leftarrow \mathbb{Z}_q$ $\alpha = (e + [\mathbf{sk}] \cdot r_x) [\phi]$ Public values $\beta = [k][\phi]$

- output $\sigma = (s, R)$

Rewriting ECDSA with ECDSA Tuples [Lindell Nof Ranellucci 18] [Abram Nof Orlandi Scholl Shlomovits 22] ECDSASign(sk, m) : $[k] \leftarrow \mathbb{Z}_q$ $R = [k] \cdot G$ e = H(m) $[\phi] \leftarrow \mathbb{Z}_a$ $\alpha = (e + [\mathbf{sk}] \cdot r_x) [\phi]$ Public values $[k][\phi]$ Safe to reveal β : because ϕ is OTP α : because fixed by β , s

- output $\sigma = (s, R)$

Rewriting ECDSA with ECDSA Tuples [Lindell Nof Ranellucci 18] [Abram Nof Orlandi Scholl Shlomovits 22] ECDSASign(sk, m) : $[k] \leftarrow \mathbb{Z}_q$ $R = [k] \cdot G$ e = H(m) $[\phi] \leftarrow \mathbb{Z}_{a}$ $\alpha = (e + [sk] \cdot r_x) [\phi]$ Public values [*k*][*φ*] Safe to reveal β : because ϕ is OTP α : because fixed by β , s

Secure mult: Only (nonlinear) combination of secret values

output $\sigma = (s, R)$

Signing from ECDSA Tuples [Abram Nof Orlandi Scholl Shlomovits 22] $\begin{bmatrix} \mathsf{sk} \end{bmatrix} \begin{bmatrix} k \end{bmatrix} \begin{bmatrix} \phi \end{bmatrix} \begin{bmatrix} \phi \mathsf{sk} \end{bmatrix} \begin{bmatrix} \phi \mathsf{sk} \end{bmatrix}$

Signing from ECDSA Tuples

[Abram Nof Orlandi Scholl Shlomovits 22]

 $\begin{bmatrix} \mathsf{sk} \end{bmatrix} \begin{bmatrix} k \end{bmatrix} \begin{bmatrix} \phi \end{bmatrix} \begin{bmatrix} \phi \end{bmatrix} \begin{bmatrix} \phi \mathsf{sk} \end{bmatrix}$

Establish $R = [k] \cdot G$

Round 3

Output $(R, s = \alpha/\beta)$

Signing from ECDSA Tuples

[Abram Nof Orlandi Scholl Shlomovits 22]

 $\begin{bmatrix} \mathsf{sk} \end{bmatrix} \begin{bmatrix} k \end{bmatrix} \begin{bmatrix} \phi \end{bmatrix} \begin{bmatrix} \phi \mathsf{sk} \end{bmatrix} \begin{bmatrix} \phi \mathsf{sk} \end{bmatrix}$

Establish $R = [k] \cdot G$

Reveal $\alpha = e + r_x[\phi sk]$ and $\beta = [\phi k]$

 $\begin{bmatrix} \mathbf{s} \mathbf{k} \end{bmatrix} \begin{bmatrix} \mathbf{k} \end{bmatrix}$ $\begin{bmatrix} \boldsymbol{\phi} \end{bmatrix}$

 $\begin{bmatrix} \phi k \end{bmatrix}$ $\begin{bmatrix} \phi s k \end{bmatrix}$

- **Input** : [**sk**][*k*]
- Sample : $[\phi]$

 $\begin{bmatrix} \mathbf{s} \mathbf{k} \end{bmatrix} \begin{bmatrix} \mathbf{k} \end{bmatrix}$ $\begin{bmatrix} \boldsymbol{\phi} \end{bmatrix}$

 $[\phi k]$ $[\phi sk]$

- **Input** : [**sk**][*k*]
- Sample : $[\phi]$

Local

 $\begin{bmatrix} \mathbf{sk} \end{bmatrix} \begin{bmatrix} k \end{bmatrix}$ $\begin{bmatrix} \phi \end{bmatrix}$

 $\begin{bmatrix} \phi k \end{bmatrix}$ $\begin{bmatrix} \phi s k \end{bmatrix}$

- **Input** : [**sk**][*k*]
- Sample : $[\phi]$

Local

 $\begin{bmatrix} \mathbf{s}\mathbf{k} \end{bmatrix} \begin{bmatrix} \mathbf{k} \end{bmatrix}$ $\begin{bmatrix} \boldsymbol{\phi} \end{bmatrix}$

$\begin{bmatrix} \phi k \end{bmatrix} = MULT([\phi], [k])$ $[\phi sk] = MULT([\phi], [sk])$
- Sample : $[\phi]$

Local

- Sample : $[\phi]$

Local

Previous works: ZK proofs, MACs, etc. This work: Simple pairwise check

Secure Two-Party Multiplication a.k.a. OLE, Mult2Add

 $c + d = \alpha \cdot \beta$

C

 $c + d = \alpha \cdot \beta$

C

C

Consistency "for free"

C

Consistency "for free"

- **Input** : [**sk**][*k*]
- Sample : $[\phi]$

$\begin{bmatrix} sk \end{bmatrix} \begin{bmatrix} k \\ \phi \end{bmatrix}$ $\begin{bmatrix} \phi \end{bmatrix}$ Consistency: straightforward $\begin{bmatrix} \phi k \end{bmatrix} = MULT(\begin{bmatrix} \phi \end{bmatrix}, \begin{bmatrix} k \end{bmatrix})$ $\begin{bmatrix} \phi sk \end{bmatrix} = MULT(\begin{bmatrix} \phi \end{bmatrix}, \begin{bmatrix} sk \end{bmatrix})$

- **Input** : [**sk**][*k*]
- Sample : $[\phi]$

Consistency: straightforward $[\phi k] = MULT([\phi], [k])$ $[\phi sk] = MULT([\phi], [sk])$ Verify: $\begin{bmatrix} k \end{bmatrix} \cdot G = R \\ [sk] \cdot G = pk$

- Sample : $[\phi]$

ϕ is a MAC on k, sk

Verify MAC in G

Byproduct of 2P-MUL: BDOZ MACs

Verify in parallel with MUL

Input: [sk][k]Consistency: straightforward $[\phi k] = MULT([\phi], [k])$ $[\phi sk] = MULT([\phi], [sk])$ Verify: $\begin{bmatrix} k \end{bmatrix} \cdot G = R \\ [sk] \cdot G = pk$

Verifying Consistency w.r.t. G $MULT([\phi], [k])$

Simplified :

Verifying Consistency w.r.t. \mathbb{G} MULT($[\phi], [k]$)

2P-MUL

Simplified :

K

Verifying Consistency w.r.t. \mathbb{G} MULT($[\phi], [k]$)

Notes on Consistency Check

- <u>Case 1</u>: Inconsistent k^* —almost certainly fails <u>Case 2</u>: Consistent k— nothing about ϕ leaked $\Rightarrow \phi$ is a MAC key, but also safe to (re)use in ECDSA tuple
- Very cheap, cost superseded by 2P-MUL
- Exact same structure for $[\phi sk]$ verification with pk
- Actual check: each party validates 2P-MUL inputs (i.e. <u>shares</u> of *k*, sk, φ) used by every counterparty

3 Round ECDSA Signing [This work] Sample [k]Establish $R = [k] \cdot G$ Round 1 Exchange $Commit(R_i)$ Round 2 Release *R*

3 Round EC [Th

- Sample [
- Establish $R = [k] \cdot (k)$
- Exchange Commit(R

Release *R*

Round 1

Round 2

und ECD [This wo	SA Signing ork]	
Sample [k] [ϕ]	
$\sinh R = [k] \cdot G$	Multiply [ϕ] with [k], [sk]	
ge Commit(<i>R_i</i>)	MUL message 1	
elease R	MUL message 2	Pairwis consistency
$[\mathbf{sk}] [k] [\phi]$	$[\phi k] [\phi sk]$	_

- Sample [k] $[\phi]$
- Exchange $Commit(R_i)$
 - Release *R*

Round 1

Round 2

Round 3

Intro

MP-Schnorr is easy

but not ECDSA

Evolution of Techniques

How to distribute ECDSA

Tradeoffs

ECDSA Tuples

Our protocol: Simple consistency check

OT vs AHE

Instantiating Multiplication

- 2P-MUL inherently requires public key crypto
- Broadly two approaches:
 - Additively Homomorphic Encryption (low bandwidth, high computation)
 - Oblivious Transfer (low computation, high bandwidth)

• Secure *n*-party mult can be reduced to 2*n* instances of 2P-MUL

2P-MUL from Additively Homomorphic Encryption

• Additive Homomorphism: $\alpha \cdot \text{Enc}(x) + \text{Enc}(\beta) = \text{Enc}(\alpha x + \beta)$

[Gilboa 99]: Conceptually simple protocol for MUL from AHE [CGGMP 20]: Hardened for active security through ZK proofs

- Instantiations from factoring based cryptography (e.g. [Paillier 99]) and class groups [Castagnos Laguillaumie 15]
- <u>Advantages</u>: Parties exchange (relatively) compact ciphertexts
- Downsides:

 - Ciphertext operations are heavy (2 orders of magnitude slower than EC) - Seem to require ZK proofs to prevent misuse

• Oblivious Transfer (OT):

[Gilboa 99]: Elegant protocol for MUL from OT [DKLs 18,19, HMRT 22]: active security by randomized encoding+statistical checks

- Instantiable with ECDSA curve (think DH key exchange)
- to one-time key generation phase, so only hashes when signing (1 order of magnitude slower than single party signing)
- <u>Downsides</u>: ~1000 OTs/sig, each transmits two \mathbb{Z}_q elements

• <u>Advantages</u>: By OT Extension [IKNP03, Roy22] public key operations can be moved

- <u>Tradeoff to make</u>: Computation vs. Bandwidth during signing time
- Rough costs with 256-bit curve, for each additional party (computation aggregated across [Gavenda 21, XAXYC 21, BMP 22]):

2P-MUL: AHE vs OT

dwidth	Computation
0 KB	Few milliseconds
5 KB	Hundreds of milliseconds
7 KB	Hundreds of milliseconds
.5 KB	> 1 second

• Mobile applications (human-initiated):

• Mobile applications (human-initiated):

Mobile applications (human-initiated):

- eg. t=4, ~2Mbits transmitted per party

• Mobile applications (human-initiated):

- eg. t=4, ~2Mbits transmitted per party

- Well within LTE envelope for responsivity

2 Mbits sent per party

Example 1: Mobile Wallet

2 Mbits sent per party

Example 1: Mobile Wallet

2 Mbits sent per party

Rank: 25 Avg. Upload: 7.5 Mbps

source: opensignal (2020)

Example 1: Mobile Wallet

2 Mbits sent per party

Rank: 25 Avg. Upload: 7.5 Mbps

source: opensignal (2020)

Example 1: Mobile Wallet

Rank: 86 Avg. Upload: 2.7 Mbps

2 Mbits sent per party

Rank: 25 Avg. Upload: 7.5 Mbps

Signing Time: ~1/3 sec

source: opensignal (2020)

Example 1: Mobile Wallet

Rank: 86 Avg. Upload: 2.7 Mbps

Signing Time: ~1 sec

2 Mbits sent per party

Signing Time: ~1/3 sec

Paillier+ZK takes this long for computation alone on powerful hardware!

source: opensignal (2020)

Example 1: Mobile Wallet

Rank: 25 Avg. Upload: 7.5 Mbps

Rank: 86 Avg. Upload: 2.7 Mbps

Signing Time: ~1 sec

- Threshold 2: 3.8 ms/sig <= ~263 sig/second

- - Threshold 2: 3.8 ms/sig <= ~263 sig/second
 - Threshold 20: 31.6ms/sig <= ~31 sig/second

- - Threshold 2: 3.8 ms/sig <= ~263 sig/second
 - Threshold 20: 31.6ms/sig <= ~31 sig/second
- Neither setting saturates a gigabit connection

Example 2: Datacenter Signing

How much bandwidth to be CPU bound? (including preprocessing)

2 Parties ~250 sigs/second

using GCP n1-highcpu nodes

256 Parties ~3 sigs/second

Example 2: Datacenter Signing

How much bandwidth to be CPU bound? (including preprocessing)

2 Parties ~250 sigs/second

Each party sends: ~700 Kbits per sig

using GCP n1-highcpu nodes

256 Parties ~3 sigs/second

Each party sends: ~185 Mbits per sig

Example 2: Datacenter Signing

How much bandwidth to be CPU bound? (including preprocessing)

2 Parties ~250 sigs/second

Each party sends: ~700 Kbits per sig

Bandwidth required: ~180 Mbps symmetric

using GCP n1-highcpu nodes

256 Parties ~3 sigs/second

Each party sends: ~185 Mbits per sig

Bandwidth required: ~555 Mbps symmetric

Intro

MP-Schnorr is easy

but not ECDSA

Evolution of Techniques

How to distribute ECDSA

Tradeoffs

ECDSA Tuples

Our protocol: Simple consistency check

OT vs AHE

In Conclusion

- Threshold ECDSA in Three Rounds: Now matches Schnorr
- Enabled by well-chosen correlation + simple new consistency check
- Blackbox use of UC 2-round 2P-MUL
 NOTE: OT-based protocols satisfy UC, but AHE is more complicated
- No (explicit) ZK proofs during signing or DKG
 ⇒ light protocol and straightforward UC analysis
 - dkls.info Thanks!

