Threshold ECDSA in Three Rounds

\author{

	Yash	Eysa	abhi shelat
TECHNION Israel Institute of Technology	$S^{\prime}, L_{\text {аеөоанооре }}^{\text {ENS }}$	BROWN	Northeaste University

dkls.info

Ballad of Bitcoin Bob

Threshold Signing

Threshold Signing

Threshold Signing

/

Threshold Signing

Threshold Signing

Threshold Signing

Threshold Signing

Distributed Risk: Attacker will need to compromise multiple devices

How to distribute ECDSA
Tradeoffs

MP-Schnorr	but not	Evolution of is easy
ECDSA	Techniques	

ECDSA Tuples

OT vs AHE

Adversary Model

- Corruption threshold

> Dishonest majority
> (only one device uncompromised)

Adversary Model

- Corruption threshold

> Dishonest majority
> (only one device uncompromised)

Adversary Model

- Corruption threshold

Dishonest majority
(only one device uncompromised)

- Adversarial behaviour

Adversary Model

- Corruption threshold

Dishonest majority
(only one device uncompromised)

- Adversarial behaviour

Adversary Model

- Corruption threshold

Dishonest majority
(only one device uncompromised)

- Adversarial behaviour

Adversary Model

- Corruption threshold

Dishonest majority
(only one device uncompromised)

- Adversarial behaviour

Adversary Model

- Corruption threshold

Dishonest majority (only one device uncompromised)

- Adversarial behaviour

Malicious
(arbitrary deviations from protocol)

Concrete Example: Schnorr Signatures

Concrete Example: Schnorr Signatures

- Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

Concrete Example: Schnorr Signatures

- Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]
- Tools:

Concrete Example: Schnorr Signatures

- Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]
- Tools:
- Hash function - $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}$

Concrete Example: Schnorr Signatures

- Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]
- Tools:
- Hash function - $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}$
- Group - ($\mathbb{G}, G, q,+$)

Concrete Example: Schnorr Signatures

- Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]
- Tools:
- Hash function - $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}$
- Group - (G, G, q, +)

Group elements

Concrete Example: Schnorr Signatures

- Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]
- Tools:
- Hash function - $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}$
- Group - ($\mathbb{G}, G, q,+$)

Group elements

Concrete Example: Schnorr Signatures

- Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]
- Tools:
- Hash function - $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}$
- Group - ($\mathbb{G}, G, q,+$)

Group elements

Concrete Example: Schnorr Signatures

- Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]
- Tools:
- Hash function - $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}$
- Group - (G, G, q, +)

Group elements
Generator (Large prime) order
Points on an Elliptic Curve

Concrete Example: Schnorr Signatures

- Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]
- Tools:
- Hash function - $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}$
- Group - (G, G, q, +)

Group elements

Points on an Elliptic Curve

Generator (Large prime) order $\approx 2^{256}$

Concrete Example: Schnorr Signatures

- Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]
- Tools:
- Hash function - $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}$
- Group - ($\mathbb{G}, G, q,+$)

Group elements
Addition law

Points on an Elliptic Curve
$\begin{array}{cc}\text { Generator } & \text { (Large prime) order } \\ & \approx 2^{256}\end{array}$

Concrete Example: Schnorr Signatures

- Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]
- Tools:
- Hash function - $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}$
- Group - ($\mathbb{G}, G, q,+$)

Points on an Elliptic Curve

Generator (Large prime) order
$\approx 2^{256}$

Sixty Seconds on Cyclic Groups

Concrete Example: Schnorr Signatures

- Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]
- Tools:
- Hash function - $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}$
- Group - ($\mathbb{G}, G, q,+$)

Points on an Elliptic Curve

Generator (Large prime) order

$$
\approx 2^{256}
$$

Sixty Seconds on Cyclic Groups
If $X, Y \in \mathbb{G}$ then $X+Y=Z \in \mathbb{G}$

Concrete Example: Schnorr Signatures

- Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]
- Tools:
- Hash function - $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}$
- Group - ($\mathbb{G}, G, q,+$)

Points on an Elliptic Curve

Addition law
(Large prime) order $\approx 2^{256}$

Sixty Seconds on Cyclic Groups
If $X, Y \in \mathbb{G}$ then $X+Y=Z \in \mathbb{G}$
Any $X \in \mathbb{G}$ can be written as $x \cdot G$ $x \in \mathbb{Z}_{q}$ is the discrete logarithm of X

Concrete Example: Schnorr Signatures

- Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]
- Tools:
- Hash function - $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}$
- Group - ($\mathbb{G}, G, q,+$)

Points on an Elliptic Curve

Addition law
Generator (Large prime) order $\approx 2^{256}$

Sixty Seconds on Cyclic Groups

If $X, Y \in \mathbb{G}$ then $X+Y=Z \in \mathbb{G}$
Any $X \in \mathbb{G}$ can be written as $x \cdot G$ $x \in \mathbb{Z}_{q}$ is the discrete logarithm of X

$$
(x+y) \cdot G=x \cdot G+y \cdot G
$$

Concrete Example: Schnorr Signatures

- Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]
- Tools:
- Hash function - $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}$
- Group - ($\mathbb{G}, G, q,+$)

Points on an Elliptic Curve

Addition law
Generator (Large prime) order $\approx 2^{256}$

Sixty Seconds on Cyclic Groups

If $X, Y \in \mathbb{G}$ then $X+Y=Z \in \mathbb{G}$
Any $X \in \mathbb{G}$ can be written as $x \cdot G$ $x \in \mathbb{Z}_{q}$ is the discrete logarithm of X

Integer addition mod $q \quad$ Group addition
$(x+y) \cdot G=x \cdot G+y \cdot G$

Concrete Example: Schnorr Signatures

- Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]
- Tools:
- Hash function - $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}$
- Group - ($\mathbb{G}, G, q,+$)

Addition law
Generator (Large prime) order $\approx 2^{256}$

Sixty Seconds on Cyclic Groups

If $X, Y \in \mathbb{G}$ then $X+Y=Z \in \mathbb{G}$
Any $X \in \mathbb{G}$ can be written as $x \cdot G$ $x \in \mathbb{Z}_{q}$ is the discrete logarithm of X

Integer addition mod $q \quad$ Group addition
$(x+y) \cdot G=x \cdot G+y \cdot G$

Discrete Logarithm Problem: Given random $X \in \mathbb{G}$, find its discrete logarithm

Concrete Example: Schnorr Signatures

- Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]
- Tools:
- Hash function - $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}$
- Group - ($\mathbb{G}, G, q,+$)

Group elements
Generator
(Large prime) order $\approx 2^{256}$

Sixty Seconds on Cyclic Groups

If $X, Y \in \mathbb{G}$ then $X+Y=Z \in \mathbb{G}$
Any $X \in \mathbb{G}$ can be written as $x \cdot G$ $x \in \mathbb{Z}_{q}$ is the discrete logarithm of X

Integer addition mod $q \quad$ Group addition

$$
(x \square y) \cdot G=x \cdot G \square y \cdot G
$$

Discrete Logarithm Problem: Given random $X \in \mathbb{G}$, find its discrete logarithm For certain elliptic curves, best known algorithms for DLP run in time $\Theta(\sqrt{q})$

Concrete Example: Schnorr Signatures

- Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]
- Tools:
- Hash function - $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}$
- Group - ($\mathbb{G}, G, q,+$)

Group elements
Generator
(Large prime) order $\approx 2^{256}$

Sixty Seconds on Cyclic Groups

If $X, Y \in \mathbb{G}$ then $X+Y=Z \in \mathbb{G}$
Any $X \in \mathbb{G}$ can be written as $x \cdot G$ $x \in \mathbb{Z}_{q}$ is the discrete logarithm of X

Integer addition mod $q \quad$ Group addition
$(x \square y) \cdot G=x \cdot G \square y \cdot G$

Very informally:

Concrete Example: Schnorr Signatures

- Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]
- Tools:
- Hash function - $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}$
- Group - ($\mathbb{G}, G, q,+$)

Addition law
Generator (Large prime) order

$$
\approx 2^{256}
$$

Sixty Seconds on Cyclic Groups

If $X, Y \in \mathbb{G}$ then $X+Y=Z \in \mathbb{G}$
Any $X \in \mathbb{G}$ can be written as $x \cdot G$ $x \in \mathbb{Z}_{q}$ is the discrete logarithm of X

Integer addition $\bmod q$ Group addition
$(x+y) \cdot G=x \cdot G \square y \cdot G$

Very informally: $x \rightarrow X$ EASY

Concrete Example: Schnorr Signatures

- Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]
- Tools:
- Hash function - $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}$
- Group - ($\mathbb{G}, G, q,+$)

Group elements
Addition law
$\begin{array}{cc}\text { Generator } & \text { (Large prime) order } \\ \sim 256\end{array}$
$\approx 2^{256}$

Sixty Seconds on Cyclic Groups

If $X, Y \in \mathbb{G}$ then $X+Y=Z \in \mathbb{G}$
Any $X \in \mathbb{G}$ can be written as $x \cdot G$ $x \in \mathbb{Z}_{q}$ is the discrete logarithm of X

Integer addition mod $q \quad$ Group addition
$(x+y) \cdot G=x \cdot G+y \cdot G$

Very informally:

$$
\begin{aligned}
& x \rightarrow X \quad \text { EASY } \\
& X \rightarrow x \quad \text { HARD }
\end{aligned}
$$

Concrete Example: Schnorr Signatures

- Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]
- Tools:
- Hash function - $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}$
- Group - ($\mathbb{G}, G, q,+$)

Group elements
Generator
(Large prime) order $\approx 2^{256}$

Points on an Elliptic Curve

$$
\approx 2^{250}
$$

Sixty Seconds on Cyclic Groups

If $X, Y \in \mathbb{G}$ then $X+Y=Z \in \mathbb{G}$
Any $X \in \mathbb{G}$ can be written as $x \cdot G$ $x \in \mathbb{Z}_{q}$ is the discrete logarithm of X

Integer addition mod q Group addition
$(x \square y) \cdot G=x \cdot G \square y \cdot G$
$\begin{array}{lll}\text { Very informally: } & x \rightarrow X \text { EASY } \quad 30 \mu s \\ & X \rightarrow x \text { HARD }\end{array}$

Concrete Example: Schnorr Signatures

- Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]
- Tools:
- Hash function - $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}$
- Group - ($\mathbb{G}, G, q,+$)

Group elements
Generator
(Large prime) order $\approx 2^{256}$

Points on an Elliptic Curve

$$
\approx 2^{250}
$$

Sixty Seconds on Cyclic Groups

If $X, Y \in \mathbb{G}$ then $X+Y=Z \in \mathbb{G}$
Any $X \in \mathbb{G}$ can be written as $x \cdot G$ $x \in \mathbb{Z}_{q}$ is the discrete logarithm of X

Integer addition mod $q \quad$ Group addition
$(x+y) \cdot G=x \cdot G+y \cdot G$

$$
\begin{array}{lll}
\text { Very informally: } & x \rightarrow X \quad \text { EASY } \\
& X \rightarrow x \quad \text { HARD }
\end{array}
$$

Schnorr Key Generation

$\operatorname{SchnorrKeyGen}(\mathbb{G}, G, q):$

$$
\text { sk } \leftarrow \mathbb{Z}_{q}
$$

$$
\mathrm{PK}=\mathrm{sk} \cdot G
$$

output (sk, PK)
secret key: kept private
Public Key: exposed to the outside world

Schnorr Signing

SchnorrKeyGen (\mathbb{G}, G, q) :

$$
\begin{aligned}
& \text { sk } \leftarrow \mathbb{Z}_{q} \\
& \text { PK }=\text { sk } \cdot G \\
& \text { output }(\text { sk, PK) }
\end{aligned}
$$

Schnorr Signing

SchnorrKeyGen (\mathbb{G}, G, q) :

$$
\begin{aligned}
& \text { sk } \leftarrow \mathbb{Z}_{q} \\
& \text { PK }=\text { sk } \cdot G \\
& \text { output (sk, PK) }
\end{aligned}
$$

SchnorrSign(sk, m) :

$$
k \leftarrow \mathbb{Z}_{q}
$$

Schnorr Signing

SchnorrKeyGen (\mathbb{G}, G, q) :

$$
\begin{aligned}
& \text { sk } \leftarrow \mathbb{Z}_{q} \\
& \text { PK }=\text { sk } \cdot G \\
& \text { output (sk, PK) }
\end{aligned}
$$

SchnorrSign(sk, m) :

$$
\begin{aligned}
k & \leftarrow \mathbb{Z}_{q} \\
R & =k \cdot G
\end{aligned}
$$

Schnorr Signing

SchnorrKeyGen (\mathbb{G}, G, q) :

$$
\begin{aligned}
& \mathrm{sk} \leftarrow \mathbb{Z}_{q} \\
& \text { PK }=\text { sk } \cdot G \\
& \text { output (sk, PK) }
\end{aligned}
$$

SchnorrSign(sk, m) :
$k \leftarrow \mathbb{Z}_{q}$
$\quad R=k \cdot G$
One-time use value

Schnorr Signing

SchnorrKeyGen (\mathbb{G}, G, q) :

$$
\begin{aligned}
& \text { sk } \leftarrow \mathbb{Z}_{q} \\
& \text { PK }=\text { sk } \cdot G \\
& \text { output (sk, PK) }
\end{aligned}
$$

SchnorrSign(sk, m) :

$$
\begin{array}{rlrl}
& k & \leftarrow \mathbb{Z}_{q} \\
& & R & =k \cdot G \\
\begin{array}{c}
\text { NONCEE } \\
\text { Onime use } \\
\text { value }
\end{array} & & e & =H(R \| m)
\end{array}
$$

Schnorr Signing

SchnorrKeyGen (\mathbb{G}, G, q) :

$$
\begin{aligned}
& \text { sk } \leftarrow \mathbb{Z}_{q} \\
& \text { PK }=\text { sk } \cdot G \\
& \text { output (sk, PK) }
\end{aligned}
$$

SchnorrSign(sk, m) :

$$
\begin{array}{clrl}
& k \leftarrow \mathbb{Z}_{q} \\
& R & =k \cdot G \\
\begin{array}{c}
\text { NoNCE } \\
\text { Onetime use } \\
\text { value }
\end{array} & & e & =H(R \| m) \\
& s & =k-\mathrm{sk} \cdot e(\bmod q)
\end{array}
$$

Schnorr Signing

SchnorrKeyGen (\mathbb{G}, G, q) :

$$
\begin{aligned}
& \text { sk } \leftarrow \mathbb{Z}_{q} \\
& \text { PK }=\text { sk } \cdot G \\
& \text { output (sk, PK) }
\end{aligned}
$$

SchnorrSign(sk, m) :

$$
\begin{array}{rlrl}
& & k \leftarrow \mathbb{Z}_{q} \\
& R & =k \cdot G \\
\begin{array}{c}
\text { One.time use } \\
\text { value }
\end{array} & & e & =H(R \| m) \\
& s & =k-s k \cdot e(\operatorname{sod} q) \\
& \sigma & =(s, R) \\
& \text { output } \sigma
\end{array}
$$

Schnorr Signing

SchnorrKeyGen (\mathbb{G}, G, q) :

$$
\begin{aligned}
& \text { sk } \leftarrow \mathbb{Z}_{q} \\
& \text { PK }=\text { sk } \cdot G \\
& \text { output (sk, PK) }
\end{aligned}
$$

SchnorrSign(sk, m) :

	$k \leftarrow \mathbb{Z}_{q}$	
	$R=k \cdot G$	
${ }_{\text {N }}^{\text {NONCE }}$ Onetime use	$e=H(R \\| m)$	
	$s=k-s k \cdot e(\bmod q)$	
	$\sigma=(s, R)$	
	output σ	

Verifying a signature: $s \cdot G \stackrel{?}{=} R-e \cdot P K$

Schnorr Signing

SchnorrKeyGen (\mathbb{G}, G, q) :

$$
\begin{aligned}
& \text { sk } \leftarrow \mathbb{Z}_{q} \\
& \text { PK }=\text { sk } \cdot G \\
& \text { output (sk, PK) }
\end{aligned}
$$

SchnorrSign(sk, m) :

	$k \leftarrow \mathbb{Z}_{q}$	
	$R=k \cdot G$	
$\begin{gathered} \text { NONCE } \\ \text { One-time use } \end{gathered}$	$e=H(R \\| m)$	
	$s=k-s k \cdot e(\bmod q)$	
	$\sigma=(s, R)$	
	tput σ	

Verifying a signature: $s \cdot G \stackrel{?}{=} R-e \cdot \mathrm{PK}$
$\mathrm{k} \cdot G \mathrm{sk} \cdot G$

Schnorr Signing

SchnorrKeyGen (\mathbb{G}, G, q) :

$$
\begin{aligned}
& \text { sk } \leftarrow \mathbb{Z}_{q} \\
& \text { PK }=\text { sk } \cdot G \\
& \text { output (sk, PK) }
\end{aligned}
$$

SchnorrSign(sk, m) :

Verifying a signature:

Secret Sharing

- $[x]$ denotes that a value $x \in \mathbb{Z}_{q}$ is "secret-shared" across devices
- We will only use "linear" secret sharing schemes $a[x]+b[y]=[a x+b y]$

Additive Secret Sharing

Additive Secret Sharing

Additive Secret Sharing

$$
\begin{gathered}
x \in \mathbb{Z}_{q} \\
x_{A}+x_{B}=x
\end{gathered}
$$

Additive Secret Sharing

Additive Secret Sharing

$$
\begin{array}{ccc}
& \begin{array}{c}
x \in \mathbb{Z}_{q} \\
\\
x_{A}+x_{B} \\
=
\end{array} & {[x]}
\end{array}
$$

Additive Secret Sharing

$$
\begin{array}{ccc}
& \begin{array}{c}
x \in \mathbb{Z}_{q} \\
\\
x_{A}+x_{B} \\
=
\end{array} & {[x]}
\end{array}
$$

Additive Secret Sharing

Additive Secret Sharing

Additive Secret Sharing

$$
\begin{array}{ccc}
x_{A}+x_{B}=x \\
x_{A} & {[x]} & x_{B} \\
& {[y]} & \\
y_{A}+y_{B}=y
\end{array}
$$

Additive Secret Sharing

$$
\begin{array}{ccc}
& x_{A}+x_{B}=x & \square \\
x_{A} & {[x]} & x_{B} \\
y_{A} & {[y]} & y_{B}
\end{array}
$$

Additive Secret Sharing

$$
\begin{array}{ccc}
& x \in \mathbb{Z}_{q} & \\
x_{A} & x_{A}+x_{B}=x & \\
y_{A} & {[x]} & x_{B} \\
& {[z]} & y_{B} \\
& {[z=c x+y]} &
\end{array}
$$

Additive Secret Sharing

\[

\]

Distributing Schnorr w. Additive Secret Sharing

$$
\begin{array}{ccc}
& x \in \mathbb{Z}_{q} \\
x_{A} & {[x]} & x_{B} \\
y_{A} & {[y]} & y_{B} \\
z_{A}=c x_{A}+y_{A} & {[z=c x+y]} & z_{B}=c x_{B}+y_{B}
\end{array}
$$

Distributing Schnorr w. Additive Secret Sharing

$$
\begin{array}{ccc}
s k \in \mathbb{Z}_{q} \\
\mathrm{sk}_{A}+s k_{B}=\mathrm{sk} & \\
\mathrm{sk}_{A} & {[\mathrm{sk}]} & \mathrm{sk}_{B} \\
k_{A} & {[k]} & k_{B} \\
s_{A}=e \mathrm{sk}_{A}+k_{A} & {[s=e \mathrm{sk}+k]} & s_{B}=e \mathrm{sk}_{B}+k_{B}
\end{array}
$$

Distributing Schnorr w. Additive Secret Sharing

$$
\begin{array}{cc}
s \mathrm{sk} \in \mathbb{Z}_{q} \\
\mathrm{sk}_{A}+\mathrm{sk} k_{B}=\mathrm{sk} & \\
\mathrm{sk}_{A} & {[\mathrm{sk}]}
\end{array}
$$

3 Round Schnorr Signing

Folklore, [Lindell 22]
Input : $\mathrm{pk}=[\mathrm{sk}] \cdot G$, $[\mathrm{sk}],[k]$

Round 1

Round 2
Release R_{i}, set $R=\Sigma_{i} R_{i}$

Round 3

$$
\text { Reveal } s=[\mathrm{sk}] \cdot H(m, R)+[k]
$$

Output (R, s)

(Threshold) Schnorr in Practice?

- Schnorr signatures are old (well-studied), compact, fast, and easy to distribute with MPC (i.e. thresholdize)
- However it was patented-major barrier for internet adoption
- Patent expired recently; adoption is increasing but much of the internet infrastructure does not support Schnorr

ECDSA

- Elliptic Curve Digital Signature $\underline{\text { Algorithm }}$
- Devised by Scott Vanstone in 1992, standardized by NIST
- Differs from Schnorr enough so that patent doesn't apply
- Widespread adoption across the internet
... but MPC-unfriendly

Threshold ECDSA: Challenges

Threshold ECDSA: Challenges

SchnorrSign(sk, m): \vdots ECDSASign(sk, m):

$$
\begin{aligned}
& k \leftarrow \mathbb{Z}_{q} \\
& R=k \cdot G \\
& e=H(R \| m) \\
& s=k-s k \cdot e \\
& \sigma=(s, R) \\
& \text { output } \sigma
\end{aligned}
$$

Standard 2 round sampling

$$
e=H(m)
$$

Threshold ECDSA: Challenges

SchnorrSign(sk, m) :

$$
\begin{aligned}
& k \leftarrow \mathbb{Z}_{q} \\
& R=k \cdot G \\
& e=H(R \| m) \\
& s=k-s k \cdot e \\
& \sigma=(s, R) \\
& \text { output } \sigma
\end{aligned}
$$

ECDSASign(sk, m) :

$$
\begin{aligned}
& k \leftarrow \mathbb{Z}_{q} \\
& R=k \cdot G \\
& e=H(m) \\
& s=\frac{e+s k \cdot r_{x}}{k} \\
& \text { output } \sigma=(s, R)
\end{aligned}
$$

Threshold ECDSA: Challenges

ECDSASign(sk, m) :

$$
\begin{aligned}
& k \leftarrow \mathbb{Z}_{q} \\
& R=k \cdot G \\
& e=H(m) \\
& s=\frac{e+s k \cdot r_{x}}{k} \\
& \text { output } \sigma=(s, R)
\end{aligned}
$$

Threshold ECDSA: Challenges

ECDSASign(sk, m) :

$$
\begin{aligned}
& k \leftarrow \mathbb{Z}_{q} \\
& R=k \cdot G \\
& e=H(m) \\
& s=\frac{e+s k \cdot r_{x}}{k} \\
& \text { output } \sigma=(s, R)
\end{aligned}
$$

Multiplication of secret values

Threshold ECDSA: Challenges

ECDSASign(sk, m) :

$$
\begin{aligned}
& k \leftarrow \mathbb{Z}_{q} \\
& R=k \cdot G \\
& e=H(m) \\
& s=\frac{\text { Multiplication of }}{} \text { secret values } \\
& \text { output } \sigma=r_{x} \\
&=(s, R) \\
& \text { outision (Modular inverse) }
\end{aligned}
$$

Threshold ECDSA: Challenges

ECDSASign(sk, m) :

$$
R=\left(r_{x}, r_{y}\right)
$$

$$
\begin{aligned}
k & \leftarrow \mathbb{Z}_{q} \\
R & =k \cdot G \\
e & =H(m)
\end{aligned}
$$

$$
\begin{aligned}
R & =k \cdot G \\
e & =H(m)
\end{aligned} \quad \begin{gathered}
\text { Multiplication of } \\
\text { secret values }
\end{gathered}
$$

Threshold ECDSA: Challenges

ECDSASign(sk, m) :

$$
\begin{aligned}
k & \leftarrow \mathbb{Z}_{q} \\
R & =k \cdot G \\
e & =H(m)
\end{aligned}
$$

$$
s=\frac{e+s k \cdot r_{x}}{\mid k} \longrightarrow \mathrm{x} \text {-coordinate of } R \text { (not secret) }
$$

$$
\text { output } \sigma=(s, R)
$$

Division (Modular inverse)

Secure Two-Party Multiplication

a.k.a. OLE, Mult2Add

Secure Two-Party Multiplication

a.k.a. OLE, Mult2Add

Secure Two-Party Multiplication

a.k.a. OLE, Mult2Add

Secure Two-Party Multiplication

 a.k.a. OLE, Mult2Add

Secure Two-Party Multiplication

 a.k.a. OLE, Mult2Add

Tool to split a product of secret inputs $\alpha \beta$ into additive secrets c, d

Instantiable efficiently from: OT, Paillier, Class Groups

Threshold ECDSA: State of the Art

- Rough costs with 256-bit curve, for each additional party (computation aggregated across [Gavenda 21, XAXYC 21, BMP 22]):

Protocol	2P-MUL	Rounds	Bandwidth (KB)	Computation (ms)
[DKLs 19]	OT	$\log (t)+6$	90	<10
[HLNR 18/23]	OT+	5	40	$50-100$
[CGGMP 20]	Paillier	4	15	Hundreds
[GG 18]		8	7	Hundreds
[CCLST20,	Class	4	4	>1000

Threshold ECDSA:
 Goal

- Rough costs with 256-bit curve, for each additional party (computation aggregated across [Gavenda 21, XAXYC 21, BMP 22]):

	2P-MUL	Bandwidth (KB)	Computation (ms)
	OT	90	<10
Simple, unified protocol	Paillier	15	Hundreds
	Class Groups	4	>1000

Threshold ECDSA:
 Goal

- Rough costs with 256-bit curve, for each additional party (computation aggregated across [Gavenda 21, XAXYC 21, BMP 22]):

	2P-MUL	Bandwidth (KB)	Computation (ms)
	OT	90	<10
Simple, unified protocol	Paillier	15	Hundreds
	Class Groups	4	>1000

This work:
3 Round Signing from
2 round $2 \mathrm{P}-\mathrm{MUL}$

Threshold ECDSA:
 Goal

- Rough costs with 256-bit curve, for each additional party (computation aggregated across [Gavenda 21, XAXYC 21, BMP 22]):

	2P-MUL	Bandwidth (KB)	Computation (ms)
	OT	90	<10
Simple, unified protocol	Paillier	15	Hundreds
	Class Groups	4	>1000

This work:
3 Round Signing from
2 round $2 \mathrm{P}-\mathrm{MUL}$
mild/no overhead

Threshold ECDSA:
 Goal

- Rough costs with 256-bit curve, for each additional party (computation aggregated across [Gavenda 21, XAXYC 21, BMP 22]):

	2P-MUL	Bandwidth (KB)	Computation (ms)
	OT	90	<10
Simple, unified protocol	Paillier	15	Hundreds
	Class Groups	4	>1000

This work:
3 Round Signing from
2 round $2 P-M U L$
mild/no overhead
Insight:
well-chosen rewriting of ECDSA +simple consistency check

Threshold ECDSA:
 Goal

- Rough costs with 256-bit curve, for each additional party (computation aggregated across [Gavenda 21, XAXYC 21, BMP 22]):

	2P-MUL	Bandwidth (KB)	Computation (ms)
	OT	60	<10
Simple, unified protocol	Paillier	15	Hundreds
	Class Groups	4	>1000

This work:
3 Round Signing from
2 round $2 \mathrm{P}-\mathrm{MUL}$
mild/no overhead
Insight:
well-chosen rewriting of ECDSA +simple consistency check

How to distribute ECDSA

MP-Schnorr is easy
but not ECDSA
Evolution of
Techniques

Our protocol:
Simple consistency check

A Brief History of Threshold ECDSA

- "End result" protocols are typically compared by security models, assumptions, concrete efficiency (bandwidth, rounds), and benchmarks.
- This doesn't tell the full story of techniques \Rightarrow necessary context for "simplicity"
- Qualitative comparison: trace how Threshold ECDSA protocol structure has evolved over time

MPC for ECDSA

- Computing $\left[k^{-1}\right]$ given $[k]$ (as used in ECDSA signing) naively as an arithmetic circuit is prohibitively expensive-warrants custom protocols
- Standard recipe in the literature:
- Rewrite ECDSA signing equation to an "MPC-friendly" equivalent i.e. only additions and multiplications of secret values
- Cryptographic Machinery for secure multiplication
- Verify that all operations were performed honestly

Inverted Nonce Rewriting

[Langford 95][Gennaro Jarecki Krawczyk Rabin 96]

$$
\begin{aligned}
& \text { ECDSASign }(\mathrm{sk}, m): \\
& \qquad \begin{aligned}
& {[k] } \leftarrow \mathbb{Z}_{q} \\
& R=[k] \cdot G \\
& e=H(m) \\
& s=\frac{e+[\mathrm{sk}] \cdot r_{x}}{[k]} \\
& \text { output } \sigma=(s, R)
\end{aligned}
\end{aligned}
$$

Inverted Nonce Rewriting

[Langford 95][Gennaro Jarecki Krawczyk Rabin 96]

$$
\begin{aligned}
& \text { ECDSASign }(\mathrm{sk}, m): \\
& \qquad \begin{array}{c}
{[k] \leftarrow \mathbb{Z}_{q}} \\
R=[k] \cdot G \\
e=H(m) \\
s=\left(e+[\mathrm{sk}] \cdot r_{x}\right)[k] \\
\text { output } \sigma=(s, R)
\end{array}
\end{aligned}
$$

Inverted Nonce Rewriting

[Langford 95][Gennaro Jarecki Krawczyk Rabin 96]

$$
\begin{aligned}
& \text { ECDSASign }(\mathrm{sk}, m): \\
& \begin{array}{c}
{[k] \leftarrow \mathbb{Z}_{q}} \\
R=[k] \cdot G \\
e=H(m) \\
s=\left(e+[\mathrm{sk}] \cdot r_{x}\right)[k] \\
\text { output } \sigma=(s, R)
\end{array}
\end{aligned}
$$

Inverted Nonce Rewriting

[Langford 95][Gennaro Jarecki Krawczyk Rabin 96]

Equivalent to ECDSA

$$
\begin{aligned}
& \text { ECDSASign }(\mathrm{sk}, m): \\
& \begin{aligned}
{[k] } & \leftarrow \mathbb{Z}_{q} \\
R & =\left[k^{-1}\right] \cdot G \\
e & =H(m)
\end{aligned}
\end{aligned}
$$

But how to securely compute $k^{-1} G$?

$$
\begin{aligned}
& \qquad s=\left(e+[\mathrm{sk}] \cdot r_{x}\right)[k] \\
& \text { output } \sigma=(s, R)
\end{aligned}
$$

Inverted Nonce Rewriting

[Langford 95][Gennaro Jarecki Krawczyk Rabin 96]

Equivalent to ECDSA
But how to securely compute $k^{-1} G$?

ECDSASign(sk, m) :
$[k] \leftarrow \mathbb{Z}_{q}$
$[\phi] \leftarrow \mathbb{Z}_{q}$
reveal $[\phi] \cdot[k]$
reveal $\Phi=\phi \cdot G$

$$
\begin{aligned}
R & =(\phi k)^{-1} \cdot \Phi=\left[k^{-1}\right] \cdot G \\
e & =H(m) \\
s & =\left(e+[\mathrm{sk}] \cdot r_{x}\right)[k]
\end{aligned}
$$

output $\sigma=(s, R)$

First appears in
[Bar-Ilan Beaver 89]

A Brief History of Threshold ECDSA

A Brief History of Threshold ECDSA

1990s	$\begin{array}{\|l} \hline \text { [Lan95, } \\ \text { GJKR96] } \end{array}$	[MR01]	[GGN16, BGG17]	[Lin17]	$\begin{aligned} & \text { [DKLs } \\ & 18,19] \end{aligned}$	2018
Rewriting	Inverted Nonce		Mult	iplicative		
Machinery	Honest Majority Magic	$\begin{gathered} \text { (Thre } \\ \text { Pai } \end{gathered}$	shold) illier	Paillier	OT	

A Brief History of Threshold ECDSA

Now showing

1990s	[Lan95, GJKR96]	[MR01]	[GGN16, BGG17]	[Lin17]	[DKLs 18, 19]	2018
Rewriting	Inverted Nonce		Multiplicative			
Machinery	Honest Majority Magic	(Threshold) Paillier	Paillier	OT		

A Brief History of Threshold ECDSA

Now showing \quad MacKenzie Reiter 01

1990s	$\begin{aligned} & \text { [Lan95, } \\ & \text { GJKR96] } \end{aligned}$	[MR01]	$\begin{array}{\|l} {[\mathrm{GGN16},} \\ \text { BGG17] } \end{array}$	[Lin17]	$\begin{aligned} & {[\mathrm{DKLs}} \\ & 18,19] \end{aligned}$	20
Rewriting	Inverted Nonce	Multiplicative:$s=\left(\frac{a}{k}\right)+\left(\frac{b s k}{k}\right)$				
Machinery	Honest Majority Magic	$\begin{aligned} & \text { (Thr } \\ & \mathrm{Pa} \end{aligned}$	eshold) aillier	Paillier	OT	

A Brief History of Threshold ECDSA

Now showing Gennaro Goldfeder Narayanan 16, Boneh, Gennaro, Goldfeder 17

1990s	$\begin{aligned} & \text { [Lan95, } \\ & \text { GJKR96] } \end{aligned}$	[MR01]	$\begin{array}{\|l} {[\mathrm{GGN16},} \\ \mathrm{BGG} 17] \end{array}$	[Lin17]	$\begin{aligned} & {[\mathrm{DKLs}} \\ & 18,19] \end{aligned}$	20
Rewriting	Inverted Nonce	Multiplicative:$s=\left(\frac{a}{k}\right)+\left(\frac{b s k}{k}\right)$				
Machinery	Honest Majority Magic	$\begin{aligned} & \text { (Thre } \\ & \mathrm{Pa} \end{aligned}$	eshold) aillier	Paillier	OT	

A Brief History of Threshold ECDSA

Lindell 17

1990s	$\begin{aligned} & \text { [Lan95, } \\ & \text { GJKR96] } \end{aligned}$	[MR01]	$\begin{array}{\|l} {[\mathrm{GGN16},} \\ \text { BGG17] } \end{array}$	[Lin17]	$\begin{aligned} & {[\mathrm{DKLs}} \\ & 18,19] \end{aligned}$	20
Rewriting	Inverted Nonce	Multiplicative:$s=\left(\frac{a}{k}\right)+\left(\frac{b s k}{k}\right)$				
Machinery	Honest Majority Magic	$\begin{aligned} & \text { (Thr } \\ & \mathrm{Pa} \end{aligned}$	eshold) aillier	Paillier	OT	

A Brief History of Threshold ECDSA

Now showing \quad Doerner, K, Lee, shelat 18 \& 19

1990s	$\begin{aligned} & \text { [Lan95, } \\ & \text { GJKR96] } \end{aligned}$	[MR01]	[GGN16, BGG17]	[Lin17]	$\begin{aligned} & {[\mathrm{DKLs}} \\ & 18,19] \end{aligned}$	201
Rewriting	Inverted Nonce	Multiplicative$s=\left(\frac{a}{k}\right)+\left(\frac{b s \mathrm{k}}{k}\right)$				
Machinery	Honest Majority Magic	$\begin{aligned} & \text { (Thr } \\ & \mathrm{Pa} \end{aligned}$	shold) aillier	Paillier	OT	

A Brief History of Threshold ECDSA

	2018					$\begin{aligned} & \text { now-ish } \\ & \text { S } \quad[\text { ST19, } \\ & \text { DOKSS20] } \end{aligned}$
	[Lin17]	$\begin{aligned} & \text { [DKLs } \\ & 18,19] \end{aligned}$	$\begin{array}{\|cc} {[\text { GG }} & {[\text { CGGMP }} \\ 18,20] & 20] \end{array}$	$\begin{aligned} & {[\text { [HLNR }} \\ & 18,23] \end{aligned}$	[ANOSS 22]	
Rewriting	Multiplicative		Inverted Nonce	ECDSA tuple		<flexible>
Machinery	Paillier	OT	Paillier	OT++	PCG	<flexible>

A Brief History of Threshold ECDSA

Now showing Gennaro Goldfeder 18 \& 20

	[Lin17]	$\begin{aligned} & {[\mathrm{DKLs}} \\ & 18,19] \end{aligned}$	$\begin{gathered} {[\mathrm{GG}} \\ 18,20] \end{gathered}$	$\begin{gathered} \text { [CGGMP } \\ 20] \end{gathered}$	$\begin{aligned} & \text { [HLNR } \\ & 18,23] \end{aligned}$	[ANOSS 22]	$\begin{gathered} {[\mathrm{ST} 19,} \\ \text { DOKSS20] } \end{gathered}$
Rewriting	Multiplicative		Inverted Nonce		ECDSA tuple		<flexible>
Machinery	Paillier	OT		lier	OT++	PCG	<flexible>

A Brief History of Threshold ECDSA

Now showing Canetti, Gennaro, Goldfeder, Makriyannis, Peled 20 now-ish

	[Lin17]	$\begin{aligned} & {[\mathrm{DKLs}} \\ & 18,19] \end{aligned}$	$\begin{array}{\|c} {[\mathrm{GG}} \\ 18,20] \end{array}$	$\begin{gathered} \text { [CGGMP } \\ 20] \end{gathered}$	$\begin{gathered} {[H L N R} \\ 18,23] \end{gathered}$	[ANOSS 22]	$\begin{gathered} {[\text { ST19, }} \\ \text { DOKSS20] } \end{gathered}$
Rewriting	Multiplicative		Invert	Nonce	ECDSA tuple		<flexible>
Machinery	Paillier	OT		lier	OT++	PCG	<flexible>

A Brief History of Threshold ECDSA

Now showing Lindell Nof 18, Haitner, Lindell, Nof, Ranellucci 23

	[Lin17]	$\begin{aligned} & \text { [DKLs } \\ & 18,19] \end{aligned}$	$\begin{array}{\|c} {[\mathrm{GG}} \\ 18,20] \end{array}$	$\begin{gathered} \text { [CGGMP } \\ 20] \end{gathered}$	$\begin{aligned} & {[\text { HLNR }} \\ & 18,23] \end{aligned}$	[ANOSS 22]	$\begin{gathered} {[\mathrm{ST} 19,} \\ \text { DOKSS20] } \end{gathered}$
Rewriting	Multiplicative		Invert	Nonce	ECDSA tuple		<flexible>
Machinery	Paillier	OT		lier	OT++	PCG	<flexible>

A Brief History of Threshold ECDSA

Now showing	Abram Nof Orlandi Scholl Shlomovits 22						now-ish [ST19, DOKSS20]
	[Lin17]	$\begin{aligned} & \text { [DKLs } \\ & 18,19] \end{aligned}$	$\begin{array}{\|c} {[\mathrm{GG}} \\ 18,20] \end{array}$	$\begin{gathered} \text { [CGGMP } \\ 20] \end{gathered}$	$\begin{aligned} & \text { [HLNR } \\ & 18,23] \end{aligned}$	[ANOSS 22]	
Rewriting	Multip	icative	Invert	Nonce	ECDS	tuple	<flexible>
Machinery	Paillier	OT		lier	OT++	PCG	<flexible>

A Brief History of Threshold ECDSA

Now showing Smart Talibi 19, Dalskov, Orlandi, Keller, Shrishak, Shulman 20

	[Lin17]	$\begin{aligned} & \text { [DKLs } \\ & 18,19] \end{aligned}$	$\left\lvert\, \begin{gathered} {[\mathrm{GG}} \\ 18,20] \end{gathered}\right.$	$\begin{gathered} \text { [CGGMP } \\ 20] \end{gathered}$	$\begin{gathered} \text { [HLNR } \\ 18,23] \end{gathered}$	[ANOSS 22]	[ST19, DOKSS20]
Rewriting	Multiplicative		Invert	Nonce	ECDSA tuple		<flexible>
Machinery	Paillier	OT		lier	OT++	PCG	<flexible>

A Brief History of Threshold ECDSA

	[Lin17]	$\begin{aligned} & {[\mathrm{DKLs}} \\ & 18,19] \end{aligned}$	$\begin{gathered} {[\mathrm{GG}} \\ 18,20] \end{gathered}$	$\begin{aligned} & \text { [CGGMP } \\ & 20] \end{aligned}$	$\begin{aligned} & {[H L N R} \\ & 18,23] \end{aligned}$	[ANOSS 22]	$\begin{gathered} {[\mathrm{ST} 19,} \\ \text { DOKSS20] } \end{gathered}$
Rewriting	Multip	licative	Inverted	Nonce	ECDSA	tuple	<flexible>
Machinery	Paillier	OT	Paill		OT++	PCG	<flexible>
Verification	$\begin{array}{\|c} 2 \mathrm{P} \\ \text { magic } \end{array}$	Check relations in exponent	$\mathrm{ZK} \text { in } \mathbb{Z}_{N}$ $+$ Masked sig verification	GMW- style ZK in \mathbb{Z}_{N}	Replay in committed form ZK in \mathbb{Z}_{q}	$\begin{array}{\|l} \mathrm{BDOZ} \\ \mathrm{MAC} \end{array}$	Any \mathbb{Z}_{q} MAC

A Brief History of Threshold ECDSA

							now-ish
	[Lin17]	$\begin{aligned} & {[\mathrm{DKLs}} \\ & 18,19] \end{aligned}$	$\begin{array}{\|c} {[\mathrm{GG}} \\ 18,20] \end{array}$	$\begin{aligned} & \text { [CGGMP } \\ & 20] \end{aligned}$	$\begin{array}{cc} \text { [HLNR } & \text { [ANOSS } \\ 18,23] & 22] \end{array}$		[ST19, DOKSS20]
Rewriting	Multiplicative		Inverted Nonce		ECDSA tuple		<flexible>
Machinery	Paillier	OT	Paillier		OT++	PCG	<flexible>
Verification	2P magic 2P-only	Check relations in exponent Involved analysis Intera	$\mathrm{ZK} \text { in } \mathbb{Z}_{N}$ $+$ Masked sig verification Machiner ctive specific	GMWstyle ZK in \mathbb{Z}_{N} - Expensive proofs	Replay in committed form ZK in \mathbb{Z}_{q} UC ZK	BDOZ MAC Creat is	Any \mathbb{Z}_{q} MAC ting MACs xtra work

A Brief History of Threshold ECDSA

	now-ish		
	This work		
Rewriting		ECDSA tuple	
Machinery		Any 2P-MUL	
Verification	Cheap! Generic!	Simple statistical check	Straightforward analysis No extra work:

Rewriting ECDSA with ECDSA Tuples

[Lindell Nof Ranellucci 18] [Abram Nof Orlandi Scholl Shlomovits 22]

$$
\begin{aligned}
& \text { ECDSASign }(\mathrm{sk}, m): \\
& \begin{aligned}
& {[k] } \leftarrow \mathbb{Z}_{q} \\
& R=[k] \cdot G \\
& e=H(m) \\
& s=\frac{e+[\mathrm{sk}] \cdot r_{x}}{[k]} \\
& \text { output } \sigma=(s, R)
\end{aligned}
\end{aligned}
$$

Rewriting ECDSA with ECDSA Tuples

[Lindell Nof Ranellucci 18] [Abram Nof Orlandi Scholl Shlomovits 22]

$$
\begin{aligned}
& \text { ECDSASign }(\mathrm{sk}, m): \\
& \begin{aligned}
& {[k] } \leftarrow \mathbb{Z}_{q} \\
& R=[k] \cdot G \\
& e=H(m) \\
& s=\frac{e+[\mathrm{sk}] \cdot r_{x}}{[k]} \cdot \frac{[\phi]}{[\phi]} \\
& \text { output } \sigma=(s, R)
\end{aligned}
\end{aligned}
$$

Rewriting ECDSA with ECDSA Tuples

[Lindell Nof Ranellucci 18] [Abram Nof Orlandi Scholl Shlomovits 22]
ECDSASign(sk, m) :

$$
\begin{aligned}
{[k] } & \leftarrow \mathbb{Z}_{q} \\
R & =[k] \cdot G \\
e & =H(m) \\
\alpha & =\left(e+[\mathrm{sk}] \cdot r_{x}\right)[\phi] \\
\beta & =[k][\phi] \\
s & =
\end{aligned}
$$

$$
\text { output } \sigma=(s, R)
$$

Rewriting ECDSA with ECDSA Tuples

[Lindell Nof Ranellucci 18] [Abram Nof Orlandi Scholl Shlomovits 22]
ECDSASign(sk, m) :

$$
\begin{aligned}
& {[k] } \leftarrow \mathbb{Z}_{q} \\
& R=[k] \cdot G \\
& e=H(m) \\
& \alpha=\left(e+[\mathrm{sk}] \cdot r_{x}\right)[\phi] \\
& \beta=[k][\phi] \\
& s=\frac{\alpha}{\beta} \\
& \text { output } \sigma=(s, R)
\end{aligned}
$$

Rewriting ECDSA with ECDSA Tuples

[Lindell Nof Ranellucci 18] [Abram Nof Orlandi Scholl Shlomovits 22]
ECDSASign(sk, m) :

$$
\begin{aligned}
{[k] } & \leftarrow \mathbb{Z}_{q} \\
R & =[k] \cdot G \\
e & =H(m) \\
{[\phi] } & \leftarrow \mathbb{Z}_{q} \\
\alpha & =\left(e+[\mathrm{sk}] \cdot r_{x}\right)[\phi] \\
\beta & =[k][\phi] \\
s & =\frac{\alpha}{\beta}
\end{aligned} \quad \begin{aligned}
& \text { output } \sigma=(s, R)
\end{aligned}
$$

Rewriting ECDSA with ECDSA Tuples

[Lindell Nof Ranellucci 18] [Abram Nof Orlandi Scholl Shlomovits 22]
ECDSASign(sk, m) :

$$
[k] \leftarrow \mathbb{Z}_{q}
$$

$$
R=[k] \cdot G
$$

$$
e=H(m)
$$

$$
[\phi] \leftarrow \mathbb{Z}_{q}
$$

Public values

$$
\alpha=\left(e+[\mathrm{sk}] \cdot r_{x}\right)[\phi]
$$

$$
\beta=[k][\phi]
$$

$$
s=\frac{\alpha}{\beta}
$$

$$
\text { output } \sigma=(s, R)
$$

Rewriting ECDSA with ECDSA Tuples

[Lindell Nof Ranellucci 18] [Abram Nof Orlandi Scholl Shlomovits 22]
ECDSASign(sk, m) :

$$
\begin{aligned}
{[k] } & \leftarrow \mathbb{Z}_{q} \\
R & =[k] \cdot G \\
e & =H(m) \\
{[\phi] } & \leftarrow \mathbb{Z}_{q} \\
\alpha & =\left(e+[\mathrm{sk}] \cdot r_{x}\right)[\phi] \\
\beta & =[k][\phi] \\
s & =\frac{\alpha}{\beta}
\end{aligned} \quad \begin{aligned}
& \text { output } \sigma=(s, R)
\end{aligned}
$$

Public values
Safe to reveal
β : because ϕ is OTP
α : because fixed by β, s

Rewriting ECDSA with ECDSA Tuples

[Lindell Nof Ranellucci 18] [Abram Nof Orlandi Scholl Shlomovits 22]
ECDSASign(sk, m) :

$$
[k] \leftarrow \mathbb{Z}_{q}
$$

$$
R=[k] \cdot G
$$

$$
e=H(m)
$$

$$
[\phi] \leftarrow \mathbb{Z}_{q}
$$

$$
\alpha=\left(e+[\mathrm{sk}] \cdot r_{x}\right)[\phi]
$$

Public values
Safe to reveal
β : because ϕ is OTP α : because fixed by β, s

$$
\beta=[k][\phi] \quad \text { Secure mult: Only (nonlinear) }
$$

$$
s=\frac{\alpha}{\beta}
$$

$$
\text { output } \sigma=(s, R)
$$

Signing from ECDSA Tuples

[Abram Nof Orlandi Scholl Shlomovits 22]

[sk] [k] [ϕ] [$\phi k][\phi s k]$

Signing from ECDSA Tuples

[Abram Nof Orlandi Scholl Shlomovits 22]

[sk] [k] [ϕ] [$\phi k][\phi s k]$

Round 1
Round 2

Establish $R=[k] \cdot G$

Signing from ECDSA Tuples

 [Abram Nof Orlandi Scholl Shlomovits 22]
[sk] [k] [ϕ] [$\phi k][\phi s k]$

Round 1

Round 2
Establish $R=[k] \cdot G$

Round 3 Reveal $\alpha=e+r_{x}[\phi \mathrm{sk}]$ and $\beta=[\phi k]$

Output $(R, s=\alpha / \beta)$

ECDSA Tuple Generation

$[s k][k]$
$[\phi]$
$[\phi k]$
$[\phi s k]$

ECDSA Tuple Generation

Input : [sk][k] Sample : [$\phi]$
 [$\phi k]$
 [$\phi \mathrm{sk}$]

ECDSA Tuple Generation

Local

Input: [sk][k]
Sample: [$\phi]$
[$\phi k]$
[$\phi \mathrm{sk}$]

ECDSA Tuple Generation

Local

Input: [sk][k]
Sample: [$\phi]$
\[\begin{aligned} \& {[\phi k]=\operatorname{MULT}([\phi],[k])}
\& {[\phi s k]=\operatorname{MULT}([\phi],[s k])} \end{aligned} \]

ECDSA Tuple Generation

Local

$$
\begin{aligned}
& \begin{array}{c}
\text { Input: }[s k][k] \\
\text { Sample }:[\phi]
\end{array} \begin{array}{l}
\text { Consistency: } \\
\text { straightforward }
\end{array} \\
& {[\phi k]=\operatorname{MULT}([\phi],[k]) } \\
& {[\phi s k]=\operatorname{MULT}([\phi],[s k]) }
\end{aligned}
$$

ECDSA Tuple Generation

Local

$$
\begin{aligned}
& \begin{array}{r}
\text { Input : }[\mathrm{sk}][k] \\
\text { Sample }:
\end{array} \begin{array}{l}
\text { Consistency: } \\
\text { straightforward }
\end{array} \\
& \qquad \begin{aligned}
& {[\phi k] }=\operatorname{MULT}([\phi],[k]) \\
& {[\phi \mathrm{sk}] }=\operatorname{MULT}([\phi],[\mathrm{sk}]) \\
& \text { Verify: } \\
& {[k] \cdot G=R } \\
& {[\mathrm{sk}] \cdot G=\mathrm{pk} }
\end{aligned}
\end{aligned}
$$

ECDSA Tuple Generation

Local

$$
\begin{aligned}
& \begin{array}{c}
\text { Input : }[\mathrm{sk}][k] \\
\text { Sample }:
\end{array} \begin{array}{l}
\text { Consistency: } \\
\text { straightforward }
\end{array} \\
& {[\phi k]=\operatorname{MULT}([\phi],[k]) } \\
& {[\phi \mathrm{k}]=\operatorname{MULT}([\phi],[s k]) }
\end{aligned}
$$

Previous works: ZK proofs, MACs, etc. This work: Simple pairwise check

Verify: ${ }^{[k] \cdot G=R}$
[sk] $\cdot G=\mathrm{pk}$

Secure Two-Party Multiplication

a.k.a. OLE, Mult2Add

Two-Round 2P-MUL

Two-Round 2P-MUL

c

$$
\begin{aligned}
& c+d=\alpha \cdot \beta \\
& \hat{c}+\hat{d}=\hat{\alpha} \cdot \beta
\end{aligned}
$$

Two-Round 2P-MUL

Two-Round 2P-MUL

a.k.a. Vector OLE
(VOLE)

$$
\begin{array}{lc}
c+d=\alpha \cdot \beta & \text { Consistency } \\
\hat{c}+\hat{d}=\hat{\alpha} \cdot \beta & \text { "for free" }
\end{array}
$$

ECDSA Tuple Generation

> Input: [sk][k] Sample: [$\phi]$
> Consistency:
> straightforward
> $[\phi k]=\operatorname{MULT}([\phi],[k])$
> $[\phi s k]=\operatorname{MULT}([\phi],[s k])$

ECDSA Tuple Generation

$$
\begin{aligned}
& \begin{array}{l}
\text { Input : }[\mathrm{sk}][k] \\
\text { Sample }:[\phi]
\end{array} \begin{array}{l}
\text { Consistency: } \\
\text { straightforward }
\end{array} \\
& {[\phi k]=\operatorname{MULT}([\phi],[k]) } \\
& {[\phi \mathrm{sk}]=} \operatorname{MULT}([\phi],[\mathrm{sk}]) \\
& \text { Verify: }\left[\begin{array}{l}
{[k] \cdot G=R} \\
{[\mathrm{sk}] \cdot G=\mathrm{pk}}
\end{array}\right.
\end{aligned}
$$

ECDSA Tuple Generation

Input: [sk][k] Sample: [$\phi]$

Consistency:
straightforward
ϕ is a MAC on k, sk
Verify MAC in \mathbb{G}

Byproduct of 2P-MUL: BDOZ MACs

Verify in parallel with MUL
$[\phi k]=\operatorname{MULT}([\phi],[k])$
$[\phi s k]=\operatorname{MULT}([\phi],[s k])$

Verifying Consistency w.r.t. G MULT([$\phi],[k])$

 Simplified:ϕ
2P-MUL

Verifying Consistency w.r.t. GI MULT([$\phi],[k])$

Simplified:

Verifying Consistency w.r.t. GI MULT([$\phi],[k])$

Simplified:

Verifying Consistency w.r.t. G MULT([$\phi],[k])$

Simplified:

Verifying Consistency w.r.t. G MULT([$\phi],[k])$

 Simplified:

Verifying Consistency w.r.t. \mathbb{G} MOLT ([$\phi],[k])$

Simplified:

$$
T_{\phi}=t_{\phi} \cdot G \begin{gathered}
t_{\phi}+t_{k}=\phi \cdot k \\
\text { Claim: }[k] \cdot G=R \\
T_{k}=t_{k} \cdot G \\
\hline
\end{gathered}
$$

Verifying Consistency w.r.t. \mathbb{G} MULT ([$\phi],[k])$
Simplified:

$$
\begin{aligned}
& T_{\phi}=t_{\phi} \cdot G \quad t_{\phi}+t_{k}=\phi \cdot k \\
& T_{k}=\phi R-T_{\phi}
\end{aligned}
$$

Verifying Consistency w.r.t. \mathbb{G} MOLT([$\phi],[k])$
Simplified:

$$
\begin{aligned}
& T_{\phi}=t_{\phi} \cdot G \\
& T_{k}=\phi R-T_{\phi}+t_{k}=\phi \cdot k \\
& T_{k}=\begin{array}{cl}
\psi & T_{k}=t_{k} \cdot G \\
\hline
\end{array}
\end{aligned}
$$

Verifying Consistency w.r.t. \mathbb{G} MOLT([$\phi],[k])$
Simplified:

$$
\begin{aligned}
& T_{\phi}=t_{\phi} \cdot G \quad t_{\phi}+t_{k}=\phi \cdot k \\
& T_{k}=\phi R-T_{\phi} T_{k}=t_{k} \cdot G \\
& \begin{array}{ll}
T_{k}=\phi \text { claim: }[k] \cdot G=R \\
\text { Match? } \\
\end{array}
\end{aligned}
$$

Verifying Consistency w.r.t. \mathbb{G} MOLT([$\phi],[k])$

Simplified:

No information about k

$$
\begin{aligned}
& T_{\phi}=t_{\phi} \cdot G \quad t_{\phi}+t_{k}=\phi \cdot k \quad T_{k}=t_{k} \cdot G
\end{aligned}
$$

Verifying Consistency w.r.t. G MULT([$\phi],[k])$

Simplified:

No information about k

$$
\begin{aligned}
& T_{\phi}=t_{\phi} \cdot G \quad t_{\phi}+t_{k}=\phi \cdot k \quad T_{k}=t_{k} \cdot G \\
& \begin{array}{|c|c|}
\hline T_{k}=\phi R-T_{\phi} & \text { Claim: }[k] \cdot G=R \\
\hline \text { Match? } & \longleftarrow T_{k} \\
\hline
\end{array} \\
& \text { In case of cheat: } \\
& \text { have to guess } \phi \\
& \text { (} 2^{-256} \text { chance) }
\end{aligned}
$$

Verifying Consistency w.r.t. \mathbb{G} $\operatorname{MULT}([\phi],[k])$

Verifying Consistency w.r.t. \mathbb{G} $\operatorname{MULT}([\phi],[k])$

Verifying Consistency w.r.t. \mathbb{G} $\operatorname{MULT}([\phi],[k])$ Simplified:

$$
\begin{aligned}
T_{\phi} & =t_{\phi} \cdot G \quad t_{\phi}+t_{k}=\phi \cdot k \\
T_{k}^{*} & =\phi R^{*}-T_{\phi} \\
& =T_{k}+\phi \Delta
\end{aligned}
$$

Verifying Consistency w.r.t. \mathbb{G}

 MULT([$\phi],[k])$

Verifying Consistency w.r.t. G MULT([$\phi],[k])$

$$
\begin{aligned}
& \text { Simplified: } \\
& T_{\phi}=t_{\phi} \cdot G \quad t_{\phi}+t_{k}=\phi \cdot k \quad T_{k}=t_{k} \cdot G \\
& \text { Statistically } \\
& \operatorname{correct} T_{k}^{*}
\end{aligned}
$$ unlikely to send

Notes on Consistency Check

- Case 1: Inconsistent k^{*}-almost certainly fails Case 2: Consistent k - nothing about ϕ leaked $\Rightarrow \phi$ is a MAC key, but also safe to (re)use in ECDSA tuple
- Very cheap, cost superseded by 2P-MUL
- Exact same structure for [$\phi \mathrm{sk}$] verification with pk
- Actual check: each party validates $2 \mathrm{P}-\mathrm{MUL}$ inputs (i.e. shares of $k, s k, \phi$) used by every counterparty

3 Round ECDSA Signing

[This work]
Sample [k]

3 Round ECDSA Signing

[This work]
Sample [k] [ϕ]

3 Round ECDSA Signing

[This work]
Sample [k] [ϕ]

Establish $R=[k] \cdot G$	Multiply [ϕ] with $[k],[\mathrm{sk}]$	
Exchange Commit $\left(R_{i}\right)$	MUL message 1	
Release R	MUL message 2	Pairwise consistency check

[sk] [k] [ϕ] [$\phi k]$ [$\phi s k]$
Round 3

$$
\text { Reveal } \alpha=e[\phi]+r_{x}[\phi \mathrm{sk}] \text { and } \beta=[\phi k]
$$

Output $(R, \sigma=\alpha / \beta)$
Intro
\square
How to distribute ECDSA
Tradeoffs

MP-Schnorr	but not
is easy	ECDSA

Evolution of
Techniques

> Our protocol:
> Simple consistency check

Instantiating Multiplication

- Secure n-party mult can be reduced to $2 n$ instances of $2 P-M U L$
- 2P-MUL inherently requires public key crypto
- Broadly two approaches:
- Additively Homomorphic Encryption (low bandwidth, high computation)
- Oblivious Transfer
(low computation, high bandwidth)

2P-MUL from Additively Homomorphic Encryption

- Additive Homomorphism: $\alpha \cdot \operatorname{Enc}(x)+\operatorname{Enc}(\beta)=\operatorname{Enc}(\alpha x+\beta)$
[Gilboa 99]: Conceptually simple protocol for MUL from AHE [CGGMP 20]: Hardened for active security through ZK proofs
- Instantiations from factoring based cryptography (e.g. [Paillier 99]) and class groups [Castagnos Laguillaumie 15]
- Advantages: Parties exchange (relatively) compact ciphertexts
- Downsides:
- Ciphertext operations are heavy (2 orders of magnitude slower than EC)
- Seem to require ZK proofs to prevent misuse

2P-MUL from Oblivious Transfer

- Oblivious Transfer (OT):

[Gilboa 99]: Elegant protocol for MUL from OT
[DKLs 18,19, HMRT 22]: active security by randomized encoding+statistical checks
- Instantiable with ECDSA curve (think DH key exchange)
- Advantages: By OT Extension [IKNP03, Roy22] public key operations can be moved to one-time key generation phase, so only hashes when signing (1 order of magnitude slower than single party signing)
- Downsides: ~ 1000 OTs/sig, each transmits two \mathbb{Z}_{q} elements

2P-MUL: AHE vs OT

- Tradeoff to make: Computation vs. Bandwidth during signing time
- Rough costs with 256-bit curve, for each additional party (computation aggregated across [Gavenda 21, XAXYC 21, BMP 22]):

	Bandwidth	Computation
OT [DKLs 23]	60 KB	Few milliseconds
Paillier [CGGMP 20]	15 KB	Hundreds of milliseconds
Paillier [GG 18]	7 KB	Hundreds of milliseconds
Class Groups [CCLST20, YCX21]	4.5 KB	>1 second

Is communication the bottleneck?

Is communication the bottleneck?

- Mobile applications (human-initiated):

Is communication the bottleneck?

- Mobile applications (human-initiated):

Is communication the bottleneck?

- Mobile applications (human-initiated):
- eg. $\mathrm{t}=4, \sim 2 \mathrm{Mbits}$ transmitted per party

Is communication the bottleneck?

- Mobile applications (human-initiated):
- eg. $\mathrm{t}=4, \sim 2 \mathrm{Mbits}$ transmitted per party
- Well within LTE envelope for responsivity

Example 1: Mobile Wallet

Multiplier: OT-based
Parties: 4
Curve: 256-bit
2 Mbits
sent per party

Example 1: Mobile Wallet

Multiplier: OT-based
Parties: 4
Curve: 256-bit
2 Mbits
sent per party

Example 1: Mobile Wallet

Multiplier: OT-based
Parties: 4
Curve: 256-bit
2 Mbits
sent per party

Example 1: Mobile Wallet

Multiplier: OT-based Parties: 4
Curve: 256-bit
2 Mbits
sent per party

Example 1: Mobile Wallet

Multiplier: OT-based Parties: 4
Curve: 256-bit
2 Mbits
sent per party

Example 1: Mobile Wallet

Multiplier: OT-based Parties: 4
Curve: 256-bit
2 Mbits
sent per party

Rank: 25
Avg. Upload: 7.5 Mbps
Signing Time: $\sim 1 / 3 \mathrm{sec}$

Avg. Upload: 2.7 Mbps
Signing Time: ~1 sec

Paillier+ZK takes this long for computation alone on powerful hardware!
source: opensignal (2020)

Is communication the bottleneck?

Is communication the bottleneck?

- Large-scale automated distributed signing:

Is communication the bottleneck?

- Large-scale automated distributed signing:

Is communication the bottleneck?

- Large-scale automated distributed signing:
- Threshold 2: $3.8 \mathrm{~ms} / \mathrm{sig}<=\sim 263 \mathrm{sig} /$ second

Is communication the bottleneck?

- Large-scale automated distributed signing:
- Threshold 2: $3.8 \mathrm{~ms} / \mathrm{sig} \quad<=\sim 263 \mathrm{sig} /$ second
- Threshold 20: $31.6 \mathrm{~ms} / \mathrm{sig}<=\sim 31 \quad$ sig/second

Is communication the bottleneck?

- Large-scale automated distributed signing:
- Threshold 2: $3.8 \mathrm{~ms} / \mathrm{sig}<=\sim 263 \mathrm{sig} /$ second
- Threshold 20: $31.6 \mathrm{~ms} / \mathrm{sig}<=\sim 31 \quad$ sig $/$ second
- Neither setting saturates a gigabit connection

Example 2: Datacenter Signing

How much bandwidth to be CPU bound?

(including preprocessing)

2 Parties
~250 sigs/second

256 Parties
~ 3 sigs/second
using GCP n1-highcpu nodes

Example 2: Datacenter Signing

How much bandwidth to be CPU bound?

(including preprocessing)

2 Parties
~250 sigs/second

Each party sends: ~ 700 Kbits per sig

256 Parties
~ 3 sigs/second
Each party sends:
~ 185 Mbits per sig
using GCP n1-highcpu nodes

Example 2: Datacenter Signing

How much bandwidth to be CPU bound?
(including preprocessing)

> 2 Parties
> ~ 250 sigs/second

Each party sends: ~ 700 Kbits per sig

Bandwidth required:
~ 180 Mbps symmetric

256 Parties
~ 3 sigs/second
Each party sends:
~ 185 Mbits per sig
using GCP n1-highcpu nodes

How to distribute ECDSA

Evolution of
Techniques

ECDSA
 Tuples

Tradeoffs

OT vs

AHE

In Conclusion

- Threshold ECDSA in Three Rounds: Now matches Schnorr
- Enabled by well-chosen correlation + simple new consistency check
- Blackbox use of UC 2-round 2P-MUL NOTE: OT-based protocols satisfy UC, but AHE is more complicated
- No (explicit) ZK proofs during signing or DKG \Rightarrow light protocol and straightforward UC analysis

dkls.info

Thanks!

