
Threshold BBS+ Signatures for Distributed
Anonymous Credential Issuance

Jack Doerner, Yashvanth Kondi, Eysa Lee, abhi shelat, and LaKyah Tyner
NEU Brown→Technion + Reichman NEU NEUAarhus University

ePrint 2023/602 2023 IEEE Security and Privacy

Digital Signatures as Credentials

Authority Alice Verifier

Digital Signatures as Credentials

Authority Alice Verifier

Digital Signatures as Credentials

Authority Alice Verifier for
Gammeldansk
Subscription

-DOB
-Height
-Blood

Type

Digital Signatures as Credentials

Authority Alice Verifier for
Gammeldansk
Subscription

-DOB
-Height
-Blood

Type

Privacy Concerns

Authority Alice

Verifier 1

Verifier 2

-DOB
-Height
-Blood

Type

Privacy Concerns

Authority Alice

Verifier 1

Verifier 2

-DOB
-Height
-Blood

Type

Corrupt Authority

Authority Alice

Corrupt Authority

Authority Alice

MPC!

Authority

Desired Issue Protocol flow

Pairwise Single RoundtripRequest
Signature

Reconstruct
Signature

Server Message
Exchange 1

Server Message
Exchange 2Request SignatureRequest

Signature
Reconstruct
Signature

Server Message
Exchange 1

Server Message
Exchange 2 Reconstruct Signature

BBS+ [Au Susilo Mu 06]

•Efficient

•Secure under well known assumptions

•Used in privacy preserving applications

•Being standardized by the IETF

•Scheme specific properties

•Allows for a vector of messages to be signed

•Selectively reveal messages

Signing with BBS+

𝖡𝖡𝖲 + 𝖲𝗂𝗀𝗇(sk, m ∈ ℤL
p) :

e, s ← ℤp

A = (g1 hs
1

L

∏
i=1

hmi
i+1)1/(x+e)

σ := (A, e, s)

sk = x
pk = (gx

2, h1, …, hL+1)

Signing with BBS+

𝖡𝖡𝖲 + 𝖲𝗂𝗀𝗇(sk, m ∈ ℤL
p) :

e, s ← ℤp

A = (g1 hs
1

L

∏
i=1

hmi
i+1)1/(x+e)

σ := (A, e, s)

sk = x
pk = (gx

2, h1, …, hL+1)

Signing with BBS+

𝖡𝖡𝖲 + 𝖲𝗂𝗀𝗇(sk, m ∈ ℤL
p) :

e, s ← ℤp

A = (B)1/(x+e)

σ := (A, e, s)

sk = x
pk = (gx

2, h1, …, hL+1)

B = B(pk, m, s)

Signing with BBS+

𝖡𝖡𝖲 + 𝖲𝗂𝗀𝗇(sk, m ∈ ℤL
p) :

e, s ← ℤp

A = (B)1/(x+e)

σ := (A, e, s)

sk = x
pk = (gx

2, h1, …, hL+1)

B = B(pk, m, s)

Signing with BBS+

𝖡𝖡𝖲 + 𝖲𝗂𝗀𝗇(sk, m ∈ ℤL
p) :

e, s ← ℤp

A = (B)1/(x+e)

σ := (A, e, s)

sk = x
pk = (gx

2, h1, …, hL+1)

• Compute using techniques from
[DOK+20]

• EC operations in exponent

B = B(pk, m, s)

Signing with BBS+

𝖡𝖡𝖲 + 𝖲𝗂𝗀𝗇(sk, m ∈ ℤL
p) :

e, s ← ℤp

A = (B)1/(x+e)

σ := (A, e, s)

sk = x
pk = (gx

2, h1, …, hL+1)

B = B(pk, m, s)

• Compute using techniques from
[DOK+20]

• EC operations in exponent

• MPC for output in EC group

Signing with BBS+

𝖡𝖡𝖲 + 𝖲𝗂𝗀𝗇(sk, m ∈ ℤL
p) :

e, s ← ℤp

A = (B)1/(x+e)

σ := (A, e, s)

sk = x
pk = (gx

2, h1, …, hL+1)

• Compute using techniques from
[DOK+20]

• EC operations in exponent

• MPC for output in EC group

• MACing for active security
B = B(pk, m, s)

[BB89] Secure Inversion (in our context)

• Compute through

1

[x + e]
[r]

([x + e]) ⋅ [r]

[BB89] Secure Inversion (in our context)

• Compute through

• Via 2-round multiplier [DOK+20]

1
[x + e]

[r]
([x + e]) ⋅ [r]

[BB89] Secure Inversion (in our context)

• Compute through

• Via 2-round multiplier [DOK+20]

• Sample

1
[x + e]

[r]
([x + e]) ⋅ [r]

[r]

[BB89] Secure Inversion (in our context)

• Compute through

• Via 2-round multiplier [DOK+20]

• Sample

• Send to multiplier

• Parties get

1
[x + e]

[r]
([x + e]) ⋅ [r]

[r]

[r], [x]

[u] = [(x + e) ⋅ r]

Threshold BBS+ Signing Protocol

(m, J)

(m, J)

(m, J)

Our Issuing
protocolCom

Mul1

(ei, si) →
ski →

To party Pj From party Pj

Mul2ri →

Local(ei, si, ri) ← 𝔽p

Open(ei, si) →

To client

(e, s, Ri, ui)
Ri ← Bri

ui ← (xi + e) ⋅ ri

Our Issuing
protocolCom

Mul1

(ei, si) →
ski →

To party Pj From party Pj

Mul2ri →

Local(ei, si, ri) ← 𝔽p

Open(ei, si) →

To client

(e, s, Ri, ui)
Ri ← Bri

ui ← (xi + e) ⋅ ri

Our Issuing
protocolCom

Mul1

(ei, si) →
ski →

To party Pj From party Pj

Mul2ri →

Local(ei, si, ri) ← 𝔽p

Open(ei, si) →

To client

(e, s, Ri, ui)
Ri ← Bri

ui ← (xi + e) ⋅ ri

Our Issuing
protocolCom

Mul1

(ei, si) →
ski →

To party Pj From party Pj

Mul2ri →

Ri ← Bri

ui ← (xi + e) ⋅ ri

Local(ei, si, ri) ← 𝔽p

Open(ei, si) →

To client

(e, s, Ri, ui)

Client Reconstruction

(e, s, Ri, ui)

(e, s, Ri, ui)

(e, s, Ri, ui) Computes

A = (∏Ri)
1

∑ ui

Client Reconstruction

(e, s, Ri, ui)

(e, s, Ri, ui)

(e, s, Ri, ui) Computes

A = (∏Ri)
1

∑ ui

= (Br)
1

(x + e) ⋅ r

Client Reconstruction

(e, s, Ri, ui)

(e, s, Ri, ui)

(e, s, Ri, ui) Computes

A = (∏Ri)
1

∑ ui

= (Br)
1

(x + e) ⋅ r

= B
1

x + e

Client Reconstruction

(e, s, Ri, ui)

(e, s, Ri, ui)

(e, s, Ri, ui)

Outputs (A, e, s) if it verifies

Computes

A = (∏Ri)
1

∑ ui

= (Br)
1

(x + e) ⋅ r

= B
1

x + e

Our Issuing
protocol

1 roundtrip
No ZK proofs

Mostly symmetric
operations for
issuing.

Com

Mul1

(ei, si) →
ski →

To party Pj From party Pj

Mul2ri →

Ri
ui

Local(ei, si, ri) ← 𝔽p

Open(ei, si) →

To client

(e, s, Ri, ui)

Com

Mul1

(ei, si) →
ski →

To party Pj From party Pj

Mul2ri →

Ri
ui

Local(ei, si, ri) ← 𝔽p

Open(ei, si) →

To client

(e, s, Ri, ui)

Malicious Security

Malicious

SecurityCom

Mul1

(ei, si) →
ski →

To party Pj From party Pj

Mul2ri →

Ri ← Bri

Local(ei, si, ri) ← 𝔽

Open(ei, si) →

To client

(e, s, Ri, ui)
ui ← (xi + e) ⋅ ri

Com

Mul1

(ei, si) →

(ski + δski
) →

Mul2ri + δri
→

(Ri + δRi
)

(ui + δui
)

(ei, si, ri) ← 𝔽p

Open(ei, si) →

Malicious Security Idea

All cheating can be
characterized by “additive
offsets to messages.”

There are only 4 offsets to
consider.

Cases for Cheating:
(1) offsets cancel out
(2) one offset serves as a

valid signature

BBS+ Functionality for Weak Partially-Blind Signing
Signer can issue a signature
without seeing contents of

message

Signer can issue a signature
without seeing contents of

messageWeakly blind: message is hidden

BBS+ Functionality for Weak Partially-Blind Signing

Signer can issue a signature
without seeing contents of

messageWeakly blind: message is hidden

Signer can see
some predicate
on the message

BBS+ Functionality for Weak Partially-Blind Signing

Signer can issue a signature
without seeing contents of

messageStrongly blind: message and signature are hidden

BBS+ Functionality for Strong Blind Signing

m, J,

J, ϕi

J, ϕj

J, ϕk

BBS+ Functionality for Weak Partially-Blind Signing

{ϕ1, . . . , ϕk}

∀i ϕi(m) = 1

BBS+ Functionality for Weak Partially-Blind Signing

OK

OK

OK

(A, e, s) ← 𝖡𝖡𝖲 𝖲𝗂𝗀𝗇

BBS+ Functionality for Weak Partially-Blind Signing

(A, e, s)

Weak Partially Blind Signing with BBS+

𝖡𝖡𝖲 + 𝖲𝗂𝗀𝗇(sk, m ∈ ℤL
p) :

e, s ← ℤp

A = (B)1/(x+e)

σ := (A, e, s)

sk = x
pk = (gx

2, h1, …, hL+1)

B = B(pk, m)B = B(pk, m, s)

Weak Partially Blind Signing Protocol

(B′￼, J)

(B′￼, J)

(B′￼, J)
s0 ← Zp

B′￼ = B′￼(m, s0)

Client Reconstruction

(e, s, Ri, ui)

(e, s, Ri, ui)

(e, s, Ri, ui)

Outputs (A, e, s + s0)
if it verifies

Computes A

Other extensions

•Strong Blindness

•Oblivious VRF (OVRF)

•Proactive security [KMOS21]

•Short Signatures via Tessero and Zhu [TZ2023]

•Okamoto signatures

Strong Blind Signing Protocol

(B′￼, J)

(B′￼, J)

(B′￼, J)
s0, e0 ← Zp

B′￼ = B′￼(m, s0)

Client Reconstruction

(e, s, R′￼i, u′￼i)

(e, s, R′￼i, u′￼i)

(e, s, R′￼i, u′￼i)

Outputs (A′￼, e + e0, s + s0)
if it verifies

Computes A′￼ = ∑ R′￼i /∑ u′￼i

Oblivious Verifiable Random Function (OVRF)

• A VRF is a function that provides a proof for computation

• Dodis and Yampolskiy VRF [DY05]

• Correctness proof

• Essentially computes the VRF on the clients input

• Composable security

Fx(e) ↦ 𝖾(G1, G2)/(x + e)

π = G1/(x + e)

Implementation

• We benchmarked using the BLS12_381 curve

• Blackbox use of OT based multiplier [DKLs18, Gilboa88]

• Cuts down on computation

• Optimize wall clock time

• LAN and WAN benchmarked using Google Cloud

• Two setting for WAN

• parties servers in US

• parties servers in US and Europe

≤ 12
> 12

Setup and Signing Times

Setup times for n-of-n averaged over 150+ runs Signing times for n-of-n averaged over 150+ runs

US and Europe

US only

Setup and Signing Times

Signing times for n-of-n averaged over 150+ runs

Where does BBS+ fit among Threshold ?

Schnorr(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

Linear

EdDSA(𝗌𝗄, m) :
k = F(𝗌𝗄, m)
R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

MPC or skip?

BBS+(𝗌𝗄, m) :
e, s ← ℤq

A =
G + ⋯
x + e

σ = (A, e, s)
output σ

1 mult

ECDSA(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R)

2 mults +
many checks

Where does BBS+ fit among Threshold ?

Schnorr(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

Linear

BBS+(𝗌𝗄, m) :
e, s ← ℤq

A =
G + ⋯
x + e

σ = (A, e, s)
output σ

1 mult

EdDSA(𝗌𝗄, m) :
k = F(𝗌𝗄, m)
R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

MPC or skip?

ECDSA(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R)

2 mults +
many checks

Where does BBS+ fit among Threshold ?

Schnorr(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

Linear

BBS+(𝗌𝗄, m) :
e, s ← ℤq

A =
G + ⋯
x + e

σ = (A, e, s)
output σ

1 mult

EdDSA(𝗌𝗄, m) :
k = F(𝗌𝗄, m)
R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

MPC or skip?

ECDSA(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R)

2 mults +
many checks

Where does BBS+ fit among Threshold ?

Schnorr(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

Linear

BBS+(𝗌𝗄, m) :
e, s ← ℤq

A =
G + ⋯
x + e

σ = (A, e, s)
output σ

1 mult

EdDSA(𝗌𝗄, m) :
k = F(𝗌𝗄, m)
R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

MPC or skip?

ECDSA(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R)

2 mults +
many checks

Where does BBS+ fit among Threshold ?

Schnorr(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

Linear

BBS+(𝗌𝗄, m) :
e, s ← ℤq

A =
G + ⋯
x + e

σ = (A, e, s)
output σ

1 mult

EdDSA(𝗌𝗄, m) :
k = F(𝗌𝗄, m)
R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

MPC or skip?

ECDSA(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R)

2 mults +
many checks

Tak!
ePrint 2023/602

