
Threshold ECDSA in Three Rounds

Yashvanth KondiJack Doerner Eysa Lee abhi shelat

dkls.info

Ballad of Bitcoin Bob

Ballad of Bitcoin Bob

Ballad of Bitcoin Bob

ALICE
PAY

Ballad of Bitcoin Bob

ALICE
PAY

Ballad of Bitcoin Bob

ALICE
PAY

Ballad of Bitcoin Bob

Ballad of Bitcoin Bob

Ballad of Bitcoin Bob

Ballad of Bitcoin Bob

Ballad of Bitcoin Bob

Ballad of Bitcoin Bob

Ballad of Bitcoin Bob

Ballad of Bitcoin Bob

PAY

h4CK3r

PAY

h4CK3r

Ballad of Bitcoin Bob

PAY

h4CK3r

Ballad of Bitcoin Bob

PAY

h4CK3r

Ballad of Bitcoin Bob

Ballad of Bitcoin Bob

Threshold Signing

Threshold Signing

Threshold Signing

Threshold Signing

Threshold Signing

Threshold Signing

Distributed Risk: Attacker will need
to compromise multiple devices

Threshold Signing

Intro

MP-Schnorr
is easy

but not
ECDSA

How to distribute ECDSA

Evolution of
Techniques

ECDSA 
Tuples

Tradeoffs

New protocol: 
Simple consistency

check

OT vs

AHE

Adversary Model
• Corruption threshold

Dishonest majority 
(only one device uncompromised)

Adversary Model
• Corruption threshold

Dishonest majority 
(only one device uncompromised)

Adversary Model
• Corruption threshold

Dishonest majority 
(only one device uncompromised)

• Adversarial behaviour

Adversary Model
• Corruption threshold

Dishonest majority 
(only one device uncompromised)

• Adversarial behaviour

Adversary Model
• Corruption threshold

Dishonest majority 
(only one device uncompromised)

• Adversarial behaviour

Adversary Model
• Corruption threshold

Dishonest majority 
(only one device uncompromised)

• Adversarial behaviour

Adversary Model
• Corruption threshold

Dishonest majority 
(only one device uncompromised)

• Adversarial behaviour

Malicious 
(arbitrary deviations from protocol)

Concrete Example: Schnorr Signatures

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

Concrete Example: Schnorr Signatures

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

• Tools:

Concrete Example: Schnorr Signatures

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

• Tools:

• Hash function -

Concrete Example: Schnorr Signatures

H : {0,1}* → ℤq

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

• Tools:

• Hash function -

• Group -

Concrete Example: Schnorr Signatures

H : {0,1}* → ℤq

(𝔾, G, q, +)

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

• Tools:

• Hash function -

• Group -

Concrete Example: Schnorr Signatures

H : {0,1}* → ℤq

(𝔾, G, q, +)
Group elements

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

• Tools:

• Hash function -

• Group -

Concrete Example: Schnorr Signatures

H : {0,1}* → ℤq

(𝔾, G, q, +)
Group elements

Points on an
Elliptic Curve

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

• Tools:

• Hash function -

• Group -

Concrete Example: Schnorr Signatures

H : {0,1}* → ℤq

(𝔾, G, q, +)
Group elements

GeneratorPoints on an
Elliptic Curve

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

• Tools:

• Hash function -

• Group -

Concrete Example: Schnorr Signatures

H : {0,1}* → ℤq

(𝔾, G, q, +)
Group elements

Generator (Large prime) orderPoints on an
Elliptic Curve

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

• Tools:

• Hash function -

• Group -

Concrete Example: Schnorr Signatures

H : {0,1}* → ℤq

(𝔾, G, q, +)
Group elements

Generator (Large prime) orderPoints on an
Elliptic Curve ≈ 2256

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

• Tools:

• Hash function -

• Group -

Concrete Example: Schnorr Signatures

H : {0,1}* → ℤq

(𝔾, G, q, +)
Group elements

Generator (Large prime) order

Addition law

Points on an
Elliptic Curve ≈ 2256

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

• Tools:

• Hash function -

• Group -

Sixty Seconds on Cyclic Groups

Concrete Example: Schnorr Signatures

H : {0,1}* → ℤq

(𝔾, G, q, +)
Group elements

Generator (Large prime) order

Addition law

Points on an
Elliptic Curve ≈ 2256

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

• Tools:

• Hash function -

• Group -

Sixty Seconds on Cyclic Groups

Concrete Example: Schnorr Signatures

H : {0,1}* → ℤq

(𝔾, G, q, +)
Group elements

Generator (Large prime) order

Addition law

X, Y ∈ 𝔾If then X + Y = Z ∈ 𝔾

Points on an
Elliptic Curve ≈ 2256

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

• Tools:

• Hash function -

• Group -

Sixty Seconds on Cyclic Groups

Concrete Example: Schnorr Signatures

H : {0,1}* → ℤq

(𝔾, G, q, +)
Group elements

Generator (Large prime) order

Addition law

X ∈ 𝔾Any can be written as x ⋅ G
is the discrete logarithm of x ∈ ℤq X

X, Y ∈ 𝔾If then X + Y = Z ∈ 𝔾

Points on an
Elliptic Curve ≈ 2256

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

• Tools:

• Hash function -

• Group -

Sixty Seconds on Cyclic Groups

Concrete Example: Schnorr Signatures

H : {0,1}* → ℤq

(𝔾, G, q, +)
Group elements

Generator (Large prime) order

Addition law

X ∈ 𝔾Any can be written as x ⋅ G
is the discrete logarithm of x ∈ ℤq X

X, Y ∈ 𝔾If then X + Y = Z ∈ 𝔾

(x + y) ⋅ G = x ⋅ G + y ⋅ GPoints on an
Elliptic Curve ≈ 2256

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

• Tools:

• Hash function -

• Group -

Sixty Seconds on Cyclic Groups

Concrete Example: Schnorr Signatures

H : {0,1}* → ℤq

(𝔾, G, q, +)
Group elements

Generator (Large prime) order

Addition law

X ∈ 𝔾Any can be written as x ⋅ G
is the discrete logarithm of x ∈ ℤq X

X, Y ∈ 𝔾If then X + Y = Z ∈ 𝔾

(x + y) ⋅ G = x ⋅ G + y ⋅ G
Integer addition mod q Group additionPoints on an

Elliptic Curve ≈ 2256

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

• Tools:

• Hash function -

• Group -

Sixty Seconds on Cyclic Groups

Concrete Example: Schnorr Signatures

H : {0,1}* → ℤq

(𝔾, G, q, +)
Group elements

Generator (Large prime) order

Addition law

X ∈ 𝔾Any can be written as x ⋅ G
is the discrete logarithm of x ∈ ℤq X

X, Y ∈ 𝔾If then X + Y = Z ∈ 𝔾

(x + y) ⋅ G = x ⋅ G + y ⋅ G
Integer addition mod q Group addition

Discrete Logarithm Problem: Given random , find its discrete logarithmX ∈ 𝔾

Points on an
Elliptic Curve ≈ 2256

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

• Tools:

• Hash function -

• Group -

Sixty Seconds on Cyclic Groups

Concrete Example: Schnorr Signatures

H : {0,1}* → ℤq

(𝔾, G, q, +)
Group elements

Generator (Large prime) order

Addition law

X ∈ 𝔾Any can be written as x ⋅ G
is the discrete logarithm of x ∈ ℤq X

X, Y ∈ 𝔾If then X + Y = Z ∈ 𝔾

(x + y) ⋅ G = x ⋅ G + y ⋅ G
Integer addition mod q Group addition

Discrete Logarithm Problem: Given random , find its discrete logarithmX ∈ 𝔾

For certain elliptic curves, best known algorithms for DLP run in time Θ (q)

Points on an
Elliptic Curve ≈ 2256

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

• Tools:

• Hash function -

• Group -

Concrete Example: Schnorr Signatures

H : {0,1}* → ℤq

(𝔾, G, q, +)
Group elements

Generator (Large prime) order

Addition law

X ∈ 𝔾Any can be written as x ⋅ G
is the discrete logarithm of x ∈ ℤq X

Sixty Seconds on Cyclic Groups

X, Y ∈ 𝔾If then X + Y = Z ∈ 𝔾

(x + y) ⋅ G = x ⋅ G + y ⋅ G
Integer addition mod q Group addition

Very informally:

Points on an
Elliptic Curve ≈ 2256

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

• Tools:

• Hash function -

• Group -

Concrete Example: Schnorr Signatures

H : {0,1}* → ℤq

(𝔾, G, q, +)
Group elements

Generator (Large prime) order

Addition law

X ∈ 𝔾Any can be written as x ⋅ G
is the discrete logarithm of x ∈ ℤq X

Sixty Seconds on Cyclic Groups

X, Y ∈ 𝔾If then X + Y = Z ∈ 𝔾

(x + y) ⋅ G = x ⋅ G + y ⋅ G
Integer addition mod q Group addition

Very informally: x → X EASY

Points on an
Elliptic Curve ≈ 2256

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

• Tools:

• Hash function -

• Group -

Concrete Example: Schnorr Signatures

H : {0,1}* → ℤq

(𝔾, G, q, +)
Group elements

Generator (Large prime) order

Addition law

X ∈ 𝔾Any can be written as x ⋅ G
is the discrete logarithm of x ∈ ℤq X

Sixty Seconds on Cyclic Groups

X, Y ∈ 𝔾If then X + Y = Z ∈ 𝔾

(x + y) ⋅ G = x ⋅ G + y ⋅ G
Integer addition mod q Group addition

Very informally: x → X EASY

X → x HARD

Points on an
Elliptic Curve ≈ 2256

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

• Tools:

• Hash function -

• Group -

Concrete Example: Schnorr Signatures

H : {0,1}* → ℤq

(𝔾, G, q, +)
Group elements

Generator (Large prime) order

Addition law

X ∈ 𝔾Any can be written as x ⋅ G
is the discrete logarithm of x ∈ ℤq X

Sixty Seconds on Cyclic Groups

X, Y ∈ 𝔾If then X + Y = Z ∈ 𝔾

(x + y) ⋅ G = x ⋅ G + y ⋅ G
Integer addition mod q Group addition

Very informally: x → X EASY

X → x HARD

Points on an
Elliptic Curve

30μs

≈ 2256

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

• Tools:

• Hash function -

• Group -

Concrete Example: Schnorr Signatures

H : {0,1}* → ℤq

(𝔾, G, q, +)
Group elements

Generator (Large prime) order

Addition law

X ∈ 𝔾Any can be written as x ⋅ G
is the discrete logarithm of x ∈ ℤq X

Sixty Seconds on Cyclic Groups

X, Y ∈ 𝔾If then X + Y = Z ∈ 𝔾

(x + y) ⋅ G = x ⋅ G + y ⋅ G
Integer addition mod q Group addition

Very informally: x → X EASY

X → x HARD

Points on an
Elliptic Curve

30μs
Many billion billions of years

≈ 2256

Schnorr Key Generation

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

Public Key: exposed to the outside world
secret key: kept private

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, e)

output σ

Schnorr Signing

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

Schnorr Signing

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, e)

output σ

Schnorr Signing

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, e)

output σ

NONCE

One-time use

value

Schnorr Signing

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, e)

output σ

NONCE

One-time use

value

Schnorr Signing

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, e)

output σ

NONCE

One-time use

value

Schnorr Signing

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, e)

output σ

(𝗆𝗈𝖽 q)

NONCE

One-time use

value

Schnorr Signing

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

(𝗆𝗈𝖽 q)

NONCE

One-time use

value

Verifying a signature: s ⋅ G ?= R−e ⋅ 𝖯𝖪

Schnorr Signing

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

(𝗆𝗈𝖽 q)

NONCE

One-time use

value

Verifying a signature: s ⋅ G ?= R−e ⋅ 𝖯𝖪

Schnorr Signing

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

(𝗆𝗈𝖽 q)

k ⋅ G 𝗌𝗄 ⋅ G

s ⋅ G ?= (k−e ⋅ 𝗌𝗄) ⋅ G

NONCE

One-time use

value

Verifying a signature: s ⋅ G ?= R−e ⋅ 𝖯𝖪

Schnorr Signing

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

(𝗆𝗈𝖽 q)

k ⋅ G 𝗌𝗄 ⋅ G

Secret Sharing

• denotes that a value is “secret-shared” across devices

• We will only use “linear” secret sharing schemes 

[x] x ∈ ℤq

a[x] + b[y] = [ax + by]

Additive Secret Sharing

Additive Secret Sharing
x ∈ ℤq

Additive Secret Sharing
x ∈ ℤq

xA xBxA + xB = x

x ∈ ℤq
xA + xB = x

xA xB

Additive Secret Sharing

x ∈ ℤq
xA + xB = x

xA xB[x]

Additive Secret Sharing

xA + xB = x
x ∈ ℤq

xA xB[x]

Additive Secret Sharing

xA + xB = x
x ∈ ℤq

xA xB[x]

Additive Secret Sharing

xA + xB = x
x ∈ ℤq

xA xB?

? ?

?

[x]?

Additive Secret Sharing

x ∈ ℤq
xA + xB = x

xA xB[x]

yA + yB = y
[y]

yA yB

Additive Secret Sharing

x ∈ ℤq
xA + xB = x

xA xB[x]
[y]yA yB

Additive Secret Sharing

x ∈ ℤq
xA + xB = x

xA xB[x]
[y]yA yB

[z = cx + y]

Additive Secret SharingDistributing Schnorr w.

x ∈ ℤq
xA + xB = x

xA xB[x]
[y]yA yB

zA = cxA + yA [z = cx + y] zB = cxB + yB

Additive Secret SharingDistributing Schnorr w.

x ∈ ℤq
xA + xB = x

xA xB[x]
[y]yA yB

zA = cxA + yA [z = cx + y] zB = cxB + yB

Distributing Schnorr w. Additive Secret Sharing

𝗌𝗄 ∈ ℤq
𝗌𝗄A + 𝗌𝗄B = 𝗌𝗄

𝗌𝗄A 𝗌𝗄B[𝗌𝗄]
[k]kA kB

sA = e𝗌𝗄A + kA [s = e𝗌𝗄 + k] sB = e𝗌𝗄B + kB

Distributing Schnorr w. Additive Secret Sharing

𝗌𝗄 ∈ ℤq
𝗌𝗄A + 𝗌𝗄B = 𝗌𝗄

𝗌𝗄A 𝗌𝗄B[𝗌𝗄]
[k]kA kB

sA = e𝗌𝗄A + kA [s = e𝗌𝗄 + k] sB = c𝗌𝗄B + kB

Distributing Schnorr w. Additive Secret Sharing

R = k ⋅ G
e = H(m, R)

3 Round Schnorr Signing
Folklore, [Lindell 22]

Exchange 𝖢𝗈𝗆𝗆𝗂𝗍 (Ri = [k]i ⋅ G)

Release , set Ri R = Σi Ri

Round 1

Round 2

Establish R = [k] ⋅ G

Round 3 Reveal s = [𝗌𝗄] ⋅ H(m, R) + [k]

𝖮𝗎𝗍𝗉𝗎𝗍 (R, s)

, [𝗌𝗄]𝖨𝗇𝗉𝗎𝗍 : 𝗉𝗄 = [𝗌𝗄] ⋅ G , [k]

(Threshold) Schnorr in Practice?

• Schnorr signatures are old (well-studied), compact, fast, and
easy to distribute with MPC (i.e. thresholdize)

• However it was patented—major barrier for internet adoption

• Patent expired recently; adoption is increasing but much of the
internet infrastructure does not support Schnorr

ECDSA

• Elliptic Curve Digital Signature Algorithm

• Devised by Scott Vanstone in 1992, standardized by NIST

• Differs from Schnorr enough so that patent doesn’t apply

• Widespread adoption across the internet 
 
… but MPC-unfriendly

Threshold ECDSA: Challenges

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

ECDSASign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R)

Threshold ECDSA: Challenges

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

ECDSASign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R)

Standard 2
round sampling

Threshold ECDSA: Challenges

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

ECDSASign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R)

Standard 2
round sampling

Threshold ECDSA: Challenges

ECDSASign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R)

Threshold ECDSA: Challenges

ECDSASign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R)

Multiplication of
secret values

Threshold ECDSA: Challenges

ECDSASign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R)

Multiplication of
secret values

Division (Modular inverse)

Threshold ECDSA: Challenges

ECDSASign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R)

Multiplication of
secret values

Division (Modular inverse)

x-coordinate of R (not secret)rx

ry

R = (rx, ry)

Threshold ECDSA: Challenges

ECDSASign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R)

Multiplication of
secret values

Division (Modular inverse)

x-coordinate of R (not secret)rx

ry

R = (rx, ry)

There is no one-size-
fits-all solution

Secure Two-Party Multiplication

𝟤𝖯-𝖬𝖴𝖫
α β

a.k.a. OLE, Mult2Add

Underlies many dishonest
majority MPC protocols

Secure Two-Party Multiplication

𝟤𝖯-𝖬𝖴𝖫
α β

a.k.a. OLE, Mult2Add

Underlies many dishonest
majority MPC protocols

Secure Two-Party Multiplication

𝟤𝖯-𝖬𝖴𝖫
α

c
β
d

a.k.a. OLE, Mult2Add

Underlies many dishonest
majority MPC protocols

Secure Two-Party Multiplication

𝟤𝖯-𝖬𝖴𝖫

c + d = α ⋅ β

α

c
β
d

a.k.a. OLE, Mult2Add

Underlies many dishonest
majority MPC protocols

Secure Two-Party Multiplication

𝟤𝖯-𝖬𝖴𝖫

c + d = α ⋅ β

α

c
β
d

Instantiable efficiently from: 
OT, Paillier, Class Groups

Tool to split a product of secret
inputs into additive secrets αβ c, d

a.k.a. OLE, Mult2Add

Underlies many dishonest
majority MPC protocols

• Rough costs with 256-bit curve, for each additional party 
(computation aggregated across [Gavenda 21, XAXYC 21, BMP 22]):

Bandwidth 
(KB)

Computation 
(ms)

90

15

7

4

<10

Hundreds

Hundreds

> 1000

Threshold ECDSA: State of the Art

Rounds

log(t) + 6

4

8

4

5 50—10040

[DKLs 19]

[CGGMP 20]

[GG 18]
 

[CCLST20, 
YCX21]

Protocol

[HLNR 18/23]

OT

OT+

Class
Groups

Paillier

𝟤𝖯-𝖬𝖴𝖫

• Rough costs with 256-bit curve, for each additional party 
(computation aggregated across [Gavenda 21, XAXYC 21, BMP 22]):

Bandwidth 
(KB)

Computation 
(ms)

90

15

4

<10

Hundreds

> 1000

Threshold ECDSA: State of the ArtGoal

OT

Class
Groups

Paillier

Simple,
unified

protocol

𝟤𝖯-𝖬𝖴𝖫

• Rough costs with 256-bit curve, for each additional party 
(computation aggregated across [Gavenda 21, XAXYC 21, BMP 22]):

Bandwidth 
(KB)

Computation 
(ms)

90

15

4

<10

Hundreds

> 1000

Threshold ECDSA: State of the ArtGoal

This work:

3 Round Signing 

from 
2 round 𝟤𝖯-𝖬𝖴𝖫OT

Class
Groups

Paillier

Simple,
unified

protocol

𝟤𝖯-𝖬𝖴𝖫

• Rough costs with 256-bit curve, for each additional party 
(computation aggregated across [Gavenda 21, XAXYC 21, BMP 22]):

Bandwidth 
(KB)

Computation 
(ms)

90

15

4

<10

Hundreds

> 1000

Threshold ECDSA: State of the ArtGoal

This work:

3 Round Signing 

from 
2 round 𝟤𝖯-𝖬𝖴𝖫

mild/no overhead

OT

Class
Groups

Paillier

Simple,
unified

protocol

𝟤𝖯-𝖬𝖴𝖫

• Rough costs with 256-bit curve, for each additional party 
(computation aggregated across [Gavenda 21, XAXYC 21, BMP 22]):

Bandwidth 
(KB)

Computation 
(ms)

90

15

4

<10

Hundreds

> 1000

Threshold ECDSA: State of the ArtGoal

This work:

3 Round Signing 

from 
2 round 𝟤𝖯-𝖬𝖴𝖫

mild/no overhead

Insight: 
well-chosen

rewriting of ECDSA 
+simple consistency

check

OT

Class
Groups

Paillier

Simple,
unified

protocol

𝟤𝖯-𝖬𝖴𝖫

• Rough costs with 256-bit curve, for each additional party 
(computation aggregated across [Gavenda 21, XAXYC 21, BMP 22]):

Bandwidth 
(KB)

Computation 
(ms)

90

15

4

<10

Hundreds

> 1000

Threshold ECDSA: State of the ArtGoal

This work:

3 Round Signing 

from 
2 round 𝟤𝖯-𝖬𝖴𝖫

mild/no overhead

Insight: 
well-chosen

rewriting of ECDSA 
+simple consistency

check

OT

Class
Groups

Paillier

Simple,
unified

protocol

60

𝟤𝖯-𝖬𝖴𝖫

Intro

MP-Schnorr
is easy

but not
ECDSA

How to distribute ECDSA

Evolution of
Techniques

ECDSA 
Tuples

Tradeoffs

Our protocol: 
Simple consistency

check

A Brief History of Threshold ECDSA

• “End result” protocols are typically compared by security
models, assumptions, concrete efficiency (bandwidth,
rounds), and benchmarks.

• This doesn’t tell the full story of techniques 
 necessary context for “simplicity”

• Qualitative comparison: trace how Threshold ECDSA
protocol structure has evolved over time

⇒

MPC for ECDSA

• Computing given (as used in ECDSA signing) naively as an
arithmetic circuit is prohibitively expensive—warrants custom protocols

• Standard recipe in the literature:

- Rewrite ECDSA signing equation to an “MPC-friendly” equivalent 
i.e. only additions and multiplications of secret values

- Cryptographic Machinery for secure multiplication

- Verify that all operations were performed honestly

[k−1] [k]

Inverted Nonce Rewriting

ECDSASign(𝗌𝗄, m) :
[k] ← ℤq

R = [k] ⋅ G
e = H(m)

output σ = (s, R)

s =
e + [𝗌𝗄] ⋅ rx

[k]

[Gennaro Jarecki Krawczyk Rabin 96][Langford 95]

(e + [𝗌𝗄] ⋅ rx)

Inverted Nonce Rewriting

ECDSASign(𝗌𝗄, m) :
[k] ← ℤq

R = [k] ⋅ G
e = H(m)

output σ = (s, R)
s = e + [𝗌𝗄] ⋅ rx [k]

[Gennaro Jarecki Krawczyk Rabin 96][Langford 95]

(e + [𝗌𝗄] ⋅ rx)

Inverted Nonce Rewriting

ECDSASign(𝗌𝗄, m) :
[k] ← ℤq

R = [k] ⋅ G
e = H(m)

output σ = (s, R)
s = e + [𝗌𝗄] ⋅ rx [k]

[Gennaro Jarecki Krawczyk Rabin 96][Langford 95]

(e + [𝗌𝗄] ⋅ rx)

Inverted Nonce Rewriting

R = [k−1] ⋅ G
e = H(m)

output σ = (s, R)
s = e + [𝗌𝗄] ⋅ rx [k]

[Gennaro Jarecki Krawczyk Rabin 96][Langford 95]

ECDSASign(𝗌𝗄, m) :
[k] ← ℤq

Equivalent to ECDSA

But how to securely compute ?k−1G

(e + [𝗌𝗄] ⋅ rx)

Inverted Nonce Rewriting

R = (ϕk)−1 ⋅ Φ = [k−1] ⋅ G
e = H(m)

output σ = (s, R)
s = e + [𝗌𝗄] ⋅ rx [k]

[Gennaro Jarecki Krawczyk Rabin 96][Langford 95]

ECDSASign(𝗌𝗄, m) :
[k] ← ℤq

[ϕ] ← ℤq

𝗋𝖾𝗏𝖾𝖺𝗅 [ϕ] ⋅ [k]
𝗋𝖾𝗏𝖾𝖺𝗅 Φ = ϕ ⋅ G

First appears in 
[Bar-Ilan Beaver 89]

Equivalent to ECDSA

But how to securely compute ?k−1G

A Brief History of Threshold ECDSA

[Lan95,
GJKR96]

Inverted
NonceRewriting

Machinery

Verification

[GG 
18, 20]

Inverted Nonce

Paillier

ZK in

+

Masked sig
verification

ℤN GMW-
style ZK

in ℤN

[CGGMP 
20]

1990s

Honest
Majority

Magic

A Brief History of Threshold ECDSA

[Lan95,
GJKR96]

Inverted
Nonce

[MR01]

Multiplicative

(Threshold) 
Paillier

ZK over ℤN

[GGN16, 
BGG17] [Lin17]

2P 
magic

OT

[DKLs 
18, 19]

Check
relations in
exponent

Paillier

Rewriting

Machinery

Verification

[GG 
18, 20]

Inverted Nonce

Paillier

ZK in

+

Masked sig
verification

ℤN GMW-
style ZK

in ℤN

[CGGMP 
20]

1990s 2018

Honest
Majority

Magic

A Brief History of Threshold ECDSA

[Lan95,
GJKR96]

Inverted
Nonce

[MR01]

Multiplicative

(Threshold) 
Paillier

ZK over ℤN

[GGN16, 
BGG17] [Lin17]

2P 
magic

OT

[DKLs 
18, 19]

Check
relations in
exponent

Paillier

Rewriting

Machinery

Verification

[GG 
18, 20]

Inverted Nonce

Paillier

ZK in

+

Masked sig
verification

ℤN GMW-
style ZK

in ℤN

[CGGMP 
20]

Now showing

1990s 2018

Honest
Majority

Magic

A Brief History of Threshold ECDSA

[Lan95,
GJKR96]

Inverted
Nonce

[MR01]

Multiplicative:

(Threshold) 
Paillier

ZK over ℤN

[GGN16, 
BGG17] [Lin17]

2P 
magic

OT

[DKLs 
18, 19]

Check
relations in
exponent

Paillier

Rewriting

Machinery

Verification

[GG 
18, 20]

Inverted Nonce

Paillier

ZK in

+

Masked sig
verification

ℤN GMW-
style ZK

in ℤN

[CGGMP 
20]

Now showing MacKenzie Reiter 01
1990s 2018

s = (a
k) + (b𝗌𝗄

k)
Honest

Majority
Magic

A Brief History of Threshold ECDSA

[Lan95,
GJKR96]

Inverted
Nonce

[MR01]

(Threshold) 
Paillier

ZK over ℤN

[GGN16, 
BGG17] [Lin17]

2P 
magic

OT

[DKLs 
18, 19]

Check
relations in
exponent

Paillier

Rewriting

Machinery

Verification

[GG 
18, 20]

Inverted Nonce

Paillier

ZK in

+

Masked sig
verification

ℤN GMW-
style ZK

in ℤN

[CGGMP 
20]

Now showing Gennaro Goldfeder Narayanan 16, Boneh, Gennaro, Goldfeder 17
1990s 2018

Multiplicative:
s = (a

k) + (b𝗌𝗄
k)

Honest
Majority

Magic

A Brief History of Threshold ECDSA

[Lan95,
GJKR96]

Inverted
Nonce

[MR01]

(Threshold) 
Paillier

ZK over ℤN

[GGN16, 
BGG17] [Lin17]

2P 
magic

OT

[DKLs 
18, 19]

Check
relations in
exponent

Paillier

Rewriting

Machinery

Verification

[GG 
18, 20]

Inverted Nonce

Paillier

ZK in

+

Masked sig
verification

ℤN GMW-
style ZK

in ℤN

[CGGMP 
20]

Now showing Lindell 17
1990s 2018

Multiplicative:
s = (a

k) + (b𝗌𝗄
k)

Honest
Majority

Magic

Honest
Majority

Magic

A Brief History of Threshold ECDSA

[Lan95,
GJKR96]

Inverted
Nonce

[MR01]

(Threshold) 
Paillier

ZK over ℤN

[GGN16, 
BGG17] [Lin17]

2P 
magic

OT

[DKLs 
18, 19]

Check
relations in
exponent

Paillier

Rewriting

Machinery

Verification

[GG 
18, 20]

Inverted Nonce

Paillier

ZK in

+

Masked sig
verification

ℤN GMW-
style ZK

in ℤN

[CGGMP 
20]

Now showing Doerner, K, Lee, shelat 18 & 19
1990s 2018

now-ish

s = (a
k) + (b𝗌𝗄

k)
Multiplicative

1990s

A Brief History of Threshold ECDSA

[Lan95,
GJKR96]

Inverted
Nonce

Honest
Majority

Magic

[MR01]

Multiplicative

(Threshold) 
Paillier

ZK over ℤN

[GGN16, 
BGG17] [Lin17]

2P 
magic

OT

[DKLs 
18, 19]

Check
relations in
exponent

Paillier

Rewriting

Machinery

Verification

[GG 
18, 20]

Inverted Nonce

Paillier

ZK in

+

Masked sig
verification

ℤN GMW-
style ZK

in ℤN

[CGGMP 
20]

[HLNR 
18, 23]

[ANOSS 
22]

[ST19, 
DOKSS20]

OT++

Replay in
committed

form

BDOZ
MAC

PCG

<flexible>

<flexible>

ECDSA tuple

Any
MAC

ℤq

ZK in ℤq

2018 now-ish

Gennaro Goldfeder 18 & 20
A Brief History of Threshold ECDSA

[Lan95,
GJKR96]

Inverted
Nonce

Honest
Majority

Magic

[MR01]

Multiplicative

(Threshold) 
Paillier

ZK over ℤN

[GGN16, 
BGG17] [Lin17]

2P 
magic

OT

[DKLs 
18, 19]

Check
relations in
exponent

Paillier

Rewriting

Machinery

Verification

[GG 
18, 20]

Inverted Nonce

Paillier

ZK in

+

Masked sig
verification

ℤN GMW-
style ZK

in ℤN

[CGGMP 
20]

[HLNR 
18, 23]

ECDSA tuple

[ANOSS 
22]

[ST19, 
DOKSS20]

OT++

Replay in
committed

form

BDOZ
MAC

PCG

<flexible>

<flexible>

Now showing

Any
MAC

ℤq

ZK in ℤq

now-ish

Canetti, Gennaro, Goldfeder, Makriyannis, Peled 20
A Brief History of Threshold ECDSA

[Lan95,
GJKR96]

Inverted
Nonce

Honest
Majority

Magic

[MR01]

Multiplicative

(Threshold) 
Paillier

ZK over ℤN

[GGN16, 
BGG17] [Lin17]

2P 
magic

OT

[DKLs 
18, 19]

Check
relations in
exponent

Paillier

Rewriting

Machinery

Verification

[GG 
18, 20]

Inverted Nonce

Paillier

ZK in

+

Masked sig
verification

ℤN GMW-
style ZK

in ℤN

[CGGMP 
20]

[HLNR 
18, 23]

[ANOSS 
22]

[ST19, 
DOKSS20]

OT++

Replay in
committed

form

BDOZ
MAC

PCG

<flexible>

<flexible>

Now showing

ECDSA tuple

Any
MAC

ℤq

ZK in ℤq

now-ish

Lindell Nof 18, Haitner, Lindell, Nof, Ranellucci 23
A Brief History of Threshold ECDSA

[Lan95,
GJKR96]

Inverted
Nonce

Honest
Majority

Magic

[MR01]

Multiplicative

(Threshold) 
Paillier

ZK over ℤN

[GGN16, 
BGG17] [Lin17]

2P 
magic

OT

[DKLs 
18, 19]

Check
relations in
exponent

Paillier

Rewriting

Machinery

Verification

[GG 
18, 20]

Inverted Nonce

Paillier

ZK in

+

Masked sig
verification

ℤN GMW-
style ZK

in ℤN

[CGGMP 
20]

[HLNR 
18, 23]

[ANOSS 
22]

[ST19, 
DOKSS20]

OT++

Replay in
committed

form

BDOZ
MAC

PCG

<flexible>

<flexible>

Any
MAC

ℤq

Now showing

ECDSA tuple

ZK in ℤq

now-ish

Abram Nof Orlandi Scholl Shlomovits 22
A Brief History of Threshold ECDSA

[Lan95,
GJKR96]

Inverted
Nonce

Honest
Majority

Magic

[MR01]

Multiplicative

(Threshold) 
Paillier

ZK over ℤN

[GGN16, 
BGG17] [Lin17]

2P 
magic

OT

[DKLs 
18, 19]

Check
relations in
exponent

Paillier

Rewriting

Machinery

Verification

[GG 
18, 20]

Inverted Nonce

Paillier

ZK in

+

Masked sig
verification

ℤN GMW-
style ZK

in ℤN

[CGGMP 
20]

[HLNR 
18, 23]

[ANOSS 
22]

[ST19, 
DOKSS20]

OT++

Replay in
committed

form

BDOZ
MAC

PCG

<flexible>

<flexible>

Any
MAC

ℤq

Now showing

ECDSA tuple

ZK in ℤq

now-ish

now-ishSmart Talibi 19, Dalskov, Orlandi, Keller, Shrishak, Shulman 20
A Brief History of Threshold ECDSA

[Lan95,
GJKR96]

Inverted
Nonce

Honest
Majority

Magic

[MR01]

Multiplicative

(Threshold) 
Paillier

ZK over ℤN

[GGN16, 
BGG17] [Lin17]

2P 
magic

OT

[DKLs 
18, 19]

Check
relations in
exponent

Paillier

Rewriting

Machinery

Verification

[GG 
18, 20]

Inverted Nonce

Paillier

ZK in

+

Masked sig
verification

ℤN GMW-
style ZK

in ℤN

[CGGMP 
20]

[HLNR 
18, 23]

[ANOSS 
22]

[ST19, 
DOKSS20]

OT++

Replay in
committed

form

BDOZ
MAC

PCG

<flexible>

<flexible>

Any
MAC

ℤq

Now showing

ECDSA tuple

ZK in ℤq

now-ish

A Brief History of Threshold ECDSA

[Lan95,
GJKR96]

Inverted
Nonce

Honest
Majority

Magic

[MR01]

Multiplicative

(Threshold) 
Paillier

ZK over ℤN

[GGN16, 
BGG17] [Lin17]

2P 
magic

OT

[DKLs 
18, 19]

Check
relations in
exponent

Paillier

Rewriting

Machinery

Verification

[GG 
18, 20]

Inverted Nonce

Paillier

ZK in

+

Masked sig
verification

ℤN GMW-
style ZK

in ℤN

[CGGMP 
20]

[HLNR 
18, 23]

[ANOSS 
22]

[ST19, 
DOKSS20]

OT++

Replay in
committed

form

BDOZ
MAC

PCG

<flexible>

<flexible>

Any
MAC

ℤq

ECDSA tuple

ZK in ℤq

UC ZK

now-ish

A Brief History of Threshold ECDSA

[Lan95,
GJKR96]

Inverted
Nonce

Honest
Majority

Magic

[MR01]

Multiplicative

(Threshold) 
Paillier

ZK over ℤN

[GGN16, 
BGG17] [Lin17]

2P 
magic

OT

[DKLs 
18, 19]

Check
relations in
exponent

Paillier

Rewriting

Machinery

Verification

[GG 
18, 20]

Inverted Nonce

Paillier

ZK in

+

Masked sig
verification

ℤN GMW-
style ZK

in ℤN

[CGGMP 
20]

[HLNR 
18, 23]

[ANOSS 
22]

[ST19, 
DOKSS20]

OT++

Replay in
committed

form

BDOZ
MAC

PCG

<flexible>

<flexible>

Any
MAC

ℤq

ECDSA tuple

ZK in ℤqMachinery-
specific

Involved
analysis

Expensive
proofsInteractive

Creating MACs
is extra workUC ZK

2P-only

Inverted Nonce

GMW-
style ZK

in

[CGGMP 
20]

[HLNR 
18, 23]

[ANOSS 
22]

OT++

Replay in
committed

form

BDOZ
MAC

PCG

ZK in ℤq

now-ish

A Brief History of Threshold ECDSA

[Lan95,
GJKR96]

Inverted
Nonce

Honest
Majority

Magic

[MR01]

(Threshold) 
Paillier

ZK over ℤN

[GGN16, 
BGG17]

Rewriting

Machinery

Verification

ECDSA tuple

This work

Any 𝟤𝖯-𝖬𝖴𝖫

Simple
statistical check

Cheap!
Generic!

Straightforward analysis

No extra work: 
re-uses byproduct of 𝟤𝖯-𝖬𝖴𝖫

Rewriting ECDSA with ECDSA Tuples

ECDSASign(𝗌𝗄, m) :
[k] ← ℤq

R = [k] ⋅ G
e = H(m)

[Abram Nof Orlandi Scholl Shlomovits 22][Lindell Nof Ranellucci 18]

output σ = (s, R)

s =
e + [𝗌𝗄] ⋅ rx

[k]

ECDSASign(𝗌𝗄, m) :
[k] ← ℤq

R = [k] ⋅ G
e = H(m)

[Abram Nof Orlandi Scholl Shlomovits 22][Lindell Nof Ranellucci 18]

output σ = (s, R)

s =
e + [𝗌𝗄] ⋅ rx

[k]
[ϕ]
[ϕ]

⋅

Rewriting ECDSA with ECDSA Tuples

ECDSASign(𝗌𝗄, m) :
[k] ← ℤq

R = [k] ⋅ G
e = H(m)

[Abram Nof Orlandi Scholl Shlomovits 22][Lindell Nof Ranellucci 18]

output σ = (s, R)

s =

e + [𝗌𝗄] ⋅ rx

[k]
[ϕ]

[ϕ]
α = ()
β =

Rewriting ECDSA with ECDSA Tuples

ECDSASign(𝗌𝗄, m) :
[k] ← ℤq

R = [k] ⋅ G
e = H(m)

[Abram Nof Orlandi Scholl Shlomovits 22][Lindell Nof Ranellucci 18]

output σ = (s, R)

s =

e + [𝗌𝗄] ⋅ rx

[k]
[ϕ]

[ϕ]
α = ()
β =

α
β

Rewriting ECDSA with ECDSA Tuples

ECDSASign(𝗌𝗄, m) :
[k] ← ℤq

R = [k] ⋅ G
e = H(m)

[Abram Nof Orlandi Scholl Shlomovits 22][Lindell Nof Ranellucci 18]

output σ = (s, R)

s =

e + [𝗌𝗄] ⋅ rx

[k]
[ϕ]

[ϕ]
α = ()
β =

[ϕ] ← ℤq

α
β

Rewriting ECDSA with ECDSA Tuples

Public values

ECDSASign(𝗌𝗄, m) :
[k] ← ℤq

R = [k] ⋅ G
e = H(m)

[Abram Nof Orlandi Scholl Shlomovits 22][Lindell Nof Ranellucci 18]

output σ = (s, R)

s =

e + [𝗌𝗄] ⋅ rx

[k]
[ϕ]

[ϕ]
α = ()
β =

[ϕ] ← ℤq

α
β

Rewriting ECDSA with ECDSA Tuples

Safe to reveal

: because is OTP

: because fixed by
β ϕ

α β, s

Public values

ECDSASign(𝗌𝗄, m) :
[k] ← ℤq

R = [k] ⋅ G
e = H(m)

[Abram Nof Orlandi Scholl Shlomovits 22][Lindell Nof Ranellucci 18]

output σ = (s, R)

s =

e + [𝗌𝗄] ⋅ rx

[k]
[ϕ]

[ϕ]
α = ()
β =

[ϕ] ← ℤq

α
β

Rewriting ECDSA with ECDSA Tuples

Secure mult: Only (nonlinear)
combination of secret valuesSafe to reveal

: because is OTP

: because fixed by
β ϕ

α β, s

Public values

ECDSASign(𝗌𝗄, m) :
[k] ← ℤq

R = [k] ⋅ G
e = H(m)

[Abram Nof Orlandi Scholl Shlomovits 22][Lindell Nof Ranellucci 18]

output σ = (s, R)

s =

e + [𝗌𝗄] ⋅ rx

[k]
[ϕ]

[ϕ]
α = ()
β =

[ϕ] ← ℤq

α
β

Rewriting ECDSA with ECDSA Tuples

Signing from ECDSA Tuples
[k][𝗌𝗄] [ϕ] [ϕk] [ϕ𝗌𝗄]

[Abram Nof Orlandi Scholl Shlomovits 22]

Signing from ECDSA Tuples
[k][𝗌𝗄] [ϕ] [ϕk] [ϕ𝗌𝗄]

Round 1
Establish R = [k] ⋅ G

Round 2

[Abram Nof Orlandi Scholl Shlomovits 22]

Signing from ECDSA Tuples
[k][𝗌𝗄] [ϕ] [ϕk] [ϕ𝗌𝗄]

Round 1
Establish R = [k] ⋅ G

Round 2

[Abram Nof Orlandi Scholl Shlomovits 22]

Reveal and α = e + rx[ϕ𝗌𝗄] β = [ϕk]

𝖮𝗎𝗍𝗉𝗎𝗍 (R, s = α/β)

Round 3

ECDSA Tuple Generation

[k][𝗌𝗄]
[ϕ]

[ϕk]
[ϕ𝗌𝗄]

ECDSA Tuple Generation

[k][𝗌𝗄]
[ϕ]

[ϕk]
[ϕ𝗌𝗄]

𝖨𝗇𝗉𝗎𝗍 :
𝖲𝖺𝗆𝗉𝗅𝖾 :

Local

ECDSA Tuple Generation

[k][𝗌𝗄]
[ϕ]

[ϕk]
[ϕ𝗌𝗄]

𝖨𝗇𝗉𝗎𝗍 :
𝖲𝖺𝗆𝗉𝗅𝖾 :

Local

ECDSA Tuple Generation

[k][𝗌𝗄]
[ϕ]

[ϕk]
[ϕ𝗌𝗄]

𝖨𝗇𝗉𝗎𝗍 :
𝖲𝖺𝗆𝗉𝗅𝖾 :

= 𝖬𝖴𝖫𝖳([ϕ], [k])
= 𝖬𝖴𝖫𝖳([ϕ], [𝗌𝗄])

Consistency:
straightforward

Local

ECDSA Tuple Generation

[k][𝗌𝗄]
[ϕ]

[ϕk]
[ϕ𝗌𝗄]

𝖨𝗇𝗉𝗎𝗍 :
𝖲𝖺𝗆𝗉𝗅𝖾 :

= 𝖬𝖴𝖫𝖳([ϕ], [k])
= 𝖬𝖴𝖫𝖳([ϕ], [𝗌𝗄])

Consistency:
straightforward

[k] ⋅ G = R
[𝗌𝗄] ⋅ G = 𝗉𝗄Verify:

Local

ECDSA Tuple Generation

[k][𝗌𝗄]
[ϕ]

[ϕk]
[ϕ𝗌𝗄]

𝖨𝗇𝗉𝗎𝗍 :
𝖲𝖺𝗆𝗉𝗅𝖾 :

= 𝖬𝖴𝖫𝖳([ϕ], [k])
= 𝖬𝖴𝖫𝖳([ϕ], [𝗌𝗄])

Consistency:
straightforward

[k] ⋅ G = R
[𝗌𝗄] ⋅ G = 𝗉𝗄Verify:

Local

ECDSA Tuple Generation

[k][𝗌𝗄]
[ϕ]

[ϕk]
[ϕ𝗌𝗄]

𝖨𝗇𝗉𝗎𝗍 :
𝖲𝖺𝗆𝗉𝗅𝖾 :

= 𝖬𝖴𝖫𝖳([ϕ], [k])
= 𝖬𝖴𝖫𝖳([ϕ], [𝗌𝗄])

Previous works: ZK proofs, MACs, etc. 
This work: Simple pairwise check

Secure Two-Party Multiplication

𝟤𝖯-𝖬𝖴𝖫

c + d = α ⋅ β

α

c
β
d

a.k.a. OLE, Mult2Add

𝖬𝗌𝗀2(e, α)

e = 𝖬𝗌𝗀1(β)

Two-Round 𝟤𝖯-𝖬𝖴𝖫

c + d = α ⋅ β
α dc

β

𝖬𝗌𝗀2(e, α)

e = 𝖬𝗌𝗀1(β)

̂c + ̂d = α̂ ⋅ β

β

dc 𝖬𝗌𝗀2(e, α)α̂
c + d = α ⋅ β

Two-Round 𝟤𝖯-𝖬𝖴𝖫

α

Consistency 
“for free”

𝖬𝗌𝗀2(e, α)

e = 𝖬𝗌𝗀1(β)

̂c + ̂d = α̂ ⋅ β

β

dc 𝖬𝗌𝗀2(e, α)α̂
c + d = α ⋅ β

Two-Round 𝟤𝖯-𝖬𝖴𝖫

α

Consistency 
“for free”

𝖬𝗌𝗀2(e, α)

e = 𝖬𝗌𝗀1(β)

̂c + ̂d = α̂ ⋅ β

β

dc 𝖬𝗌𝗀2(e, α)α̂
c + d = α ⋅ β

Two-Round 𝟤𝖯-𝖬𝖴𝖫

a.k.a. Vector OLE 
(VOLE)

α

Consistency:
straightforward

ECDSA Tuple Generation

[k][𝗌𝗄]
[ϕ]

[ϕk]
[ϕ𝗌𝗄]

𝖨𝗇𝗉𝗎𝗍 :
𝖲𝖺𝗆𝗉𝗅𝖾 :

𝖬𝖴𝖫𝖳([ϕ], [k])
= 𝖬𝖴𝖫𝖳([ϕ], [𝗌𝗄])
=

Consistency:
straightforward

[k] ⋅ G = R
[𝗌𝗄] ⋅ G = 𝗉𝗄Verify:

ECDSA Tuple Generation

[k][𝗌𝗄]
[ϕ]

[ϕk]
[ϕ𝗌𝗄]

𝖨𝗇𝗉𝗎𝗍 :
𝖲𝖺𝗆𝗉𝗅𝖾 :

𝖬𝖴𝖫𝖳([ϕ], [k])
= 𝖬𝖴𝖫𝖳([ϕ], [𝗌𝗄])
=

Consistency:
straightforward

[k] ⋅ G = R
[𝗌𝗄] ⋅ G = 𝗉𝗄Verify:

ECDSA Tuple Generation

[k][𝗌𝗄]
[ϕ]

[ϕk]
[ϕ𝗌𝗄]

𝖨𝗇𝗉𝗎𝗍 :
𝖲𝖺𝗆𝗉𝗅𝖾 :

𝖬𝖴𝖫𝖳([ϕ], [k])
= 𝖬𝖴𝖫𝖳([ϕ], [𝗌𝗄])
= is a MAC on ϕ k, 𝗌𝗄

Verify MAC in 𝔾

Byproduct of :
BDOZ MACs

𝟤𝖯-𝖬𝖴𝖫

Verify in parallel with 𝖬𝖴𝖫

Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫
ϕ k

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :

Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫
ϕ k

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :

Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫
ϕ

tϕ

k

tk

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :

Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫

tϕ + tk = ϕ ⋅ k

ϕ

tϕ

k

tk

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :

Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫

tϕ + tk = ϕ ⋅ k

ϕ

tϕ

k

tk

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :

Claim: [k] ⋅ G = R

Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫

tϕ + tk = ϕ ⋅ k

ϕ

tϕ

k

tk

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :

Claim: [k] ⋅ G = R
Tϕ = tϕ ⋅ G Tk = tk ⋅ G

Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫

tϕ + tk = ϕ ⋅ k

ϕ

tϕ

k

tk

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :

Claim: [k] ⋅ G = R
Tk = ϕR−Tϕ

Tϕ = tϕ ⋅ G Tk = tk ⋅ G

Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫

tϕ + tk = ϕ ⋅ k

ϕ

tϕ

k

tk

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :

Claim: [k] ⋅ G = R

Tk
Tk = ϕR−Tϕ

Tϕ = tϕ ⋅ G Tk = tk ⋅ G

Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫

tϕ + tk = ϕ ⋅ k

ϕ

tϕ

k

tk

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :

Claim: [k] ⋅ G = R

Tk
Tk = ϕR−Tϕ

Tϕ = tϕ ⋅ G Tk = tk ⋅ G

Match?

Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫

tϕ + tk = ϕ ⋅ k

ϕ

tϕ

k

tk

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :

Claim: [k] ⋅ G = R

Tk
Tk = ϕR−Tϕ

Tϕ = tϕ ⋅ G Tk = tk ⋅ G

Match?

No information
about k

Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫

tϕ + tk = ϕ ⋅ k

ϕ

tϕ

k

tk

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :

Claim: [k] ⋅ G = R

Tk
Tk = ϕR−Tϕ

Tϕ = tϕ ⋅ G Tk = tk ⋅ G

Match?

No information
about k

In case of cheat:  
have to guess  
(chance)

ϕ
2−256

Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫

tϕ + tk = ϕ ⋅ k

ϕ

tϕ

k

tk

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :

Claimed R* = Δ+k ⋅ G
Tϕ = tϕ ⋅ G Tk = tk ⋅ G

Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫

tϕ + tk = ϕ ⋅ k

ϕ

tϕ

k

tk

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :

Claimed R* = Δ+k ⋅ G
T*k = ϕR*−Tϕ

Tϕ = tϕ ⋅ G Tk = tk ⋅ G

Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫

tϕ + tk = ϕ ⋅ k

ϕ

tϕ

k

tk

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :

Claimed R* = Δ+k ⋅ G
T*k = ϕR*−Tϕ

Tϕ = tϕ ⋅ G Tk = tk ⋅ G

= Tk + ϕΔ

No information about  
 distributed uniformly in

ϕ
⇒ ℤq

Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫

tϕ + tk = ϕ ⋅ k

ϕ

tϕ

k

tk

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :

Claimed R* = Δ+k ⋅ G
T*k = ϕR*−Tϕ

Tϕ = tϕ ⋅ G Tk = tk ⋅ G

= Tk + ϕΔ

No information about  
 distributed uniformly in

ϕ
⇒ ℤq

Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫

tϕ + tk = ϕ ⋅ k

ϕ

tϕ

k

tk

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :

Claimed R* = Δ+k ⋅ G
T*k = ϕR*−Tϕ

Tϕ = tϕ ⋅ G Tk = tk ⋅ G

= Tk + ϕΔ

Statistically
unlikely to send
correct T*k

Notes on Consistency Check

• Case 1: Inconsistent —almost certainly fails 
Case 2: Consistent — nothing about leaked 

 is a MAC key, but also safe to (re)use in ECDSA tuple

• Very cheap, cost superseded by

• Exact same structure for verification with

• Actual check: each party validates inputs 
(i.e. shares of) used by every counterparty

k*
k ϕ

⇒ ϕ

𝟤𝖯-𝖬𝖴𝖫

[ϕ𝗌𝗄] 𝗉𝗄

𝟤𝖯-𝖬𝖴𝖫
k, 𝗌𝗄, ϕ

3 Round ECDSA Signing
[This work]

Exchange 𝖢𝗈𝗆𝗆𝗂𝗍(Ri)

Release R

Round 1

Round 2

[ϕ][k]𝖲𝖺𝗆𝗉𝗅𝖾
Establish R = [k] ⋅ G

𝖮𝗎𝗍𝗉𝗎𝗍 (R, σ = α/β)

3 Round ECDSA Signing

Exchange 𝖢𝗈𝗆𝗆𝗂𝗍(Ri) message 1𝖬𝖴𝖫

Release R message 2𝖬𝖴𝖫

Round 1

Round 2

[ϕ][k]𝖲𝖺𝗆𝗉𝗅𝖾
Establish R = [k] ⋅ G Multiply with [ϕ] [k], [𝗌𝗄]

𝖮𝗎𝗍𝗉𝗎𝗍 (R, σ = α/β)

[k][𝗌𝗄] [ϕ] [ϕk] [ϕ𝗌𝗄]

Pairwise
consistency check

[This work]

3 Round ECDSA Signing

Exchange 𝖢𝗈𝗆𝗆𝗂𝗍(Ri) message 1𝖬𝖴𝖫

Release R message 2𝖬𝖴𝖫

Round 1

Round 2

[ϕ][k]𝖲𝖺𝗆𝗉𝗅𝖾
Establish R = [k] ⋅ G Multiply with [ϕ] [k], [𝗌𝗄]

Round 3 Reveal and α = e[ϕ] + rx[ϕ𝗌𝗄] β = [ϕk]

𝖮𝗎𝗍𝗉𝗎𝗍 (R, σ = α/β)

[k][𝗌𝗄] [ϕ] [ϕk] [ϕ𝗌𝗄]

Pairwise
consistency check

[This work]

Intro

MP-Schnorr
is easy

but not
ECDSA

How to distribute ECDSA

Evolution of
Techniques

ECDSA 
Tuples

Tradeoffs

OT vs

AHE

Our protocol: 
Simple consistency

check

Instantiating Multiplication
• Secure -party mult can be reduced to instances of

• inherently requires public key crypto

• Broadly two approaches:

- Additively Homomorphic Encryption 
(low bandwidth, high computation)

- Oblivious Transfer 
(low computation, high bandwidth)

n 2n 𝟤𝖯-𝖬𝖴𝖫

𝟤𝖯-𝖬𝖴𝖫

 from Additively Homomorphic Encryption𝟤𝖯-𝖬𝖴𝖫

• Additive Homomorphism:  
 
[Gilboa 99]: Conceptually simple protocol for MUL from AHE 
[CGGMP 20]: Hardened for active security through ZK proofs

• Instantiations from factoring based cryptography (e.g. [Paillier 99]) and class
groups [Castagnos Laguillaumie 15]

• Advantages: Parties exchange (relatively) compact ciphertexts

• Downsides:  
— Ciphertext operations are heavy (2 orders of magnitude slower than EC) 
— Seem to require ZK proofs to prevent misuse

α ⋅ 𝖤𝗇𝖼(x) + 𝖤𝗇𝖼(β) = 𝖤𝗇𝖼(αx + β)

 from Oblivious Transfer𝟤𝖯-𝖬𝖴𝖫
• Oblivious Transfer (OT): 

 
 
[Gilboa 99]: Elegant protocol for MUL from OT 
[DKLs 18,19, HMRT 22]: active security by randomized encoding+statistical checks

• Instantiable with ECDSA curve (think DH key exchange)

• Advantages: By OT Extension [IKNP03, Roy22] public key operations can be moved
to one-time key generation phase, so only hashes when signing 
(1 order of magnitude slower than single party signing)

• Downsides: ~1000 OTs/sig, each transmits two elementsℤq

𝖮𝖳
m0, m1 b

mb

: AHE vs OT𝟤𝖯-𝖬𝖴𝖫
• Tradeoff to make: Computation vs. Bandwidth during signing time

• Rough costs with 256-bit curve, for each additional party 
(computation aggregated across [Gavenda 21, XAXYC 21, BMP 22]):

Bandwidth Computation

OT [DKLs 23]

Paillier [CGGMP 20]

Paillier [GG 18]

Class Groups 
[CCLST20, YCX21]

60 KB

15 KB

7 KB

4.5 KB

Few milliseconds

Hundreds of milliseconds

Hundreds of milliseconds

> 1 second

Is communication the bottleneck?

Is communication the bottleneck?

• Mobile applications (human-initiated):

Is communication the bottleneck?

• Mobile applications (human-initiated):

Is communication the bottleneck?

• Mobile applications (human-initiated):

- eg. t=4, ~2Mbits transmitted per party

Is communication the bottleneck?

• Mobile applications (human-initiated):

- eg. t=4, ~2Mbits transmitted per party

- Well within LTE envelope for responsivity

Example 1: Mobile Wallet

Multiplier: OT-based

Parties: 4

Curve: 256-bit

2 Mbits

sent per party

Example 1: Mobile Wallet

Multiplier: OT-based

Parties: 4

Curve: 256-bit

2 Mbits

sent per party

Rank: 25

Avg. Upload: 7.5 Mbps

Example 1: Mobile Wallet

Multiplier: OT-based

Parties: 4

Curve: 256-bit

2 Mbits

sent per party

source: opensignal (2020)

Rank: 25

Avg. Upload: 7.5 Mbps

Rank: 86

Avg. Upload: 2.7 Mbps

Example 1: Mobile Wallet

Multiplier: OT-based

Parties: 4

Curve: 256-bit

2 Mbits

sent per party

source: opensignal (2020)

Rank: 25

Avg. Upload: 7.5 Mbps

Rank: 86

Avg. Upload: 2.7 Mbps

Signing Time: ~1/3 sec Signing Time: ~1 sec

Example 1: Mobile Wallet

Multiplier: OT-based

Parties: 4

Curve: 256-bit

2 Mbits

sent per party

source: opensignal (2020)

Rank: 25

Avg. Upload: 7.5 Mbps

Rank: 86

Avg. Upload: 2.7 Mbps

source: opensignal (2020)

Signing Time: ~1/3 sec Signing Time: ~1 sec

Paillier+ZK takes this long for computation alone 
on powerful hardware!

Example 1: Mobile Wallet

Multiplier: OT-based

Parties: 4

Curve: 256-bit

2 Mbits

sent per party

Is communication the bottleneck?

Is communication the bottleneck?

• Large-scale automated distributed signing:

Is communication the bottleneck?

• Large-scale automated distributed signing:

Is communication the bottleneck?

• Large-scale automated distributed signing:

- Threshold 2: 3.8ms/sig <= ~263 sig/second

Is communication the bottleneck?

• Large-scale automated distributed signing:

- Threshold 2: 3.8ms/sig <= ~263 sig/second

- Threshold 20: 31.6ms/sig <= ~31 sig/second

Is communication the bottleneck?

• Large-scale automated distributed signing:

- Threshold 2: 3.8ms/sig <= ~263 sig/second

- Threshold 20: 31.6ms/sig <= ~31 sig/second

• Neither setting saturates a gigabit connection

Example 2: Datacenter Signing
How much bandwidth to be CPU bound?

(including preprocessing)

2 Parties

~250 sigs/second

256 Parties

~3 sigs/second

using GCP n1-highcpu nodes

Example 2: Datacenter Signing
How much bandwidth to be CPU bound?

(including preprocessing)

2 Parties

~250 sigs/second

256 Parties

~3 sigs/second

Each party sends: 
~700 Kbits per sig

Each party sends: 
~185 Mbits per sig

using GCP n1-highcpu nodes

Example 2: Datacenter Signing
How much bandwidth to be CPU bound?

(including preprocessing)

using GCP n1-highcpu nodes

2 Parties

~250 sigs/second

256 Parties

~3 sigs/second

Each party sends: 
~700 Kbits per sig

Each party sends: 
~185 Mbits per sig

Bandwidth required: 
~180 Mbps symmetric

Bandwidth required: 
~555 Mbps symmetric

Intro

MP-Schnorr
is easy

but not
ECDSA

How to distribute ECDSA

Evolution of
Techniques

ECDSA 
Tuples

Tradeoffs

OT vs

AHE

Our protocol: 
Simple consistency

check

In Conclusion
- Threshold ECDSA in Three Rounds: Now matches Schnorr

- Enabled by well-chosen correlation + simple new consistency check

- Blackbox use of UC 2-round  
NOTE: OT-based protocols satisfy UC, but AHE is more complicated

- No (explicit) ZK proofs during signing or DKG 
 light protocol and straightforward UC analysis

𝟤𝖯-𝖬𝖴𝖫

⇒

Thanks!
Thanks Eysa Lee for

dkls.info

