ePrint 2023/602

Threshold BBS+ Signatures for Distributed Anonymous Credential Issuance

Eysa Lee, abhi shelat, and LaKyah Tyner Yashvanth Kondi, Jack Doerner, NEU Technion + Reichman Aarhus University NEU \rightarrow Brown NEU

2023 IEEE Security and Privacy

Authority

Authority

Authority

Alice

Verifier for Gammeldansk Subscription

Authority

Alice

Verifier for Gammeldansk Subscription

Authority

Verifier 2

Authority

Privacy Concerns

Corrupt Authority

Authority

Alice

Corrupt Authority

Authority

Alice

Authority

MPC!

Desired Issue Protocol flow

Reconstruct Signature

- Efficient
- Secure under well known assumptions
- Used in privacy preserving applications
- Being standardized by the IETF
- Scheme specific properties

 - Allows for a vector of messages to be signed Selectively reveal messages

BBS+ [Au Susilo Mu 06]

$$sk = x$$

 $pk = (g_2^x, h_1, \dots, h_{L+1})$

 $\mathsf{BBS} + \mathsf{Sign}(sk, m \in \mathbb{Z}_p^L):$ $e, s \leftarrow \mathbb{Z}_p$

$$A = (g_1 h_1^s \prod_{i=1}^{L} h_{i+1}^{m_i})^{1/(x+e)}$$

$$\sigma := (A, e, s)$$

$$sk = x$$

 $pk = (g_2^x, h_1, \dots, h_{L+1})$

$$sk = x$$

 $pk = (g_2^x, h_1, \dots, h_{L+1})$

BBS + Sign($sk, m \in \mathbb{Z}_p^L$) :

$e, s \leftarrow \mathbb{Z}_p$ $A = (B)^{1/(x+e)}$ $\sigma := (A, e, s)$

B = B(pk, m, s)

$$sk = x$$

 $pk = (g_2^x, h_1, \dots, h_{L+1})$

 $e, s \leftarrow \mathbb{Z}_p$ $A = (B)^{1/(x+e)}$ $\sigma := (A, e, s)$

BBS + Sign($sk, m \in \mathbb{Z}_p^L$) :

B = B(pk, m, s)

Inversion

Secure

$$sk = x$$

 $pk = (g_2^x, h_1, \dots, h_{L+1})$

- Compute using techniques from [DOK+20]
 - EC operations in exponent

 $e, s \leftarrow \mathbb{Z}_p$ $A = (B)^{1/(x+e)}$ $\sigma := (A, e, s)$

BBS + Sign($sk, m \in \mathbb{Z}_p^L$) :

B = B(pk, m, s)

nversion

$$sk = x$$

 $pk = (g_2^x, h_1, \dots, h_{L+1})$

- Compute using techniques from [DOK+20]
 - EC operations in exponent
 - MPC for output in EC group

 $e, s \leftarrow \mathbb{Z}_p$ $A = (B)^{1/(x+e)}$ $\sigma := (A, e, s)$

BBS + Sign($sk, m \in \mathbb{Z}_p^L$):

B = B(pk, m, s)

nversion

Secure

$$sk = x$$

 $pk = (g_2^x, h_1, \dots, h_{L+1})$

- Compute using techniques from [DOK+20]
 - EC operations in exponent
 - MPC for output in EC group
 - MACing for active security

 $e, s \leftarrow \mathbb{Z}_p$ $A = (B)^{1/(x+e)}$ $\sigma := (A, e, s)$

BBS + Sign($sk, m \in \mathbb{Z}_p^L$) :

B = B(pk, m, s)

Inversion

Secure

• Compute $\frac{1}{[x+e]}$ through $\frac{[r]}{([x+e]) \cdot [r]}$

• Compute
$$\frac{1}{[x+e]}$$
 through $\frac{1}{([x+e])}$

- Via 2-round multiplier [DOK+20]
- $[r] + e]) \cdot [r]$

• Compute
$$\frac{1}{[x+e]}$$
 through $\frac{1}{([x+e])}$

- Via 2-round multiplier [DOK+20]
- Sample [r]

 $[r] + e]) \cdot [r]$

• Compute
$$\frac{1}{[x+e]}$$
 through $\frac{1}{([x-e])}$

- Via 2-round multiplier [DOK+20]
- Sample [r]
- Send [*r*], [*x*] to multiplier
- Parties get $[u] = [(x + e) \cdot r]$

 $[r] + e]) \cdot [r]$

Threshold BBS+ Signing Protocol

 $(e_i, s_i, r_i) \leftarrow \mathbb{F}_p$ Local To party P_i $(e_i, s_i) \rightarrow \text{Com}$ $sk_i \rightarrow Mul_1$ $(e_i, s_i) \rightarrow$ Open $r_i \rightarrow$ Mul₂ $R_i \leftarrow B'^i$ (e, s, R_i, u_i) $u_i \leftarrow (x_i + e) \cdot r_i$

Our Issuing protocol

To client

 $(e_i, s_i, r_i) \leftarrow \mathbb{F}_p$ Local To party P_i $(e_i, s_i) \rightarrow \text{Com}$ $sk_i \rightarrow$ Mul₁ $(e_i, s_i) \rightarrow$ Open $r_i \rightarrow$ Mul₂ $R_i \leftarrow B'^i$ (e, s, R_i, u_i) $u_i \leftarrow (x_i + e) \cdot r_i$

Our Issuing protocol

To client

$$(e_{i}, s_{i}, r_{i}) \leftarrow \mathbb{F}_{p}$$

$$(e_{i}, s_{i}) \rightarrow \mathbb{Com}$$

$$sk_{i} \rightarrow \mathbb{Mul}$$

$$(e_{i}, s_{i}) \rightarrow \mathbb{Open}$$

$$r_{i} \rightarrow \mathbb{Mul}$$

$$R_{i} \leftarrow B^{r_{i}}$$

$$u_{i} \leftarrow (x_{i} + e) \cdot r_{i}$$

$$(e, s, a)$$

Our Issuing protocol

client

$$(e_{i}, s_{i}, r_{i}) \leftarrow \mathbb{F}_{p}$$

$$(e_{i}, s_{i}) \rightarrow \mathbb{Com}$$

$$sk_{i} \rightarrow \mathbb{Mul}_{1}$$

$$(e_{i}, s_{i}) \rightarrow \mathbb{Open}$$

$$r_{i} \rightarrow \mathbb{Mul}_{2}$$

$$R_{i} \leftarrow B^{r_{i}}$$

$$u_{i} \leftarrow (x_{i} + e) \cdot r_{i}$$

$$(e, s, d)$$

client

Computes $A = \left(\prod R_i\right)^{\frac{1}{\sum u_i}}$

Computes $A = \left(\prod R_i\right)^{\frac{1}{\sum u_i}}$ $= (B^r)^{\frac{1}{(x+e)\cdot r}}$

Computes $A = \left(\prod R_i\right)^{\frac{1}{\sum u_i}}$ $= (B^r)^{\frac{1}{(x+e)\cdot r}}$

 $= B^{\frac{1}{x+e}}$

Computes $A = \left(\prod R_i\right)^{\frac{1}{\sum u_i}}$ $= (B^r)^{\frac{1}{(x+e)\cdot r}}$

 $= B^{\frac{1}{x+e}}$

Outputs (A, e, s) if it verifies

$$(e_{i}, s_{i}, r_{i}) \leftarrow \mathbb{F}_{p}$$

$$(e_{i}, s_{i}) \rightarrow \mathbb{Com}$$

$$sk_{i} \rightarrow \mathbb{Mul1}$$

$$(e_{i}, s_{i}) \rightarrow \mathbb{Open}$$

$$r_{i} \rightarrow \mathbb{Mul2}$$

$$R_{i}$$

$$u_{i}$$

$$(e, s, K)$$

Our Issuing protocol

1 roundtrip No ZK proofs

Mostly symmetric operations for *issuing*.

From party P_i

lient

Malicious Security

 $(e_i, s_i, r_i) \leftarrow \mathbb{F}_p$ Local $(e_i, s_i) \rightarrow \text{Com}$ $sk_i \rightarrow Mul_1$ $(e_i, s_i) \rightarrow \text{Open}$ $r_i \rightarrow Mul_2$ $R_i \leftarrow B^{r_i}$ (e, s, R_i, u_i) $u_i \leftarrow (x_i + e) \cdot r_i$

To client

 $(e_i, s_i, r_i) \leftarrow \mathbb{F}_p$ $(e_i, s_i) \rightarrow \text{Com}$ $(sk_i + \delta_{sk_i}) \rightarrow Mul_1$

 $(R_i + \delta_{R_i})$ $(u_i + \delta_{u_i})$

Malicious Security Idea

All cheating can be characterized by "additive offsets to messages."

There are only 4 offsets to consider.

Cases for Cheating: (1) offsets cancel out (2) one offset serves as a valid signature

BBS+ Functionality for Weak Partially-<u>Blind</u> Signing

BBS+ Functionality for <u>Weak</u> Partially-<u>Blind</u> Signing

Weakly blind: message is hidden

BBS+ Functionality for <u>Weak Partially-Blind</u> Signing

Weakly blind: message is hidden

Signer can see some predicate on the message

BBS+ Functionality for Strong Blind Signing

Strongly blind: message and signature are hidden

BBS+ Functionality for <u>Weak</u> <u>Partially</u>-<u>Blind</u> Signing

m, **J**, $\{\phi_1, \ldots, \phi_k\}$ $\forall i \ \phi_i(m) = 1$

BBS+ Functionality for <u>Weak</u> <u>Partially</u>-<u>Blind</u> Signing

BBS+ Functionality for <u>Weak Partially</u>-<u>Blind</u> Signing

 $(A, e, s) \leftarrow \mathsf{BBS} + \mathsf{Sign}(x, m)$

Weak Partially Blind Signing with BBS+

$$sk = x$$

 $pk = (g_2^x, h_1, \dots, h_{L+1})$

 $\mathsf{BBS} + \mathsf{Sign}(sk, m \in \mathbb{Z}_p^L):$

 $e, s \leftarrow \mathbb{Z}_p$ $A = (B)^{1/(x+e)}$ $\sigma := (A, e, s)$

$$B = B(pk, m)s)$$

Weak Partially Blind Signing Protocol

 $s_0 \leftarrow Z_p$

 $B' = B'(m, s_0)$

•••

=

Computes A Outputs $(A, e, s + s_0)$ if it verifies

Other extensions

- •Strong Blindness
- •Oblivious VRF (OVRF)
- Proactive security [KMOS21]
- •Short Signatures via Tessero and Zhu [TZ2023]
- •Okamoto signatures

Strong Blind Signing Protocol

 $s_0, e_0 \leftarrow Z_p$

 $B' = B'(m, s_0)$

 (e, s, R'_i, u'_i)

 (e, s, R'_i, u'_i)

 (e, s, R'_i, u'_i)

Oblivious Verifiable Random Function (OVRF)

- A VRF is a function that provides a proof for computation
- Dodis and Yampolskiy VRF [DY05]
 - $F_r(e) \mapsto \mathbf{e}(G)$
- Correctness proof

- $\pi = G$
- Essentially computes the VRF on the clients input
- Composable security

$$G_1, G_2)/(x + e)$$

$$\frac{1}{x+e}$$

Implementation

- We benchmarked using the BLS12_381 curve Blackbox use of OT based multiplier [DKLs18, Gilboa88]
- - Cuts down on computation
 - Optimize wall clock time
- LAN and WAN benchmarked using Google Cloud
- Two setting for WAN
 - ≤ 12 parties servers in US
 - > 12 parties servers in US and Europe

Setup times for n-of-n averaged over 150+ runs

Setup and Signing Times

Signing times for n-of-n averaged over 150+ runs

Setup and Signing Times

▲ Local Srv △ Local Cli •LAN Srv •LAN Cli WAN Srv WAN Cli

Signing times for n-of-n averaged over 150+ runs

Schnorr(sk, m):

 $k \leftarrow \mathbb{Z}_{q}$ $R = k \cdot G$

 $e = H(\mathbf{R} \| m)$ $s = k - \mathbf{sk} \cdot e$

$$\sigma = (s, R)$$

output σ

BBS+(sk, m): $e, s \leftarrow \mathbb{Z}_a$ $A = \frac{G + \cdots}{\Box}$

x + e $\sigma = (A, e, s)$

output σ

Linear

1 mult

ECDSA(sk, m): $k \leftarrow \mathbb{Z}_q$ $R = k \cdot G$ e = H(m) $e + \mathbf{sk} \cdot r_x$ k output $\sigma = (s, R)$:

EdDSA(sk, m)

$$k = F(sk, m)$$

$$R = k \cdot G$$

$$e = H(R||m)$$

$$s = k - sk \cdot \sigma$$

$$\sigma = (s, R)$$
output σ

2 mults + many checks

Schnorr(sk, m) :

 $k \leftarrow \mathbb{Z}_q$ $R = k \cdot G$ e = H(R||m) $s = k - \mathbf{sk} \cdot e$ $\sigma = (s, R)$

output σ

BBS+(sk, m):

 $\vdots e, s \leftarrow \mathbb{Z}_a$

x + e

 $\sigma = (A, e, s)$

output σ

Linear

1 mult

ECDSA(sk, m): $k \leftarrow \mathbb{Z}_q$ $R = k \cdot G$ e = H(m) $e + \mathbf{sk} \cdot r_{x}$ k output $\sigma = (s, R)$:

EdDSA(sk, m)

$$k = F(sk, m)$$

$$R = k \cdot G$$

$$e = H(R||m)$$

$$s = k - sk \cdot \sigma$$

$$\sigma = (s, R)$$
output σ

2 mults + many checks

Schnorr(sk, m):

 $k \leftarrow \mathbb{Z}_a$ $R = k \cdot G$

 $e = H(\mathbf{R} \| m)$ $s = k - \mathbf{sk} \cdot e$

$$\sigma = (s, R)$$

output σ

BBS+(sk, m): $e, s \leftarrow \mathbb{Z}_a$ $A = \frac{G + \cdots}{\Box}$

x + e $\sigma = (A, e, s)$

output σ

Linear

1 mult

ECDSA(sk, m): $k \leftarrow \mathbb{Z}_a$ $R = k \cdot G$ e = H(m) $e + \mathbf{sk} \cdot r_{\mathbf{x}}$ k output $\sigma = (s, R)$

EdDSA(sk, m): $k = F(\mathbf{sk}, m)$ $R = k \cdot G$ $e = H(\mathbf{R} \| m)$ $s = k - \mathbf{sk} \cdot e$ $\sigma = (s, R)$ output σ

2 mults + many checks

Schnorr(sk, m):

 $k \leftarrow \mathbb{Z}_q$ $R = k \cdot G$

 $e = H(\mathbf{R} \| m)$ $s = k - \mathbf{sk} \cdot e$

$$\sigma = (s, R)$$

output σ

BBS+(sk, m):

$$e, s \leftarrow \mathbb{Z}_{q}$$

$$G + \cdots$$

$$\sigma = (A, e, s)$$

output σ

Linear

1 mult

ECDSA(sk, m): $k \leftarrow \mathbb{Z}_{q}$ $R = k \cdot G$ e = H(m) $e + \mathbf{sk} \cdot r_x$ k

output $\sigma = (s, R)$

EdDSA(sk, m): $k = F(\mathbf{sk}, m)$

- $R = k \cdot G$
- $e = H(\mathbf{R} \| m)$
- $s = k \mathbf{sk} \cdot e$
- $\sigma = (s, R)$

output σ

2 mults + many checks

Schnorr(sk, m):

 $k \leftarrow \mathbb{Z}_q$ $R = k \cdot G$

 $e = H(\mathbf{R} \| m)$

$$s = k - \mathsf{sk} \cdot e$$
$$\sigma = (s, R)$$

output
$$\sigma$$

: BBS+(sk, m): $e, s \leftarrow \mathbb{Z}_a$ $G + \cdots$ x + e

$$\sigma = (A, e, s)$$

output σ

Linear

1 mult

ECDSA(sk, m): $k \leftarrow \mathbb{Z}_q$ $R = k \cdot G$ e = H(m) $e + \mathbf{sk} \cdot r_x$ k output $\sigma = (s, R)$:

EdDSA(sk, m)

$$k = F(sk, m)$$

$$R = k \cdot G$$

$$e = H(R||m)$$

$$s = k - sk \cdot \sigma$$

$$\sigma = (s, R)$$
output σ

2 mults + many checks

Tak!

ePrint 2023/602