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Distributed Risk: Attacker will need 
to compromise multiple devices

Threshold Signing



Intro

MP-Schnorr 
is easy

but not 
ECDSA

How to distribute ECDSA

Evolution of 
Techniques

ECDSA 
Tuples

Tradeoffs

New protocol: 
Simple consistency 

check

OT vs

AHE



Adversary Model
• Corruption threshold

Dishonest majority 
(only one device uncompromised) 



Adversary Model
• Corruption threshold

Dishonest majority 
(only one device uncompromised) 



Adversary Model
• Corruption threshold

Dishonest majority 
(only one device uncompromised) 

• Adversarial behaviour



Adversary Model
• Corruption threshold

Dishonest majority 
(only one device uncompromised) 

• Adversarial behaviour



Adversary Model
• Corruption threshold

Dishonest majority 
(only one device uncompromised) 

• Adversarial behaviour



Adversary Model
• Corruption threshold

Dishonest majority 
(only one device uncompromised) 

• Adversarial behaviour
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Dishonest majority 
(only one device uncompromised) 

• Adversarial behaviour

Malicious 
(arbitrary deviations from protocol) 
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Schnorr Key Generation

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

Public Key: exposed to the outside world
secret key: kept private
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Secret Sharing

•  denotes that a value  is “secret-shared” across devices


• We will only use “linear” secret sharing schemes 

[x] x ∈ ℤq

a[x] + b[y] = [ax + by]
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R = k ⋅ G
e = H(m, R)



3 Round Schnorr Signing
Folklore, [Lindell 22]

Exchange 𝖢𝗈𝗆𝗆𝗂𝗍 (Ri = [k]i ⋅ G)

Release , set Ri R = Σi Ri

Round 1

Round 2

Establish R = [k] ⋅ G

Round 3 Reveal  s = [𝗌𝗄] ⋅ H(m, R) + [k]

𝖮𝗎𝗍𝗉𝗎𝗍 (R, s)

, [𝗌𝗄]𝖨𝗇𝗉𝗎𝗍 : 𝗉𝗄 = [𝗌𝗄] ⋅ G , [k]



(Threshold) Schnorr in Practice?

• Schnorr signatures are old (well-studied), compact, fast, and 
easy to distribute with MPC (i.e. thresholdize)


• However it was patented—major barrier for internet adoption


• Patent expired recently; adoption is increasing but much of the 
internet infrastructure does not support Schnorr



ECDSA

• Elliptic Curve Digital Signature Algorithm


• Devised by Scott Vanstone in 1992, standardized by NIST


• Differs from Schnorr enough so that patent doesn’t apply


• Widespread adoption across the internet 
 
… but MPC-unfriendly
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ECDSASign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R)

Multiplication of 
secret values

Division (Modular inverse)

x-coordinate of R (not secret)rx

ry

R = (rx, ry)

There is no one-size-
fits-all solution
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Secure Two-Party Multiplication

𝟤𝖯-𝖬𝖴𝖫

c + d = α ⋅ β

α

c
β
d

Instantiable efficiently from: 
OT, Paillier, Class Groups

Tool to split a product of secret 
inputs  into additive secrets αβ c, d

a.k.a. OLE, Mult2Add

Underlies many dishonest 
majority MPC protocols
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MP-Schnorr 
is easy

but not 
ECDSA

How to distribute ECDSA

Evolution of 
Techniques

ECDSA 
Tuples

Tradeoffs

Our protocol: 
Simple consistency 

check



A Brief History of Threshold ECDSA

• “End result” protocols are typically compared by security 
models, assumptions, concrete efficiency (bandwidth, 
rounds), and benchmarks. 


• This doesn’t tell the full story of techniques 
 necessary context for “simplicity”


• Qualitative comparison: trace how Threshold ECDSA 
protocol structure has evolved over time

⇒



MPC for ECDSA

• Computing    given   (as used in ECDSA signing) naively as an 
arithmetic circuit is prohibitively expensive—warrants custom protocols 


• Standard recipe in the literature:


- Rewrite ECDSA signing equation to an “MPC-friendly” equivalent 
i.e. only additions and multiplications of secret values


- Cryptographic Machinery for secure multiplication


- Verify that all operations were performed honestly

[k−1] [k]



Inverted Nonce Rewriting

ECDSASign(𝗌𝗄, m) :
[k] ← ℤq

R = [k] ⋅ G
e = H(m)

output σ = (s, R)

s =
e + [𝗌𝗄] ⋅ rx

[k]

[Gennaro Jarecki Krawczyk Rabin 96][Langford 95]
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(e + [𝗌𝗄] ⋅ rx)

Inverted Nonce Rewriting

R = (ϕk)−1 ⋅ Φ = [k−1] ⋅ G
e = H(m)

output σ = (s, R)
s = e + [𝗌𝗄] ⋅ rx [k]

[Gennaro Jarecki Krawczyk Rabin 96][Langford 95]

ECDSASign(𝗌𝗄, m) :
[k] ← ℤq

[ϕ] ← ℤq

𝗋𝖾𝗏𝖾𝖺𝗅 [ϕ] ⋅ [k]
𝗋𝖾𝗏𝖾𝖺𝗅 Φ = ϕ ⋅ G

First appears in 
[Bar-Ilan Beaver 89]

Equivalent to ECDSA

But how to securely compute ?k−1G
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ECDSASign(𝗌𝗄, m) :
[k] ← ℤq

R = [k] ⋅ G
e = H(m)

[Abram Nof Orlandi Scholl Shlomovits 22][Lindell Nof Ranellucci 18]

output σ = (s, R)
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[k]
[ϕ]

[ϕ]
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[ϕ] ← ℤq

α
β
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Signing from ECDSA Tuples
[k][𝗌𝗄] [ϕ] [ϕk] [ϕ𝗌𝗄]

Round 1
Establish  R = [k] ⋅ G

Round 2

[Abram Nof Orlandi Scholl Shlomovits 22]

Reveal    and  α = e + rx[ϕ𝗌𝗄] β = [ϕk]

𝖮𝗎𝗍𝗉𝗎𝗍 (R, s = α/β)

Round 3
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Local

ECDSA Tuple Generation

[k][𝗌𝗄]
[ϕ]

[ϕk]
[ϕ𝗌𝗄]

𝖨𝗇𝗉𝗎𝗍 :
𝖲𝖺𝗆𝗉𝗅𝖾 :

= 𝖬𝖴𝖫𝖳([ϕ], [k])
= 𝖬𝖴𝖫𝖳([ϕ], [𝗌𝗄])
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straightforward
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Consistency: 
straightforward


[k] ⋅ G = R
[𝗌𝗄] ⋅ G = 𝗉𝗄Verify:
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ECDSA Tuple Generation
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[ϕ]

[ϕk]
[ϕ𝗌𝗄]

𝖨𝗇𝗉𝗎𝗍 :
𝖲𝖺𝗆𝗉𝗅𝖾 :
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Consistency: 
straightforward


[k] ⋅ G = R
[𝗌𝗄] ⋅ G = 𝗉𝗄Verify:

Local

ECDSA Tuple Generation

[k][𝗌𝗄]
[ϕ]

[ϕk]
[ϕ𝗌𝗄]

𝖨𝗇𝗉𝗎𝗍 :
𝖲𝖺𝗆𝗉𝗅𝖾 :

= 𝖬𝖴𝖫𝖳([ϕ], [k])
= 𝖬𝖴𝖫𝖳([ϕ], [𝗌𝗄])

Previous works: ZK proofs, MACs, etc. 
This work: Simple pairwise check



Secure Two-Party Multiplication

𝟤𝖯-𝖬𝖴𝖫

c + d = α ⋅ β

α

c
β
d

a.k.a. OLE, Mult2Add



𝖬𝗌𝗀2(e, α)

e = 𝖬𝗌𝗀1(β)

Two-Round 𝟤𝖯-𝖬𝖴𝖫

c + d = α ⋅ β
α dc

β



𝖬𝗌𝗀2(e, α)

e = 𝖬𝗌𝗀1(β)

̂c + ̂d = α̂ ⋅ β

β

dc 𝖬𝗌𝗀2(e, α)α̂
c + d = α ⋅ β

Two-Round 𝟤𝖯-𝖬𝖴𝖫

α



Consistency 
“for free”

𝖬𝗌𝗀2(e, α)

e = 𝖬𝗌𝗀1(β)

̂c + ̂d = α̂ ⋅ β

β

dc 𝖬𝗌𝗀2(e, α)α̂
c + d = α ⋅ β

Two-Round 𝟤𝖯-𝖬𝖴𝖫

α



Consistency 
“for free”

𝖬𝗌𝗀2(e, α)

e = 𝖬𝗌𝗀1(β)

̂c + ̂d = α̂ ⋅ β

β

dc 𝖬𝗌𝗀2(e, α)α̂
c + d = α ⋅ β

Two-Round 𝟤𝖯-𝖬𝖴𝖫

a.k.a. Vector OLE 
(VOLE)

α



Consistency: 
straightforward

ECDSA Tuple Generation

[k][𝗌𝗄]
[ϕ]

[ϕk]
[ϕ𝗌𝗄]

𝖨𝗇𝗉𝗎𝗍 :
𝖲𝖺𝗆𝗉𝗅𝖾 :

𝖬𝖴𝖫𝖳([ϕ], [k])
= 𝖬𝖴𝖫𝖳([ϕ], [𝗌𝗄])
=



Consistency: 
straightforward


[k] ⋅ G = R
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[ϕ]
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𝖨𝗇𝗉𝗎𝗍 :
𝖲𝖺𝗆𝗉𝗅𝖾 :
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Consistency: 
straightforward


[k] ⋅ G = R
[𝗌𝗄] ⋅ G = 𝗉𝗄Verify:

ECDSA Tuple Generation

[k][𝗌𝗄]
[ϕ]

[ϕk]
[ϕ𝗌𝗄]

𝖨𝗇𝗉𝗎𝗍 :
𝖲𝖺𝗆𝗉𝗅𝖾 :

𝖬𝖴𝖫𝖳([ϕ], [k])
= 𝖬𝖴𝖫𝖳([ϕ], [𝗌𝗄])
= is a MAC on ϕ k, 𝗌𝗄

Verify MAC in 𝔾

Byproduct of : 
BDOZ MACs

𝟤𝖯-𝖬𝖴𝖫

Verify in parallel with 𝖬𝖴𝖫



Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫
ϕ k

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :
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ϕ k

𝖬𝖴𝖫𝖳([ϕ], [k])
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Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫
ϕ

tϕ

k

tk

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :



Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫

tϕ + tk = ϕ ⋅ k

ϕ

tϕ

k

tk

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :
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ϕ

tϕ

k

tk
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Simplified :

Claim: [k] ⋅ G = R



Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫

tϕ + tk = ϕ ⋅ k

ϕ

tϕ

k

tk

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :

Claim: [k] ⋅ G = R
Tϕ = tϕ ⋅ G Tk = tk ⋅ G



Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫

tϕ + tk = ϕ ⋅ k
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Claim: [k] ⋅ G = R
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Tϕ = tϕ ⋅ G Tk = tk ⋅ G
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ϕ

tϕ
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tϕ + tk = ϕ ⋅ k

ϕ

tϕ

k

tk

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :

Claim: [k] ⋅ G = R

Tk
Tk = ϕR−Tϕ

Tϕ = tϕ ⋅ G Tk = tk ⋅ G

Match?



Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫

tϕ + tk = ϕ ⋅ k

ϕ

tϕ

k

tk

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :

Claim: [k] ⋅ G = R

Tk
Tk = ϕR−Tϕ

Tϕ = tϕ ⋅ G Tk = tk ⋅ G

Match?

No information 
about k



Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫

tϕ + tk = ϕ ⋅ k

ϕ

tϕ

k

tk

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :

Claim: [k] ⋅ G = R

Tk
Tk = ϕR−Tϕ

Tϕ = tϕ ⋅ G Tk = tk ⋅ G

Match?

No information 
about k

In case of cheat:  
have to guess  
(  chance)

ϕ
2−256
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𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :
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Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫

tϕ + tk = ϕ ⋅ k

ϕ

tϕ

k

tk

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :

Claimed R* = Δ+k ⋅ G
T*k = ϕR*−Tϕ

Tϕ = tϕ ⋅ G Tk = tk ⋅ G

= Tk + ϕΔ



No information about  
 distributed uniformly in 

ϕ
⇒ ℤq

Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫

tϕ + tk = ϕ ⋅ k

ϕ

tϕ

k

tk

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :

Claimed R* = Δ+k ⋅ G
T*k = ϕR*−Tϕ

Tϕ = tϕ ⋅ G Tk = tk ⋅ G

= Tk + ϕΔ



No information about  
 distributed uniformly in 

ϕ
⇒ ℤq

Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫

tϕ + tk = ϕ ⋅ k

ϕ

tϕ

k

tk

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :

Claimed R* = Δ+k ⋅ G
T*k = ϕR*−Tϕ

Tϕ = tϕ ⋅ G Tk = tk ⋅ G

= Tk + ϕΔ

Statistically 
unlikely to send 
correct T*k



Notes on Consistency Check

• Case 1: Inconsistent —almost certainly fails 
Case 2: Consistent — nothing about  leaked 

  is a MAC key, but also safe to (re)use in ECDSA tuple


• Very cheap, cost superseded by 


• Exact same structure for  verification with 


• Actual check: each party validates  inputs 
(i.e. shares of ) used by every counterparty

k*
k ϕ

⇒ ϕ

𝟤𝖯-𝖬𝖴𝖫

[ϕ𝗌𝗄] 𝗉𝗄

𝟤𝖯-𝖬𝖴𝖫
k, 𝗌𝗄, ϕ
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3 Round ECDSA Signing

Exchange 𝖢𝗈𝗆𝗆𝗂𝗍(Ri)  message 1𝖬𝖴𝖫

Release R  message 2𝖬𝖴𝖫

Round 1

Round 2

[ϕ][k]𝖲𝖺𝗆𝗉𝗅𝖾
Establish R = [k] ⋅ G Multiply  with [ϕ] [k], [𝗌𝗄]

Round 3 Reveal    and  α = e[ϕ] + rx[ϕ𝗌𝗄] β = [ϕk]

𝖮𝗎𝗍𝗉𝗎𝗍 (R, σ = α/β)

[k][𝗌𝗄] [ϕ] [ϕk] [ϕ𝗌𝗄]

Pairwise 
consistency check

[This work]
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Instantiating Multiplication
• Secure -party mult can be reduced to  instances of 


•  inherently requires public key crypto


• Broadly two approaches:


- Additively Homomorphic Encryption 
(low bandwidth, high computation)


- Oblivious Transfer 
(low computation, high bandwidth)

n 2n 𝟤𝖯-𝖬𝖴𝖫

𝟤𝖯-𝖬𝖴𝖫



 from Additively Homomorphic Encryption𝟤𝖯-𝖬𝖴𝖫

• Additive Homomorphism:   
 
[Gilboa 99]: Conceptually simple protocol for MUL from AHE 
[CGGMP 20]: Hardened for active security through ZK proofs


• Instantiations from factoring based cryptography (e.g. [Paillier 99]) and class 
groups [Castagnos Laguillaumie 15]


• Advantages: Parties exchange (relatively) compact ciphertexts


• Downsides:  
— Ciphertext operations are heavy (2 orders of magnitude slower than EC) 
— Seem to require ZK proofs to prevent misuse

α ⋅ 𝖤𝗇𝖼(x) + 𝖤𝗇𝖼(β) = 𝖤𝗇𝖼(αx + β)



 from Oblivious Transfer𝟤𝖯-𝖬𝖴𝖫
• Oblivious Transfer (OT): 

 
 
[Gilboa 99]: Elegant protocol for MUL from OT 
[DKLs 18,19, HMRT 22]: active security by randomized encoding+statistical checks


• Instantiable with ECDSA curve (think DH key exchange)


• Advantages: By OT Extension [IKNP03, Roy22] public key operations can be moved 
to one-time key generation phase, so only hashes when signing 
(1 order of magnitude slower than single party signing)


• Downsides: ~1000 OTs/sig, each transmits two  elementsℤq

𝖮𝖳
m0, m1 b

mb



: AHE vs OT𝟤𝖯-𝖬𝖴𝖫
• Tradeoff to make: Computation vs. Bandwidth during signing time


• Rough costs with 256-bit curve, for each additional party 
(computation aggregated across [Gavenda 21, XAXYC 21, BMP 22]):

Bandwidth Computation

OT [DKLs 23]

Paillier [CGGMP 20]

Paillier [GG 18]

Class Groups 
[CCLST20, YCX21]

60 KB

15 KB

7 KB

4.5 KB

Few milliseconds

Hundreds of milliseconds

Hundreds of milliseconds

> 1 second
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Is communication the bottleneck?

• Mobile applications (human-initiated):

- eg. t=4, ~2Mbits transmitted per party

- Well within LTE envelope for responsivity
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Example 1: Mobile Wallet

Multiplier: OT-based

Parties: 4

Curve: 256-bit


2 Mbits

sent per party

source: opensignal (2020)



Rank: 25

Avg. Upload: 7.5 Mbps

Rank: 86

Avg. Upload: 2.7 Mbps

source: opensignal (2020)

Signing Time: ~1/3 sec Signing Time: ~1 sec

Paillier+ZK takes this long for computation alone 
on powerful hardware!

Example 1: Mobile Wallet

Multiplier: OT-based

Parties: 4

Curve: 256-bit


2 Mbits

sent per party
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Is communication the bottleneck?

• Large-scale automated distributed signing:

- Threshold 2:    3.8ms/sig    <= ~263  sig/second

- Threshold 20:  31.6ms/sig  <= ~31    sig/second

• Neither setting saturates a gigabit connection
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Example 2: Datacenter Signing
How much bandwidth to be CPU bound?


(including preprocessing)

using GCP n1-highcpu nodes

2 Parties

~250 sigs/second

256 Parties

~3 sigs/second

Each party sends: 
~700 Kbits per sig

Each party sends: 
~185 Mbits per sig

Bandwidth required: 
~180 Mbps symmetric

Bandwidth required: 
~555 Mbps symmetric
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In Conclusion
- Threshold ECDSA in Three Rounds: Now matches Schnorr


- Enabled by well-chosen correlation + simple new consistency check


- Blackbox use of UC 2-round  
NOTE: OT-based protocols satisfy UC, but AHE is more complicated


- No (explicit) ZK proofs during signing or DKG 
 light protocol and straightforward UC analysis

𝟤𝖯-𝖬𝖴𝖫

⇒

Thanks!
Thanks Eysa Lee for

dkls.info


