
Threshold ECDSA in Three Rounds

Yashvanth KondiJack Doerner Eysa Lee abhi shelat

Ballad of Bitcoin Bob

Ballad of Bitcoin Bob

Ballad of Bitcoin Bob

ALICE
PAY

Ballad of Bitcoin Bob

ALICE
PAY

Ballad of Bitcoin Bob

ALICE
PAY

Ballad of Bitcoin Bob

Ballad of Bitcoin Bob

Ballad of Bitcoin Bob

Ballad of Bitcoin Bob

Ballad of Bitcoin Bob

Ballad of Bitcoin Bob

Ballad of Bitcoin Bob

Ballad of Bitcoin Bob

PAY

h4CK3r

PAY

h4CK3r

Ballad of Bitcoin Bob

PAY

h4CK3r

Ballad of Bitcoin Bob

PAY

h4CK3r

Ballad of Bitcoin Bob

Ballad of Bitcoin Bob

Ballad of Bitcoin Bob

Ballad of Bitcoin Bob

Ballad of Bitcoin Bob

Ballad of Bitcoin Bob

Ballad of Bitcoin Bob

Ballad of Bitcoin BobBitcoin Bob

Ballad of Bitcoin BobBitcoin Bob

Bitcoin Bob

Ethereum Eysa

Dogecoin Doerner

>$1T economy vulnerable to single
points of failure in key management

Bitcoin Bob

Ethereum Eysa

Dogecoin Doerner

>$1T economy vulnerable to single
points of failure in key management

Large?

Intro How to distribute ECDSA Tradeoffs

Intro

MPC for
Schnorr is

easy

but not
ECDSA

How to distribute ECDSA Tradeoffs

Adversary Model
• Corruption threshold

Dishonest majority 
(only one device uncompromised)

Adversary Model
• Corruption threshold

Dishonest majority 
(only one device uncompromised)

Adversary Model
• Corruption threshold

Dishonest majority 
(only one device uncompromised)

• Adversarial behaviour

Adversary Model
• Corruption threshold

Dishonest majority 
(only one device uncompromised)

• Adversarial behaviour

Adversary Model
• Corruption threshold

Dishonest majority 
(only one device uncompromised)

• Adversarial behaviour

Adversary Model
• Corruption threshold

Dishonest majority 
(only one device uncompromised)

• Adversarial behaviour

Adversary Model
• Corruption threshold

Dishonest majority 
(only one device uncompromised)

• Adversarial behaviour

Malicious 
(arbitrary deviations from protocol)

Concrete Example: Schnorr Signatures

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

Concrete Example: Schnorr Signatures

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

• Tools:

Concrete Example: Schnorr Signatures

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

• Tools:

• Hash function -

Concrete Example: Schnorr Signatures

H : {0,1}* → ℤq

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

• Tools:

• Hash function -

• Group -

Concrete Example: Schnorr Signatures

H : {0,1}* → ℤq

(𝔾, G, q, +)

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

• Tools:

• Hash function -

• Group -

Concrete Example: Schnorr Signatures

H : {0,1}* → ℤq

(𝔾, G, q, +)
Group elements

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

• Tools:

• Hash function -

• Group -

Concrete Example: Schnorr Signatures

H : {0,1}* → ℤq

(𝔾, G, q, +)
Group elements

Points on an
Elliptic Curve

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

• Tools:

• Hash function -

• Group -

Concrete Example: Schnorr Signatures

H : {0,1}* → ℤq

(𝔾, G, q, +)
Group elements

GeneratorPoints on an
Elliptic Curve

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

• Tools:

• Hash function -

• Group -

Concrete Example: Schnorr Signatures

H : {0,1}* → ℤq

(𝔾, G, q, +)
Group elements

Generator (Large prime) orderPoints on an
Elliptic Curve

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

• Tools:

• Hash function -

• Group -

Concrete Example: Schnorr Signatures

H : {0,1}* → ℤq

(𝔾, G, q, +)
Group elements

Generator (Large prime) orderPoints on an
Elliptic Curve ≈ 2256

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

• Tools:

• Hash function -

• Group -

Concrete Example: Schnorr Signatures

H : {0,1}* → ℤq

(𝔾, G, q, +)
Group elements

Generator (Large prime) order

Addition law

Points on an
Elliptic Curve ≈ 2256

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

• Tools:

• Hash function -

• Group -

Sixty Seconds on Cyclic Groups

Concrete Example: Schnorr Signatures

H : {0,1}* → ℤq

(𝔾, G, q, +)
Group elements

Generator (Large prime) order

Addition law

Points on an
Elliptic Curve ≈ 2256

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

• Tools:

• Hash function -

• Group -

Sixty Seconds on Cyclic Groups

Concrete Example: Schnorr Signatures

H : {0,1}* → ℤq

(𝔾, G, q, +)
Group elements

Generator (Large prime) order

Addition law

X, Y ∈ 𝔾If then X + Y = Z ∈ 𝔾

Points on an
Elliptic Curve ≈ 2256

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

• Tools:

• Hash function -

• Group -

Sixty Seconds on Cyclic Groups

Concrete Example: Schnorr Signatures

H : {0,1}* → ℤq

(𝔾, G, q, +)
Group elements

Generator (Large prime) order

Addition law

X ∈ 𝔾Any can be written as x ⋅ G
is the discrete logarithm of x ∈ ℤq X

X, Y ∈ 𝔾If then X + Y = Z ∈ 𝔾

Points on an
Elliptic Curve ≈ 2256

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

• Tools:

• Hash function -

• Group -

Sixty Seconds on Cyclic Groups

Concrete Example: Schnorr Signatures

H : {0,1}* → ℤq

(𝔾, G, q, +)
Group elements

Generator (Large prime) order

Addition law

X ∈ 𝔾Any can be written as x ⋅ G
is the discrete logarithm of x ∈ ℤq X

X, Y ∈ 𝔾If then X + Y = Z ∈ 𝔾

(x + y) ⋅ G = x ⋅ G + y ⋅ GPoints on an
Elliptic Curve ≈ 2256

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

• Tools:

• Hash function -

• Group -

Sixty Seconds on Cyclic Groups

Concrete Example: Schnorr Signatures

H : {0,1}* → ℤq

(𝔾, G, q, +)
Group elements

Generator (Large prime) order

Addition law

X ∈ 𝔾Any can be written as x ⋅ G
is the discrete logarithm of x ∈ ℤq X

X, Y ∈ 𝔾If then X + Y = Z ∈ 𝔾

(x + y) ⋅ G = x ⋅ G + y ⋅ G
Integer addition mod q Group additionPoints on an

Elliptic Curve ≈ 2256

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

• Tools:

• Hash function -

• Group -

Sixty Seconds on Cyclic Groups

Concrete Example: Schnorr Signatures

H : {0,1}* → ℤq

(𝔾, G, q, +)
Group elements

Generator (Large prime) order

Addition law

X ∈ 𝔾Any can be written as x ⋅ G
is the discrete logarithm of x ∈ ℤq X

X, Y ∈ 𝔾If then X + Y = Z ∈ 𝔾

(x + y) ⋅ G = x ⋅ G + y ⋅ G
Integer addition mod q Group addition

Discrete Logarithm Problem: Given random , find its discrete logarithmX ∈ 𝔾

Points on an
Elliptic Curve ≈ 2256

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

• Tools:

• Hash function -

• Group -

Sixty Seconds on Cyclic Groups

Concrete Example: Schnorr Signatures

H : {0,1}* → ℤq

(𝔾, G, q, +)
Group elements

Generator (Large prime) order

Addition law

X ∈ 𝔾Any can be written as x ⋅ G
is the discrete logarithm of x ∈ ℤq X

X, Y ∈ 𝔾If then X + Y = Z ∈ 𝔾

(x + y) ⋅ G = x ⋅ G + y ⋅ G
Integer addition mod q Group addition

Discrete Logarithm Problem: Given random , find its discrete logarithmX ∈ 𝔾

For certain elliptic curves, best known algorithms for DLP run in time Θ (q)

Points on an
Elliptic Curve ≈ 2256

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

• Tools:

• Hash function -

• Group -

Concrete Example: Schnorr Signatures

H : {0,1}* → ℤq

(𝔾, G, q, +)
Group elements

Generator (Large prime) order

Addition law

X ∈ 𝔾Any can be written as x ⋅ G
is the discrete logarithm of x ∈ ℤq X

Sixty Seconds on Cyclic Groups

X, Y ∈ 𝔾If then X + Y = Z ∈ 𝔾

(x + y) ⋅ G = x ⋅ G + y ⋅ G
Integer addition mod q Group addition

Very informally:

Points on an
Elliptic Curve ≈ 2256

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

• Tools:

• Hash function -

• Group -

Concrete Example: Schnorr Signatures

H : {0,1}* → ℤq

(𝔾, G, q, +)
Group elements

Generator (Large prime) order

Addition law

X ∈ 𝔾Any can be written as x ⋅ G
is the discrete logarithm of x ∈ ℤq X

Sixty Seconds on Cyclic Groups

X, Y ∈ 𝔾If then X + Y = Z ∈ 𝔾

(x + y) ⋅ G = x ⋅ G + y ⋅ G
Integer addition mod q Group addition

Very informally: x → X EASY

Points on an
Elliptic Curve ≈ 2256

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

• Tools:

• Hash function -

• Group -

Concrete Example: Schnorr Signatures

H : {0,1}* → ℤq

(𝔾, G, q, +)
Group elements

Generator (Large prime) order

Addition law

X ∈ 𝔾Any can be written as x ⋅ G
is the discrete logarithm of x ∈ ℤq X

Sixty Seconds on Cyclic Groups

X, Y ∈ 𝔾If then X + Y = Z ∈ 𝔾

(x + y) ⋅ G = x ⋅ G + y ⋅ G
Integer addition mod q Group addition

Very informally: x → X EASY

X → x HARD

Points on an
Elliptic Curve ≈ 2256

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

• Tools:

• Hash function -

• Group -

Concrete Example: Schnorr Signatures

H : {0,1}* → ℤq

(𝔾, G, q, +)
Group elements

Generator (Large prime) order

Addition law

X ∈ 𝔾Any can be written as x ⋅ G
is the discrete logarithm of x ∈ ℤq X

Sixty Seconds on Cyclic Groups

X, Y ∈ 𝔾If then X + Y = Z ∈ 𝔾

(x + y) ⋅ G = x ⋅ G + y ⋅ G
Integer addition mod q Group addition

Very informally: x → X EASY

X → x HARD

Points on an
Elliptic Curve

30μs

≈ 2256

• Elegant signature scheme based on the Discrete Logarithm problem [Schnorr 89]

• Tools:

• Hash function -

• Group -

Concrete Example: Schnorr Signatures

H : {0,1}* → ℤq

(𝔾, G, q, +)
Group elements

Generator (Large prime) order

Addition law

X ∈ 𝔾Any can be written as x ⋅ G
is the discrete logarithm of x ∈ ℤq X

Sixty Seconds on Cyclic Groups

X, Y ∈ 𝔾If then X + Y = Z ∈ 𝔾

(x + y) ⋅ G = x ⋅ G + y ⋅ G
Integer addition mod q Group addition

Very informally: x → X EASY

X → x HARD

Points on an
Elliptic Curve

30μs
Many billion billions of years

≈ 2256

Schnorr Key Generation

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

Public Key: exposed to the outside world
secret key: kept private

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, e)

output σ

Schnorr Signing

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

Schnorr Signing

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, e)

output σ

Schnorr Signing

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, e)

output σ

NONCE

One-time use

value

Schnorr Signing

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, e)

output σ

NONCE

One-time use

value

Schnorr Signing

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, e)

output σ

NONCE

One-time use

value

Schnorr Signing

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, e)

output σ

(𝗆𝗈𝖽 q)

NONCE

One-time use

value

Schnorr Signing

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

(𝗆𝗈𝖽 q)

NONCE

One-time use

value

Verifying a signature: s ⋅ G ?= R−e ⋅ 𝖯𝖪

Schnorr Signing

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

(𝗆𝗈𝖽 q)

NONCE

One-time use

value

Verifying a signature: s ⋅ G ?= R−e ⋅ 𝖯𝖪

Schnorr Signing

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

(𝗆𝗈𝖽 q)

k ⋅ G 𝗌𝗄 ⋅ G

s ⋅ G ?= (k−e ⋅ 𝗌𝗄) ⋅ G

NONCE

One-time use

value

Verifying a signature: s ⋅ G ?= R−e ⋅ 𝖯𝖪

Schnorr Signing

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

(𝗆𝗈𝖽 q)

k ⋅ G 𝗌𝗄 ⋅ G

Additive Secret Sharing

Additive Secret Sharing
x ∈ ℤq

Additive Secret Sharing
x ∈ ℤq

xA xBxA + xB = x

x ∈ ℤq
xA + xB = x

xA xB

Additive Secret Sharing

x ∈ ℤq
xA + xB = x

xA xB[x]

Additive Secret Sharing

xA + xB = x
x ∈ ℤq

xA xB[x]

Additive Secret Sharing

xA + xB = x
x ∈ ℤq

xA xB[x]

Additive Secret Sharing

xA + xB = x
x ∈ ℤq

xA xB?

? ?

?

[x]?

Additive Secret Sharing

x ∈ ℤq
xA + xB = x

xA xB[x]

yA + yB = y
[y]

yA yB

Additive Secret Sharing

x ∈ ℤq
xA + xB = x

xA xB[x]
[y]yA yB

Additive Secret Sharing

x ∈ ℤq
xA + xB = x

xA xB[x]
[y]yA yB

[z = cx + y]

Additive Secret Sharing

x ∈ ℤq
xA + xB = x

xA xB[x]
[y]yA yB

zA = cxA + yA [z = cx + y] zB = cxB + yB

Additive Secret Sharing

Schnorr Key Generation

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

Public Key: exposed to the outside world
secret key: kept private

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

Distributing Schnorr KeyGen

Distributing Schnorr KeyGen

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

Distributing Schnorr KeyGen

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

𝗌𝗄𝖠 ← ℤq 𝗌𝗄𝖡 ← ℤq

Distributing Schnorr KeyGen

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

𝗌𝗄𝖠 ← ℤq 𝗌𝗄𝖡 ← ℤq

𝖯𝖪𝖠 = 𝗌𝗄𝖠 ⋅ G 𝖯𝖪𝖡 = 𝗌𝗄𝖡 ⋅ G

Distributing Schnorr KeyGen

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

𝗌𝗄𝖠 ← ℤq 𝗌𝗄𝖡 ← ℤq

𝖯𝖪𝖠 = 𝗌𝗄𝖠 ⋅ G 𝖯𝖪𝖡 = 𝗌𝗄𝖡 ⋅ G
output (𝗌𝗄𝖠, 𝖯𝖪𝖠) output (𝗌𝗄𝖡, 𝖯𝖪𝖡)

Distributing Schnorr KeyGen

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

𝗌𝗄𝖠 ← ℤq 𝗌𝗄𝖡 ← ℤq

𝖯𝖪𝖠 = 𝗌𝗄𝖠 ⋅ G 𝖯𝖪𝖡 = 𝗌𝗄𝖡 ⋅ G
output (𝗌𝗄𝖠, 𝖯𝖪𝖠) output (𝗌𝗄𝖡, 𝖯𝖪𝖡)

𝗌𝗄 = 𝗌𝗄𝖠 + 𝗌𝗄𝖡
𝖯𝖪 = 𝖯𝖪𝖠 + 𝖯𝖪𝖡

How are the values related?

Distributing Schnorr KeyGen

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

𝗌𝗄𝖠 ← ℤq 𝗌𝗄𝖡 ← ℤq

𝖯𝖪𝖠 = 𝗌𝗄𝖠 ⋅ G 𝖯𝖪𝖡 = 𝗌𝗄𝖡 ⋅ G
output (𝗌𝗄𝖠, 𝖯𝖪𝖠) output (𝗌𝗄𝖡, 𝖯𝖪𝖡)

𝗌𝗄 = 𝗌𝗄𝖠 + 𝗌𝗄𝖡
𝖯𝖪 = 𝖯𝖪𝖠 + 𝖯𝖪𝖡

How are the values related?

Distributing Schnorr KeyGen

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

𝗌𝗄𝖠 ← ℤq 𝗌𝗄𝖡 ← ℤq

𝖯𝖪𝖠 = 𝗌𝗄𝖠 ⋅ G 𝖯𝖪𝖡 = 𝗌𝗄𝖡 ⋅ G
output (𝗌𝗄𝖠, 𝖯𝖪𝖠) output (𝗌𝗄𝖡, 𝖯𝖪𝖡)

𝗌𝗄 = 𝗌𝗄𝖠 + 𝗌𝗄𝖡
𝖯𝖪 = 𝖯𝖪𝖠 + 𝖯𝖪𝖡

How are the values related?

Distributing Schnorr KeyGen

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

𝗌𝗄𝖠 ← ℤq 𝗌𝗄𝖡 ← ℤq

𝖯𝖪𝖠 = 𝗌𝗄𝖠 ⋅ G 𝖯𝖪𝖡 = 𝗌𝗄𝖡 ⋅ G
output (𝗌𝗄𝖠, 𝖯𝖪𝖠) output (𝗌𝗄𝖡, 𝖯𝖪𝖡)

𝗌𝗄 = 𝗌𝗄𝖠 + 𝗌𝗄𝖡
𝖯𝖪 = 𝖯𝖪𝖠 + 𝖯𝖪𝖡

How are the values related?

?

?

?

?

?
?

? ?

Distributing Schnorr KeyGen

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

𝗌𝗄𝖠 ← ℤq 𝗌𝗄𝖡 ← ℤq

𝖯𝖪𝖠 = 𝗌𝗄𝖠 ⋅ G 𝖯𝖪𝖡 = 𝗌𝗄𝖡 ⋅ G
output (𝗌𝗄𝖠, 𝖯𝖪𝖠) output (𝗌𝗄𝖡, 𝖯𝖪𝖡)

𝗌𝗄 = 𝗌𝗄𝖠 + 𝗌𝗄𝖡
𝖯𝖪 = 𝖯𝖪𝖠 + 𝖯𝖪𝖡

How are the values related?

?

?

?

?

?
?

? ?
Note:
Computing given is just as hard as 

computing given .
𝗌𝗄𝖡 𝖯𝖪𝖡

𝗌𝗄 𝖯𝖪

SchnorrKeyGen(𝔾, G, q) :
[𝗌𝗄] ← ℤq

𝖯𝖪 = [𝗌𝗄] ⋅ G
output (𝗌𝗄, 𝖯𝖪)

Distributing Schnorr KeyGen

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

Schnorr Signing

Schnorr Signing

Identical to KeyGen 
Same protocol applies

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

Schnorr Signing

Identical to KeyGen 
Same protocol applies

SchnorrSign([𝗌𝗄], m) :
[k] ← ℤq

R = [k] ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

Schnorr Signing

Identical to KeyGen 
Same protocol applies

SchnorrSign([𝗌𝗄], m) :
[k] ← ℤq

R = [k] ⋅ G
e = H(R∥m)

[s] = [k] − [𝗌𝗄] ⋅ e
σ = (s, R)

output σ

Linear function of k, sk

Make use of linearity of
secret sharing scheme

3 Round Schnorr Signing
Folklore, [Lindell 22]

Exchange 𝖢𝗈𝗆𝗆𝗂𝗍 (Ri = [k]i ⋅ G)

Release , set Ri R = Σi Ri

Round 1

Round 2

Establish R = [k] ⋅ G

Round 3 Reveal s = [𝗌𝗄] ⋅ H(m, R) + [k]

𝖮𝗎𝗍𝗉𝗎𝗍 (R, s)

, [𝗌𝗄]𝖨𝗇𝗉𝗎𝗍 : 𝗉𝗄 = [𝗌𝗄] ⋅ G , [k]

(Threshold) Schnorr in Practice?

• Schnorr signatures are old (well-studied), compact, fast to generate and verify,
and easy to distribute with MPC (i.e. thresholdize)

• However it was patented - major barrier for internet adoption

• Patent expired recently but the damage is done; adoption is increasing but much
of the internet infrastructure does not support Schnorr

• Instead, ECDSA is widely deployed in its place—similar performance and
security, and patent-free but MPC-unfriendly

ECDSA
• Elliptic Curve Digital Signature Algorithm

• Devised by Scott Vanstone in 1992, standardised by NIST

• Differs from Schnorr enough so that patent doesn’t apply

• Widespread adoption across the internet

Threshold ECDSA: Challenges

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

ECDSASign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R)

Threshold ECDSA: Challenges

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

ECDSASign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R)

Threshold ECDSA: Challenges

ECDSASign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R)

Threshold ECDSA: Challenges

ECDSASign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R)

Multiplication of
secret values

Threshold ECDSA: Challenges

ECDSASign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R)

Multiplication of
secret values

Division (Modular inverse)

Threshold ECDSA: Challenges

ECDSASign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R)

Multiplication of
secret values

Division (Modular inverse)

x-coordinate of R (not secret)rx

ry

R = (rx, ry)

Threshold ECDSA: Challenges

ECDSASign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R)

Multiplication of
secret values

Division (Modular inverse)

x-coordinate of R (not secret)rx

ry

R = (rx, ry)

There is no one-size-
fits-all solution

• Rough costs with 256-bit curve, for each additional party 
(computation aggregated across [Gavenda 21, XAXYC 21, BMP 22]):

Bandwidth 
(KB)

Computation 
(ms)

90

15

7

4

<10

Hundreds

Hundreds

> 1000

Threshold ECDSA: State of the Art

Rounds

log(t) + 6

4

8

4

7 50—10040

[DKLs 19]

[CGGMP 20]

[GG 18]
 

[CCLST20, 
YCX21]

Protocol Tool

[HLNR 18/23]

OT

OT+

Class
Groups

Paillier

• Rough costs with 256-bit curve, for each additional party 
(computation aggregated across [Gavenda 21, XAXYC 21, BMP 22]):

Bandwidth 
(KB)

Computation 
(ms)

90

15

7

4

<10

Hundreds

Hundreds

> 1000

Threshold ECDSA: State of the Art

50—10040

Goal

[DKLs 19]

[CGGMP 20]

[GG 18]
 

[CCLST20, 
YCX21]

Protocol Tool

[HLNR 18/23]

OT

OT+

Class
Groups

Paillier

• Rough costs with 256-bit curve, for each additional party 
(computation aggregated across [Gavenda 21, XAXYC 21, BMP 22]):

Bandwidth 
(KB)

Computation 
(ms)

90

15

7

4

<10

Hundreds

Hundreds

> 1000

Threshold ECDSA: State of the Art

50—10040

Goal

This work:

3 Round Signing 

from 
2 round MULT[DKLs 19]

[CGGMP 20]

[GG 18]
 

[CCLST20, 
YCX21]

Protocol Tool

[HLNR 18/23]

OT

OT+

Class
Groups

Paillier

• Rough costs with 256-bit curve, for each additional party 
(computation aggregated across [Gavenda 21, XAXYC 21, BMP 22]):

Bandwidth 
(KB)

Computation 
(ms)

90

15

7

4

<10

Hundreds

Hundreds

> 1000

Threshold ECDSA: State of the Art

50—10040

Goal

This work:

3 Round Signing 

from 
2 round MULT

mild/no overhead

[DKLs 19]

[CGGMP 20]

[GG 18]
 

[CCLST20, 
YCX21]

Protocol Tool

[HLNR 18/23]

OT

OT+

Class
Groups

Paillier

• Rough costs with 256-bit curve, for each additional party 
(computation aggregated across [Gavenda 21, XAXYC 21, BMP 22]):

Bandwidth 
(KB)

Computation 
(ms)

90

15

7

4

<10

Hundreds

Hundreds

> 1000

Threshold ECDSA: State of the Art

50—10040

Goal

This work:

3 Round Signing 

from 
2 round MULT

mild/no overhead

Insight: 
well-chosen

correlation+simple
consistency check

[DKLs 19]

[CGGMP 20]

[GG 18]
 

[CCLST20, 
YCX21]

Protocol Tool

[HLNR 18/23]

OT

OT+

Class
Groups

Paillier

• Rough costs with 256-bit curve, for each additional party 
(computation aggregated across [Gavenda 21, XAXYC 21, BMP 22]):

Bandwidth 
(KB)

Computation 
(ms)

90

15

7

4

<10

Hundreds

Hundreds

> 1000

Threshold ECDSA: State of the Art

50—10040

Goal

This work:

3 Round Signing 

from 
2 round MULT

Insight: 
well-chosen

correlation+simple
consistency check

60

mild/no overhead

[DKLs 19]

[CGGMP 20]

[GG 18]
 

[CCLST20, 
YCX21]

Protocol Tool

[HLNR 18/23]

OT

OT+

Class
Groups

Paillier

23

Intro

MPC for
Schnorr is

easy

but not
ECDSA

How to distribute ECDSA

Rewriting
ECDSA

ECDSA 
Tuples

Tradeoffs

 + 
Consistency
𝟤𝖯-𝖬𝖴𝖫

MPC for ECDSA

• In principle: can use generic MPC to compute

• However, computing given naively is prohibitively expensive

• Rewrite ECDSA signing equation to an “MPC-friendly” equivalent 
i.e. only additions and multiplications of secret values

• Bar-Ilan Beaver 89: Inversion outside MPC

[s] = (e + [𝗌𝗄] ⋅ rx) ⋅ [k−1]

[k−1] [k]

Rewriting ECDSA for MPC

ECDSASign(𝗌𝗄, m) :
[k] ← ℤq

R = [k] ⋅ G
e = H(m)

[Abram Nof Orlandi Scholl Shlomovits 22][Lindell Nof Ranellucci 18]

output σ = (s, R)

s =
e + [𝗌𝗄] ⋅ rx

[k]

Rewriting ECDSA for MPC

ECDSASign(𝗌𝗄, m) :
[k] ← ℤq

R = [k] ⋅ G
e = H(m)

[Abram Nof Orlandi Scholl Shlomovits 22][Lindell Nof Ranellucci 18]

output σ = (s, R)

s =
e + [𝗌𝗄] ⋅ rx

[k]
[ϕ]
[ϕ]

⋅

Rewriting ECDSA for MPC
ECDSASign(𝗌𝗄, m) :

[k] ← ℤq

R = [k] ⋅ G
e = H(m)

[Abram Nof Orlandi Scholl Shlomovits 22][Lindell Nof Ranellucci 18]

output σ = (s, R)

s =

e + [𝗌𝗄] ⋅ rx

[k]
[ϕ]

[ϕ]
α = ()
β =

Rewriting ECDSA for MPC
ECDSASign(𝗌𝗄, m) :

[k] ← ℤq

R = [k] ⋅ G
e = H(m)

[Abram Nof Orlandi Scholl Shlomovits 22][Lindell Nof Ranellucci 18]

output σ = (s, R)

s =

e + [𝗌𝗄] ⋅ rx

[k]
[ϕ]

[ϕ]
α = ()
β =

α
β

Rewriting ECDSA for MPC
ECDSASign(𝗌𝗄, m) :

[k] ← ℤq

R = [k] ⋅ G
e = H(m)

[Abram Nof Orlandi Scholl Shlomovits 22][Lindell Nof Ranellucci 18]

output σ = (s, R)

s =

e + [𝗌𝗄] ⋅ rx

[k]
[ϕ]

[ϕ]
α = ()
β =

[ϕ] ← ℤq

α
β

Public values

Rewriting ECDSA for MPC
ECDSASign(𝗌𝗄, m) :

[k] ← ℤq

R = [k] ⋅ G
e = H(m)

[Abram Nof Orlandi Scholl Shlomovits 22][Lindell Nof Ranellucci 18]

output σ = (s, R)

s =

e + [𝗌𝗄] ⋅ rx

[k]
[ϕ]

[ϕ]
α = ()
β =

[ϕ] ← ℤq

α
β

Safe to reveal

: because is OTP

: because fixed by
β ϕ

α β, s

Public values

Rewriting ECDSA for MPC
ECDSASign(𝗌𝗄, m) :

[k] ← ℤq

R = [k] ⋅ G
e = H(m)

[Abram Nof Orlandi Scholl Shlomovits 22][Lindell Nof Ranellucci 18]

output σ = (s, R)

s =

e + [𝗌𝗄] ⋅ rx

[k]
[ϕ]

[ϕ]
α = ()
β =

[ϕ] ← ℤq

α
β

Secure mult: Only (nonlinear)
combination of secret valuesSafe to reveal

: because is OTP

: because fixed by
β ϕ

α β, s

Public values

Rewriting ECDSA for MPC
ECDSASign(𝗌𝗄, m) :

[k] ← ℤq

R = [k] ⋅ G
e = H(m)

[Abram Nof Orlandi Scholl Shlomovits 22][Lindell Nof Ranellucci 18]

output σ = (s, R)

s =

e + [𝗌𝗄] ⋅ rx

[k]
[ϕ]

[ϕ]
α = ()
β =

[ϕ] ← ℤq

α
β

Signing from ECDSA Tuples
[k][𝗌𝗄] [ϕ] [ϕk] [ϕ𝗌𝗄]

[Abram Nof Orlandi Scholl Shlomovits 22]

Signing from ECDSA Tuples
[k][𝗌𝗄] [ϕ] [ϕk] [ϕ𝗌𝗄]

Round 1
Establish R = [k] ⋅ G

Round 2

[Abram Nof Orlandi Scholl Shlomovits 22]

Signing from ECDSA Tuples
[k][𝗌𝗄] [ϕ] [ϕk] [ϕ𝗌𝗄]

Round 1
Establish R = [k] ⋅ G

Round 2

[Abram Nof Orlandi Scholl Shlomovits 22]

Reveal and α = e + rx[ϕ𝗌𝗄] β = [ϕk]

𝖮𝗎𝗍𝗉𝗎𝗍 (R, s = α/β)

Round 3

ECDSA Tuple Generation

[k][𝗌𝗄]
[ϕ]

[ϕk]
[ϕ𝗌𝗄]

ECDSA Tuple Generation

[k][𝗌𝗄]
[ϕ]

[ϕk]
[ϕ𝗌𝗄]

𝖨𝗇𝗉𝗎𝗍 :
𝖲𝖺𝗆𝗉𝗅𝖾 :

Local

ECDSA Tuple Generation

[k][𝗌𝗄]
[ϕ]

[ϕk]
[ϕ𝗌𝗄]

𝖨𝗇𝗉𝗎𝗍 :
𝖲𝖺𝗆𝗉𝗅𝖾 :

Local

ECDSA Tuple Generation

[k][𝗌𝗄]
[ϕ]

[ϕk]
[ϕ𝗌𝗄]

𝖨𝗇𝗉𝗎𝗍 :
𝖲𝖺𝗆𝗉𝗅𝖾 :

= 𝖬𝖴𝖫𝖳([ϕ], [k])
= 𝖬𝖴𝖫𝖳([ϕ], [𝗌𝗄])

Consistency:
straightforward

Local

ECDSA Tuple Generation

[k][𝗌𝗄]
[ϕ]

[ϕk]
[ϕ𝗌𝗄]

𝖨𝗇𝗉𝗎𝗍 :
𝖲𝖺𝗆𝗉𝗅𝖾 :

= 𝖬𝖴𝖫𝖳([ϕ], [k])
= 𝖬𝖴𝖫𝖳([ϕ], [𝗌𝗄])

Consistency:
straightforward

[k] ⋅ G = R
[𝗌𝗄] ⋅ G = 𝗉𝗄Verify:

Local

ECDSA Tuple Generation

[k][𝗌𝗄]
[ϕ]

[ϕk]
[ϕ𝗌𝗄]

𝖨𝗇𝗉𝗎𝗍 :
𝖲𝖺𝗆𝗉𝗅𝖾 :

= 𝖬𝖴𝖫𝖳([ϕ], [k])
= 𝖬𝖴𝖫𝖳([ϕ], [𝗌𝗄])

Consistency:
straightforward

[k] ⋅ G = R
[𝗌𝗄] ⋅ G = 𝗉𝗄Verify:

Local

ECDSA Tuple Generation

[k][𝗌𝗄]
[ϕ]

[ϕk]
[ϕ𝗌𝗄]

𝖨𝗇𝗉𝗎𝗍 :
𝖲𝖺𝗆𝗉𝗅𝖾 :

= 𝖬𝖴𝖫𝖳([ϕ], [k])
= 𝖬𝖴𝖫𝖳([ϕ], [𝗌𝗄])

Previous works: ZK proofs, MACs, etc. 
This work: Simple pairwise check

Secure Two-Party Multiplication

𝟤𝖯-𝖬𝖴𝖫
α β

a.k.a. OLE, Mult2Add

Secure Two-Party Multiplication

𝟤𝖯-𝖬𝖴𝖫
α β

a.k.a. OLE, Mult2Add

Secure Two-Party Multiplication

𝟤𝖯-𝖬𝖴𝖫
α

c
β
d

a.k.a. OLE, Mult2Add

Secure Two-Party Multiplication

𝟤𝖯-𝖬𝖴𝖫

c + d = α ⋅ β

α

c
β
d

a.k.a. OLE, Mult2Add

Secure Two-Party Multiplication

𝟤𝖯-𝖬𝖴𝖫

c + d = α ⋅ β

α

c
β
d

Instantiable efficiently from: 
OT, Paillier, Class Groups

Gadget to split a product of secret
inputs into additive secrets αβ c, d

a.k.a. OLE, Mult2Add

𝖤𝗇𝖼2(e, α)

e = 𝖤𝗇𝖼1(β)

Two-Round 𝟤𝖯-𝖬𝖴𝖫

c + d = α ⋅ β
α

β

dc

𝖤𝗇𝖼2(e, α)

e = 𝖤𝗇𝖼1(β)

̂c + ̂d = α̂ ⋅ β

α

β

dc 𝖤𝗇𝖼2(e, α)α̂
c + d = α ⋅ β

Two-Round 𝟤𝖯-𝖬𝖴𝖫

Consistency 
“for free”

𝖤𝗇𝖼2(e, α)

e = 𝖤𝗇𝖼1(β)

̂c + ̂d = α̂ ⋅ β

α

β

dc 𝖤𝗇𝖼2(e, α)α̂
c + d = α ⋅ β

Two-Round 𝟤𝖯-𝖬𝖴𝖫

Consistency:
straightforward

ECDSA Tuple Generation

[k][𝗌𝗄]
[ϕ]

[ϕk]
[ϕ𝗌𝗄]

𝖨𝗇𝗉𝗎𝗍 :
𝖲𝖺𝗆𝗉𝗅𝖾 :

𝖬𝖴𝖫𝖳([ϕ], [k])
= 𝖬𝖴𝖫𝖳([ϕ], [𝗌𝗄])
=

Consistency:
straightforward

[k] ⋅ G = R
[𝗌𝗄] ⋅ G = 𝗉𝗄Verify:

ECDSA Tuple Generation

[k][𝗌𝗄]
[ϕ]

[ϕk]
[ϕ𝗌𝗄]

𝖨𝗇𝗉𝗎𝗍 :
𝖲𝖺𝗆𝗉𝗅𝖾 :

𝖬𝖴𝖫𝖳([ϕ], [k])
= 𝖬𝖴𝖫𝖳([ϕ], [𝗌𝗄])
=

Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫
ϕ k

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :

Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫
ϕ k

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :

Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫
ϕ

tϕ

k

tk

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :

Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫

tϕ + tk = ϕ ⋅ k

ϕ

tϕ

k

tk

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :

Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫

tϕ + tk = ϕ ⋅ k

ϕ

tϕ

k

tk

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :

Claim: [k] ⋅ G = R

Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫

tϕ + tk = ϕ ⋅ k

ϕ

tϕ

k

tk

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :

Claim: [k] ⋅ G = R
Tϕ = tϕ ⋅ G Tk = tk ⋅ G

Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫

tϕ + tk = ϕ ⋅ k

ϕ

tϕ

k

tk

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :

Claim: [k] ⋅ G = R
Tk = ϕR−Tϕ

Tϕ = tϕ ⋅ G Tk = tk ⋅ G

Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫

tϕ + tk = ϕ ⋅ k

ϕ

tϕ

k

tk

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :

Claim: [k] ⋅ G = R

Tk
Tk = ϕR−Tϕ

Tϕ = tϕ ⋅ G Tk = tk ⋅ G

Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫

tϕ + tk = ϕ ⋅ k

ϕ

tϕ

k

tk

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :

Claim: [k] ⋅ G = R

Tk
Tk = ϕR−Tϕ

Tϕ = tϕ ⋅ G Tk = tk ⋅ G

Match?

Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫

tϕ + tk = ϕ ⋅ k

ϕ

tϕ

k

tk

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :

Claim: [k] ⋅ G = R

Tk
Tk = ϕR−Tϕ

Tϕ = tϕ ⋅ G Tk = tk ⋅ G

Match?

No information
about k

Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫

tϕ + tk = ϕ ⋅ k

ϕ

tϕ

k

tk

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :

Claim: [k] ⋅ G = R

Tk
Tk = ϕR−Tϕ

Tϕ = tϕ ⋅ G Tk = tk ⋅ G

Match?

No information
about k

In case of cheat:  
have to guess  
(chance)

ϕ
2−256

Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫

tϕ + tk = ϕ ⋅ k

ϕ

tϕ

k

tk

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :

Claimed R* = Δ+k ⋅ G
Tϕ = tϕ ⋅ G Tk = tk ⋅ G

Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫

tϕ + tk = ϕ ⋅ k

ϕ

tϕ

k

tk

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :

Claimed R* = Δ+k ⋅ G
T*k = ϕR*−Tϕ

Tϕ = tϕ ⋅ G Tk = tk ⋅ G

Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫

tϕ + tk = ϕ ⋅ k

ϕ

tϕ

k

tk

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :

Claimed R* = Δ+k ⋅ G
T*k = ϕR*−Tϕ

Tϕ = tϕ ⋅ G Tk = tk ⋅ G

= Tk + ϕΔ

No information about  
 distributed uniformly in

ϕ
⇒ ℤq

Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫

tϕ + tk = ϕ ⋅ k

ϕ

tϕ

k

tk

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :

Claimed R* = Δ+k ⋅ G
T*k = ϕR*−Tϕ

Tϕ = tϕ ⋅ G Tk = tk ⋅ G

= Tk + ϕΔ

No information about  
 distributed uniformly in

ϕ
⇒ ℤq

Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫

tϕ + tk = ϕ ⋅ k

ϕ

tϕ

k

tk

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :

Claimed R* = Δ+k ⋅ G
T*k = ϕR*−Tϕ

Tϕ = tϕ ⋅ G Tk = tk ⋅ G

= Tk + ϕΔ

Statistically
unlikely to send
correct T*k

Notes on Consistency Check
• Case 1: Inconsistent —almost certainly fails 

Case 2: Consistent — nothing about leaked 
 is a MAC key, but also safe to (re)use in ECDSA tuple

• Costs 3 exponentiations, transmits single element, one round 
All costs are superseded by

• Exact same structure for verification with

• Actual check: each party validates inputs 
(i.e. shares of) used by every counterparty

k*
k ϕ

⇒ ϕ

𝔾
𝟤𝖯-𝖬𝖴𝖫

[ϕ𝗌𝗄] 𝗉𝗄

𝟤𝖯-𝖬𝖴𝖫
k, 𝗌𝗄

3 Round ECDSA Signing
[This work]

Exchange 𝖢𝗈𝗆𝗆𝗂𝗍(Ri)

Release R

Round 1

Round 2

[ϕ][k]𝖲𝖺𝗆𝗉𝗅𝖾
Establish R = [k] ⋅ G

𝖮𝗎𝗍𝗉𝗎𝗍 (R, σ = α/β)

3 Round ECDSA Signing

Exchange 𝖢𝗈𝗆𝗆𝗂𝗍(Ri) message 1𝖬𝖴𝖫

Release R message 2𝖬𝖴𝖫

Round 1

Round 2

[ϕ][k]𝖲𝖺𝗆𝗉𝗅𝖾
Establish R = [k] ⋅ G Multiply with [ϕ] [k], [𝗌𝗄]

𝖮𝗎𝗍𝗉𝗎𝗍 (R, σ = α/β)

[k][𝗌𝗄] [ϕ] [ϕk] [ϕ𝗌𝗄]

Pairwise
consistency check

[This work]

3 Round ECDSA Signing

Exchange 𝖢𝗈𝗆𝗆𝗂𝗍(Ri) message 1𝖬𝖴𝖫

Release R message 2𝖬𝖴𝖫

Round 1

Round 2

[ϕ][k]𝖲𝖺𝗆𝗉𝗅𝖾
Establish R = [k] ⋅ G Multiply with [ϕ] [k], [𝗌𝗄]

Round 3 Reveal and α = e[ϕ] + rx[ϕ𝗌𝗄] β = [ϕk]

𝖮𝗎𝗍𝗉𝗎𝗍 (R, σ = α/β)

[k][𝗌𝗄] [ϕ] [ϕk] [ϕ𝗌𝗄]

Pairwise
consistency check

[This work]

Intro

MPC for
Schnorr is

easy

but not
ECDSA

How to distribute ECDSA

Rewriting
ECDSA + 3

round protocol

ECDSA 
Tuples

Tradeoffs

Modes of
operation

OT vs

AHE

 + 
Consistency
𝟤𝖯-𝖬𝖴𝖫

Instantiating Multiplication

• Secure -party mult can be reduced to instances of

• inherently requires public key crypto

• Broadly two approaches:

- Additively Homomorphic Encryption (low bandwidth, high
computation)

- Oblivious Transfer (low computation, high bandwidth)

n 2n 𝟤𝖯-𝖬𝖴𝖫

𝟤𝖯-𝖬𝖴𝖫

 from Additively Homomorphic Encryption𝟤𝖯-𝖬𝖴𝖫

• Additive Homomorphism:  
 
[Gilboa 99]: Conceptually simple protocol for MUL from AHE 
[CGGMP 20]: Hardened for active security through ZK proofs

• Instantiations from factoring based cryptography (e.g. [Paillier 99]) and class
groups [Castagnos Laguillaumie 15]

• Advantages: Parties exchange (relatively) compact ciphertexts

• Downsides:  
— Ciphertext operations are heavy (2 orders of magnitude slower than EC) 
— Seem to require ZK proofs to prevent misuse

α ⋅ 𝖤𝗇𝖼(x) + 𝖤𝗇𝖼(β) = 𝖤𝗇𝖼(αx + β)

 from Oblivious Transfer𝟤𝖯-𝖬𝖴𝖫
• Oblivious Transfer (OT): 

 
 
[Gilboa 99]: Elegant protocol for MUL from OT 
[DKLs 18,19, HMRT 22]: active security by randomized encoding+statistical checks

• Instantiable with ECDSA curve (think DH key exchange)

• Advantages: By OT Extension [IKNP03, Roy22] public key operations can be moved
to one-time key generation phase, so only hashes when signing 
(1 order of magnitude slower than single party signing)

• Downsides: ~1000 OTs/sig, each transmits two elementsℤq

𝖮𝖳
m0, m1 b

mb

: AHE vs OT𝟤𝖯-𝖬𝖴𝖫
• Tradeoff to make: Computation vs. Bandwidth during signing time

• Rough costs with 256-bit curve, for each additional party 
(computation aggregated across [Gavenda 21, XAXYC 21, BMP 22]):

Bandwidth Computation

OT [DKLs 23]

Paillier [CGGMP 20]

Paillier [GG 18]

Class Groups 
[CCLST20, YCX21]

60 KB

15 KB

7 KB

4.5 KB

Few milliseconds

Hundreds of milliseconds

Hundreds of milliseconds

> 1 second

Is communication the bottleneck?

Is communication the bottleneck?

• Mobile applications (human-initiated):

Is communication the bottleneck?

• Mobile applications (human-initiated):

Is communication the bottleneck?

• Mobile applications (human-initiated):

- eg. t=4, ~2Mbits transmitted per party

Is communication the bottleneck?

• Mobile applications (human-initiated):

- eg. t=4, ~2Mbits transmitted per party

- Well within LTE envelope for responsivity

Example 1: Mobile Wallet

Multiplier: OT-based

Parties: 4

Curve: 256-bit

2 Mbits

sent per party

Example 1: Mobile Wallet

Multiplier: OT-based

Parties: 4

Curve: 256-bit

2 Mbits

sent per party ≈

Example 1: Mobile Wallet

Multiplier: OT-based

Parties: 4

Curve: 256-bit

2 Mbits

sent per party

source: opensignal

Rank: 25

Avg. Upload: 7.5 Mbps

Example 1: Mobile Wallet

Multiplier: OT-based

Parties: 4

Curve: 256-bit

2 Mbits

sent per party

source: opensignal

Rank: 25

Avg. Upload: 7.5 Mbps

Rank: 86

Avg. Upload: 2.7 Mbps

Example 1: Mobile Wallet

Multiplier: OT-based

Parties: 4

Curve: 256-bit

2 Mbits

sent per party

Rank: 25

Avg. Upload: 7.5 Mbps

Rank: 86

Avg. Upload: 2.7 Mbps

source: opensignal

Signing Time: ~1/3 sec Signing Time: ~1 sec

Example 1: Mobile Wallet

Multiplier: OT-based

Parties: 4

Curve: 256-bit

2 Mbits

sent per party

Rank: 25

Avg. Upload: 7.5 Mbps

Rank: 86

Avg. Upload: 2.7 Mbps

source: opensignal

Signing Time: ~1/3 sec Signing Time: ~1 sec

Similar to computation time for Paillier 
on powerful hardware!

Example 1: Mobile Wallet

Multiplier: OT-based

Parties: 4

Curve: 256-bit

2 Mbits

sent per party

On the Other Hand

OTPaillier + ZK

Is communication the bottleneck?

Is communication the bottleneck?

• Large-scale automated distributed signing:

Is communication the bottleneck?

• Large-scale automated distributed signing:

Is communication the bottleneck?

• Large-scale automated distributed signing:

- Threshold 2: 3.8ms/sig <= ~263 sig/second

Is communication the bottleneck?

• Large-scale automated distributed signing:

- Threshold 2: 3.8ms/sig <= ~263 sig/second

- Threshold 20: 31.6ms/sig <= ~31 sig/second

Is communication the bottleneck?

• Large-scale automated distributed signing:

- Threshold 2: 3.8ms/sig <= ~263 sig/second

- Threshold 20: 31.6ms/sig <= ~31 sig/second

• Neither setting saturates a gigabit connection

Example 2: Datacenter Signing
How much bandwidth to be CPU bound?

(including preprocessing)

2 Parties

~250 sigs/second

256 Parties

~3 sigs/second

using GCP n1-highcpu nodes

Example 2: Datacenter Signing
How much bandwidth to be CPU bound?

(including preprocessing)

2 Parties

~250 sigs/second

256 Parties

~3 sigs/second

Each party sends: 
~700 Kbits per sig

Each party sends: 
~185 Mbits per sig

using GCP n1-highcpu nodes

Example 2: Datacenter Signing
How much bandwidth to be CPU bound?

(including preprocessing)

using GCP n1-highcpu nodes

2 Parties

~250 sigs/second

256 Parties

~3 sigs/second

Each party sends: 
~700 Kbits per sig

Each party sends: 
~185 Mbits per sig

Bandwidth required: 
~180 Mbps symmetric

Bandwidth required: 
~555 Mbps symmetric

Non-interactive Online Signing

Round 1

Round r

Round r − 1

⋮

𝖲𝗂𝗀𝗇([𝗌𝗄], m)

Only this round needs m

Most Threshold ECDSA
protocols have this format

([DOKSS20, CGGMP20]
were the first to “use” it)

Non-interactive Online Signing

Round 1

Round r

Round r − 1

⋮

𝖲𝗂𝗀𝗇([𝗌𝗄], m)

Only this round needs m

 is now availablem

Most Threshold ECDSA
protocols have this format

([DOKSS20, CGGMP20]
were the first to “use” it)

Non-interactive Online Signing

Round 1

Round r

Round r − 1

⋮

𝖲𝗂𝗀𝗇([𝗌𝗄], m)

Only this round needs m

 is now availablem

Caveat

Requires a stronger

assumption on ECDSA,
which is proven to hold in
the GGM [Groth Shoup 22]

Most Threshold ECDSA
protocols have this format

([DOKSS20, CGGMP20]
were the first to “use” it)

Pipelining

Round 1

Round 2 Round 1

Round 2 Round 1

Round 2

 message 𝖲𝗂𝗀𝗇 i

 message 𝖲𝗂𝗀𝗇 i + 1

 message 𝖲𝗂𝗀𝗇 i + 2

Pipelining

Round 1

Round 2 Round 1

Round 2 Round 1

Round 2

 message 𝖲𝗂𝗀𝗇 i

 message 𝖲𝗂𝗀𝗇 i + 1

 message 𝖲𝗂𝗀𝗇 i + 2

No extra assumptions
needed

Pipelining

Round 1

Round 2 Round 1

Round 2 Round 1

Round 2

 message 𝖲𝗂𝗀𝗇 i

 message 𝖲𝗂𝗀𝗇 i + 1

 message 𝖲𝗂𝗀𝗇 i + 2

No extra assumptions
needed

Saves a round on average

Intro

MPC for
Schnorr is

easy

but not
ECDSA

How to distribute ECDSA

Rewriting
ECDSA + 3

round protocol

ECDSA 
Tuples

Tradeoffs

Modes of
operation

OT vs

AHE

 + 
Consistency
𝟤𝖯-𝖬𝖴𝖫

In Conclusion
- Threshold ECDSA in Three Rounds: Now matches Schnorr

- Enabled by well-chosen correlation + simple new consistency check

- Blackbox use of UC 2-round  
NOTE: OT-based protocols satisfy UC, but AHE is more
complicated

- No ZK proofs during signing: light protocol and straightforward
UC analysis

𝟤𝖯-𝖬𝖴𝖫

Thanks!
Thanks Eysa Lee for

dkls.info

