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SchnorrKeyGen(𝔾, G, q) :
[𝗌𝗄] ← ℤq

𝖯𝖪 = [𝗌𝗄] ⋅ G
output (𝗌𝗄, 𝖯𝖪)

Distributing Schnorr KeyGen
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output σ

Schnorr Signing
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Schnorr Signing

Identical to KeyGen 
Same protocol applies

SchnorrSign([𝗌𝗄], m) :
[k] ← ℤq

R = [k] ⋅ G
e = H(R∥m)

[s] = [k] − [𝗌𝗄] ⋅ e
σ = (s, R)

output σ

Linear function of k, sk

Make use of linearity of 
secret sharing scheme



3 Round Schnorr Signing
Folklore, [Lindell 22]

Exchange 𝖢𝗈𝗆𝗆𝗂𝗍 (Ri = [k]i ⋅ G)

Release , set Ri R = Σi Ri

Round 1

Round 2

Establish R = [k] ⋅ G

Round 3 Reveal  s = [𝗌𝗄] ⋅ H(m, R) + [k]

𝖮𝗎𝗍𝗉𝗎𝗍 (R, s)

, [𝗌𝗄]𝖨𝗇𝗉𝗎𝗍 : 𝗉𝗄 = [𝗌𝗄] ⋅ G , [k]



(Threshold) Schnorr in Practice?

• Schnorr signatures are old (well-studied), compact, fast to generate and verify, 
and easy to distribute with MPC (i.e. thresholdize)


• However it was patented - major barrier for internet adoption


• Patent expired recently but the damage is done; adoption is increasing but much 
of the internet infrastructure does not support Schnorr


• Instead, ECDSA is widely deployed in its place—similar performance and 
security, and patent-free but MPC-unfriendly



ECDSA
• Elliptic Curve Digital Signature Algorithm


• Devised by Scott Vanstone in 1992, standardised by NIST


• Differs from Schnorr enough so that patent doesn’t apply


• Widespread adoption across the internet



Threshold ECDSA: Challenges

SchnorrSign(𝗌𝗄, m) :
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e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

ECDSASign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R)
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Threshold ECDSA: Challenges

ECDSASign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R)

Multiplication of 
secret values

Division (Modular inverse)

x-coordinate of R (not secret)rx

ry

R = (rx, ry)

There is no one-size-
fits-all solution
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Intro

MPC for 
Schnorr is 

easy

but not 
ECDSA

How to distribute ECDSA

Rewriting 
ECDSA

ECDSA 
Tuples

Tradeoffs

 + 
Consistency
𝟤𝖯-𝖬𝖴𝖫



MPC for ECDSA

• In principle: can use generic MPC to compute 


• However, computing    given    naively is prohibitively expensive


• Rewrite ECDSA signing equation to an “MPC-friendly” equivalent 
i.e. only additions and multiplications of secret values


• Bar-Ilan Beaver 89: Inversion outside MPC

[s] = (e + [𝗌𝗄] ⋅ rx) ⋅ [k−1]

[k−1] [k]



Rewriting ECDSA for MPC

ECDSASign(𝗌𝗄, m) :
[k] ← ℤq

R = [k] ⋅ G
e = H(m)

[Abram Nof Orlandi Scholl Shlomovits 22][Lindell Nof Ranellucci 18]

output σ = (s, R)

s =
e + [𝗌𝗄] ⋅ rx

[k]



Rewriting ECDSA for MPC

ECDSASign(𝗌𝗄, m) :
[k] ← ℤq

R = [k] ⋅ G
e = H(m)

[Abram Nof Orlandi Scholl Shlomovits 22][Lindell Nof Ranellucci 18]

output σ = (s, R)

s =
e + [𝗌𝗄] ⋅ rx

[k]
[ϕ]
[ϕ]

⋅



Rewriting ECDSA for MPC
ECDSASign(𝗌𝗄, m) :

[k] ← ℤq

R = [k] ⋅ G
e = H(m)

[Abram Nof Orlandi Scholl Shlomovits 22][Lindell Nof Ranellucci 18]

output σ = (s, R)

s =

e + [𝗌𝗄] ⋅ rx

[k]
[ϕ]

[ϕ]
α = ( )
β =



Rewriting ECDSA for MPC
ECDSASign(𝗌𝗄, m) :

[k] ← ℤq

R = [k] ⋅ G
e = H(m)

[Abram Nof Orlandi Scholl Shlomovits 22][Lindell Nof Ranellucci 18]

output σ = (s, R)

s =

e + [𝗌𝗄] ⋅ rx

[k]
[ϕ]

[ϕ]
α = ( )
β =

α
β
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ECDSASign(𝗌𝗄, m) :

[k] ← ℤq

R = [k] ⋅ G
e = H(m)

[Abram Nof Orlandi Scholl Shlomovits 22][Lindell Nof Ranellucci 18]

output σ = (s, R)
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Public values

Rewriting ECDSA for MPC
ECDSASign(𝗌𝗄, m) :

[k] ← ℤq

R = [k] ⋅ G
e = H(m)

[Abram Nof Orlandi Scholl Shlomovits 22][Lindell Nof Ranellucci 18]

output σ = (s, R)

s =

e + [𝗌𝗄] ⋅ rx

[k]
[ϕ]

[ϕ]
α = ( )
β =

[ϕ] ← ℤq

α
β



Safe to reveal

: because  is OTP


: because fixed by 
β ϕ

α β, s

Public values
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[k] ← ℤq
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e = H(m)

[Abram Nof Orlandi Scholl Shlomovits 22][Lindell Nof Ranellucci 18]
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β =

[ϕ] ← ℤq
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Secure mult: Only (nonlinear) 
combination of secret valuesSafe to reveal


: because  is OTP

: because fixed by 
β ϕ

α β, s

Public values

Rewriting ECDSA for MPC
ECDSASign(𝗌𝗄, m) :

[k] ← ℤq

R = [k] ⋅ G
e = H(m)

[Abram Nof Orlandi Scholl Shlomovits 22][Lindell Nof Ranellucci 18]

output σ = (s, R)

s =

e + [𝗌𝗄] ⋅ rx

[k]
[ϕ]

[ϕ]
α = ( )
β =

[ϕ] ← ℤq

α
β



Signing from ECDSA Tuples
[k][𝗌𝗄] [ϕ] [ϕk] [ϕ𝗌𝗄]

[Abram Nof Orlandi Scholl Shlomovits 22]



Signing from ECDSA Tuples
[k][𝗌𝗄] [ϕ] [ϕk] [ϕ𝗌𝗄]

Round 1
Establish  R = [k] ⋅ G

Round 2

[Abram Nof Orlandi Scholl Shlomovits 22]



Signing from ECDSA Tuples
[k][𝗌𝗄] [ϕ] [ϕk] [ϕ𝗌𝗄]

Round 1
Establish  R = [k] ⋅ G

Round 2

[Abram Nof Orlandi Scholl Shlomovits 22]

Reveal    and  α = e + rx[ϕ𝗌𝗄] β = [ϕk]

𝖮𝗎𝗍𝗉𝗎𝗍 (R, s = α/β)

Round 3
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[ϕ]

[ϕk]
[ϕ𝗌𝗄]
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𝖲𝖺𝗆𝗉𝗅𝖾 :
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Local

ECDSA Tuple Generation

[k][𝗌𝗄]
[ϕ]

[ϕk]
[ϕ𝗌𝗄]

𝖨𝗇𝗉𝗎𝗍 :
𝖲𝖺𝗆𝗉𝗅𝖾 :

= 𝖬𝖴𝖫𝖳([ϕ], [k])
= 𝖬𝖴𝖫𝖳([ϕ], [𝗌𝗄])



Consistency: 
straightforward

Local

ECDSA Tuple Generation
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[ϕk]
[ϕ𝗌𝗄]

𝖨𝗇𝗉𝗎𝗍 :
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Consistency: 
straightforward


[k] ⋅ G = R
[𝗌𝗄] ⋅ G = 𝗉𝗄Verify:

Local

ECDSA Tuple Generation

[k][𝗌𝗄]
[ϕ]

[ϕk]
[ϕ𝗌𝗄]

𝖨𝗇𝗉𝗎𝗍 :
𝖲𝖺𝗆𝗉𝗅𝖾 :

= 𝖬𝖴𝖫𝖳([ϕ], [k])
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Consistency: 
straightforward


[k] ⋅ G = R
[𝗌𝗄] ⋅ G = 𝗉𝗄Verify:

Local

ECDSA Tuple Generation

[k][𝗌𝗄]
[ϕ]

[ϕk]
[ϕ𝗌𝗄]

𝖨𝗇𝗉𝗎𝗍 :
𝖲𝖺𝗆𝗉𝗅𝖾 :

= 𝖬𝖴𝖫𝖳([ϕ], [k])
= 𝖬𝖴𝖫𝖳([ϕ], [𝗌𝗄])

Previous works: ZK proofs, MACs, etc. 
This work: Simple pairwise check
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Secure Two-Party Multiplication

𝟤𝖯-𝖬𝖴𝖫
α

c
β
d

a.k.a. OLE, Mult2Add



Secure Two-Party Multiplication

𝟤𝖯-𝖬𝖴𝖫

c + d = α ⋅ β

α

c
β
d

a.k.a. OLE, Mult2Add



Secure Two-Party Multiplication

𝟤𝖯-𝖬𝖴𝖫

c + d = α ⋅ β

α

c
β
d

Instantiable efficiently from: 
OT, Paillier, Class Groups

Gadget to split a product of secret 
inputs  into additive secrets αβ c, d

a.k.a. OLE, Mult2Add



𝖤𝗇𝖼2(e, α)

e = 𝖤𝗇𝖼1(β)

Two-Round 𝟤𝖯-𝖬𝖴𝖫

c + d = α ⋅ β
α

β

dc



𝖤𝗇𝖼2(e, α)

e = 𝖤𝗇𝖼1(β)

̂c + ̂d = α̂ ⋅ β

α

β

dc 𝖤𝗇𝖼2(e, α)α̂
c + d = α ⋅ β

Two-Round 𝟤𝖯-𝖬𝖴𝖫



Consistency 
“for free”

𝖤𝗇𝖼2(e, α)

e = 𝖤𝗇𝖼1(β)

̂c + ̂d = α̂ ⋅ β

α

β

dc 𝖤𝗇𝖼2(e, α)α̂
c + d = α ⋅ β

Two-Round 𝟤𝖯-𝖬𝖴𝖫



Consistency: 
straightforward

ECDSA Tuple Generation

[k][𝗌𝗄]
[ϕ]

[ϕk]
[ϕ𝗌𝗄]

𝖨𝗇𝗉𝗎𝗍 :
𝖲𝖺𝗆𝗉𝗅𝖾 :

𝖬𝖴𝖫𝖳([ϕ], [k])
= 𝖬𝖴𝖫𝖳([ϕ], [𝗌𝗄])
=



Consistency: 
straightforward


[k] ⋅ G = R
[𝗌𝗄] ⋅ G = 𝗉𝗄Verify:

ECDSA Tuple Generation

[k][𝗌𝗄]
[ϕ]

[ϕk]
[ϕ𝗌𝗄]

𝖨𝗇𝗉𝗎𝗍 :
𝖲𝖺𝗆𝗉𝗅𝖾 :

𝖬𝖴𝖫𝖳([ϕ], [k])
= 𝖬𝖴𝖫𝖳([ϕ], [𝗌𝗄])
=



Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫
ϕ k

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :



Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫
ϕ k

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :



Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫
ϕ

tϕ

k

tk
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Claim: [k] ⋅ G = R

Tk
Tk = ϕR−Tϕ

Tϕ = tϕ ⋅ G Tk = tk ⋅ G

Match?

No information 
about k

In case of cheat:  
have to guess  
(  chance)

ϕ
2−256



Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫

tϕ + tk = ϕ ⋅ k

ϕ

tϕ

k

tk

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :

Claimed R* = Δ+k ⋅ G
Tϕ = tϕ ⋅ G Tk = tk ⋅ G



Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫

tϕ + tk = ϕ ⋅ k

ϕ

tϕ

k

tk

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :

Claimed R* = Δ+k ⋅ G
T*k = ϕR*−Tϕ

Tϕ = tϕ ⋅ G Tk = tk ⋅ G



Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫

tϕ + tk = ϕ ⋅ k

ϕ

tϕ

k

tk

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :

Claimed R* = Δ+k ⋅ G
T*k = ϕR*−Tϕ

Tϕ = tϕ ⋅ G Tk = tk ⋅ G

= Tk + ϕΔ



No information about  
 distributed uniformly in 

ϕ
⇒ ℤq

Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫

tϕ + tk = ϕ ⋅ k

ϕ

tϕ

k

tk

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :

Claimed R* = Δ+k ⋅ G
T*k = ϕR*−Tϕ

Tϕ = tϕ ⋅ G Tk = tk ⋅ G

= Tk + ϕΔ



No information about  
 distributed uniformly in 

ϕ
⇒ ℤq

Verifying Consistency w.r.t. 𝔾

𝟤𝖯-𝖬𝖴𝖫

tϕ + tk = ϕ ⋅ k

ϕ

tϕ

k

tk

𝖬𝖴𝖫𝖳([ϕ], [k])
Simplified :

Claimed R* = Δ+k ⋅ G
T*k = ϕR*−Tϕ

Tϕ = tϕ ⋅ G Tk = tk ⋅ G

= Tk + ϕΔ

Statistically 
unlikely to send 
correct T*k



Notes on Consistency Check
• Case 1: Inconsistent —almost certainly fails 

Case 2: Consistent — nothing about  leaked 
  is a MAC key, but also safe to (re)use in ECDSA tuple


• Costs 3 exponentiations, transmits single  element, one round 
All costs are superseded by 


• Exact same structure for  verification with 


• Actual check: each party validates  inputs 
(i.e. shares of ) used by every counterparty

k*
k ϕ

⇒ ϕ

𝔾
𝟤𝖯-𝖬𝖴𝖫

[ϕ𝗌𝗄] 𝗉𝗄

𝟤𝖯-𝖬𝖴𝖫
k, 𝗌𝗄



3 Round ECDSA Signing
[This work]

Exchange 𝖢𝗈𝗆𝗆𝗂𝗍(Ri)

Release R

Round 1

Round 2

[ϕ][k]𝖲𝖺𝗆𝗉𝗅𝖾
Establish R = [k] ⋅ G

𝖮𝗎𝗍𝗉𝗎𝗍 (R, σ = α/β)



3 Round ECDSA Signing

Exchange 𝖢𝗈𝗆𝗆𝗂𝗍(Ri)  message 1𝖬𝖴𝖫

Release R  message 2𝖬𝖴𝖫

Round 1

Round 2

[ϕ][k]𝖲𝖺𝗆𝗉𝗅𝖾
Establish R = [k] ⋅ G Multiply  with [ϕ] [k], [𝗌𝗄]

𝖮𝗎𝗍𝗉𝗎𝗍 (R, σ = α/β)

[k][𝗌𝗄] [ϕ] [ϕk] [ϕ𝗌𝗄]

Pairwise 
consistency check

[This work]



3 Round ECDSA Signing

Exchange 𝖢𝗈𝗆𝗆𝗂𝗍(Ri)  message 1𝖬𝖴𝖫

Release R  message 2𝖬𝖴𝖫

Round 1

Round 2
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Round 3 Reveal    and  α = e[ϕ] + rx[ϕ𝗌𝗄] β = [ϕk]
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Instantiating Multiplication

• Secure -party mult can be reduced to  instances of 


•  inherently requires public key crypto


• Broadly two approaches:


- Additively Homomorphic Encryption (low bandwidth, high 
computation)


- Oblivious Transfer (low computation, high bandwidth)

n 2n 𝟤𝖯-𝖬𝖴𝖫

𝟤𝖯-𝖬𝖴𝖫



 from Additively Homomorphic Encryption𝟤𝖯-𝖬𝖴𝖫

• Additive Homomorphism:   
 
[Gilboa 99]: Conceptually simple protocol for MUL from AHE 
[CGGMP 20]: Hardened for active security through ZK proofs


• Instantiations from factoring based cryptography (e.g. [Paillier 99]) and class 
groups [Castagnos Laguillaumie 15]


• Advantages: Parties exchange (relatively) compact ciphertexts


• Downsides:  
— Ciphertext operations are heavy (2 orders of magnitude slower than EC) 
— Seem to require ZK proofs to prevent misuse

α ⋅ 𝖤𝗇𝖼(x) + 𝖤𝗇𝖼(β) = 𝖤𝗇𝖼(αx + β)



 from Oblivious Transfer𝟤𝖯-𝖬𝖴𝖫
• Oblivious Transfer (OT): 

 
 
[Gilboa 99]: Elegant protocol for MUL from OT 
[DKLs 18,19, HMRT 22]: active security by randomized encoding+statistical checks


• Instantiable with ECDSA curve (think DH key exchange)


• Advantages: By OT Extension [IKNP03, Roy22] public key operations can be moved 
to one-time key generation phase, so only hashes when signing 
(1 order of magnitude slower than single party signing)


• Downsides: ~1000 OTs/sig, each transmits two  elementsℤq

𝖮𝖳
m0, m1 b

mb



: AHE vs OT𝟤𝖯-𝖬𝖴𝖫
• Tradeoff to make: Computation vs. Bandwidth during signing time


• Rough costs with 256-bit curve, for each additional party 
(computation aggregated across [Gavenda 21, XAXYC 21, BMP 22]):

Bandwidth Computation

OT [DKLs 23]

Paillier [CGGMP 20]

Paillier [GG 18]

Class Groups 
[CCLST20, YCX21]

60 KB

15 KB

7 KB

4.5 KB

Few milliseconds

Hundreds of milliseconds

Hundreds of milliseconds

> 1 second
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Is communication the bottleneck?

• Mobile applications (human-initiated):

- eg. t=4, ~2Mbits transmitted per party

- Well within LTE envelope for responsivity
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Example 1: Mobile Wallet

Multiplier: OT-based

Parties: 4

Curve: 256-bit
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Rank: 25

Avg. Upload: 7.5 Mbps

Rank: 86

Avg. Upload: 2.7 Mbps

source: opensignal

Signing Time: ~1/3 sec Signing Time: ~1 sec

Similar to computation time for Paillier 
on powerful hardware!

Example 1: Mobile Wallet

Multiplier: OT-based

Parties: 4

Curve: 256-bit


2 Mbits

sent per party



On the Other Hand

OTPaillier + ZK
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Is communication the bottleneck?

• Large-scale automated distributed signing:

- Threshold 2:    3.8ms/sig    <= ~263  sig/second

- Threshold 20:  31.6ms/sig  <= ~31    sig/second

• Neither setting saturates a gigabit connection
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Example 2: Datacenter Signing
How much bandwidth to be CPU bound?


(including preprocessing)

using GCP n1-highcpu nodes

2 Parties

~250 sigs/second

256 Parties

~3 sigs/second

Each party sends: 
~700 Kbits per sig

Each party sends: 
~185 Mbits per sig

Bandwidth required: 
~180 Mbps symmetric

Bandwidth required: 
~555 Mbps symmetric
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Non-interactive Online Signing

Round 1

Round r

Round r − 1

⋮

𝖲𝗂𝗀𝗇([𝗌𝗄], m)

Only this round needs m

  is now availablem

Caveat

Requires a stronger 

assumption on ECDSA, 
which is proven to hold in 
the GGM [Groth Shoup 22]


Most Threshold ECDSA 
protocols have this format

([DOKSS20, CGGMP20] 
were the first to “use” it)
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 message 𝖲𝗂𝗀𝗇 i

 message 𝖲𝗂𝗀𝗇 i + 1

 message 𝖲𝗂𝗀𝗇 i + 2

No extra assumptions 
needed

Saves a round on average
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In Conclusion
- Threshold ECDSA in Three Rounds: Now matches Schnorr


- Enabled by well-chosen correlation + simple new consistency check


- Blackbox use of UC 2-round  
NOTE: OT-based protocols satisfy UC, but AHE is more 
complicated


- No ZK proofs during signing: light protocol and straightforward 
UC analysis

𝟤𝖯-𝖬𝖴𝖫

Thanks!
Thanks Eysa Lee for

dkls.info


