
Sometimes You Can’t Distribute
Random-Oracle-Based Proofs 

¯_(ツ)_/¯

Yashvanth KondiJack Doerner Leah Namisa Rosenbloom

Ballad of Bitcoin Bob

Ballad of Bitcoin Bob

Ballad of Bitcoin Bob

ALICE
PAY

Ballad of Bitcoin Bob

ALICE
PAY

Ballad of Bitcoin Bob

ALICE
PAY

Ballad of Bitcoin Bob

Ballad of Bitcoin Bob

Ballad of Bitcoin Bob

Ballad of Bitcoin Bob

Ballad of Bitcoin Bob

Ballad of Bitcoin Bob

Ballad of Bitcoin Bob

Ballad of Bitcoin Bob

PAY

h4CK3r

PAY

h4CK3r

Ballad of Bitcoin Bob

PAY

h4CK3r

Ballad of Bitcoin Bob

PAY

h4CK3r

Ballad of Bitcoin Bob

Ballad of Bitcoin Bob

Ballad of Bitcoin Bob

Ballad of Bitcoin Bob

Ballad of Bitcoin Bob

Ballad of Bitcoin Bob

Ballad of Bitcoin Bob

Ballad of Bitcoin Bob

Ballad of Bitcoin Bob

Distributed Risk: Attacker will need
to compromise multiple devices

• Compatibility: 
Verifies w.r.t. original algorithm

• Corruption Resilience: 
Compromising some devices does not leak the signing key

• This talk: Signatures Non-interactive Zero-knowledge⇔

⇔ π
⇔ (x, w)(,)ALI

PAY

Distributed Signing Distributed Proving⇔

How to Distribute Signing
• Any signing scheme can be distributed via general MPC

• “Practical” efficiency usually requires more fine-grained notions
than just feasibility

• As one proxy, practical distributed signing protocols make
blackbox use of non-linear components of the signing algorithm:

- Integer arithmetic in or

- Elliptic curve group operations

- Hash functions

ℤq ℤ*N

How to Distribute Signing
• Any signing scheme can be distributed via general MPC

• “Practical” efficiency usually requires more fine-grained notions
than just feasibility

• As one proxy, practical distributed signing protocols make
blackbox use of non-linear components of the signing algorithm:

- Integer arithmetic in or

- Elliptic curve group operations

- Hash functions

ℤq ℤ*N RSA, Schnorr/EdDSA, ECDSA, BLS,
BBS+, custom constructions using

lattices, isogenies, etc.

What about Purely Hash Based?
• [Ozdemir Boneh 22]: distributed version of Fractal 

[Cui Zhang Chen Liu Yu 21]: distributed MPC-in-the-head 
Proof size, verifier time linear in #provers

• [Khaburzaniya Chalkias Lewi Malvai 21]: aggregate Lamport
signatures with STARKs 
Prove statements about circuit representation of hash function

• [Dziembowski Faust Lizurej 23]: “individual cryptography” 
Hash-based proofs that are designed to be hard to distribute

• [Nielsen Hall-Andersen 23]: Incrementally Verifiable Computation 
must make non-blackbox use of hash function

This Work: Limitations

• For some hash based NIZKs , there is an inherent barrier to
designing practical protocols to distribute their computation.

1 2
3

This Work: Limitations

• For some hash based NIZKs , there is an inherent barrier to
designing practical protocols to distribute their computation.

1 2
3

1. NIZKs that have straight-line extractors in the Random-
Oracle Model

This Work: Limitations

• For some hash based NIZKs , there is an inherent barrier to
designing practical protocols to distribute their computation.

1 2
3

1. NIZKs that have straight-line extractors in the Random-
Oracle Model

2. Attack that completely recovers the witness by corrupting
all-but-one distributed provers

This Work: Limitations

• For some hash based NIZKs , there is an inherent barrier to
designing practical protocols to distribute their computation.

1 2
3

1. NIZKs that have straight-line extractors in the Random-
Oracle Model

2. Attack that completely recovers the witness by corrupting
all-but-one distributed provers

3. Protocol that is blackbox in the same hash function (i.e.
Random Oracle) as the NIZK

Implications for distributing…

• Signing for standard schemes based on MPC-in-the-head

• NIZKs/signatures obtained by compiling Sigma protocols via:

- Pass’ or Fischlin’s transformations (tight/concurrent security)

- Unruh’s transformation (post-quantum)

• PCPs/IOPs compiled via hash functions

Zero-knowledge Proofs
• Very powerful cryptographic primitive, introduced by

[Goldwasser Micali Rackoff 85]

• Intuition: Prover convinces a Verifier of a statement, without
revealing its secret trapdoor.

• In this talk, we only look at:

- Non-interactive proofs (NIZK)

- Proofs of Knowledge (PoK)

• ZK is intuitive: No information about the key should be leaked by the proof

• But what does it mean to “know” something?

• “Proof of Knowledge” is formalized by an “extractor” 𝖤𝗑𝗍

Zero-knowledge Proof:

“I know that unlocks ”

Bob

Zero-knowledge Proofs

(Ledger)

V(x)

P(x, w) :

𝖤𝗑𝗍

• ZK is intuitive: No information about the key should be leaked by the proof

• But what does it mean to “know” something?

• “Proof of Knowledge” is formalized by an “extractor” 𝖤𝗑𝗍

Zero-knowledge Proof:

“I know that unlocks ”

Bob

Zero-knowledge Proofs

P(x, w) :

𝖤𝗑𝗍

• ZK is intuitive: No information about the key should be leaked by the proof

• But what does it mean to “know” something?

• “Proof of Knowledge” is formalized by an “extractor” 𝖤𝗑𝗍

Zero-knowledge Proof:

“I know that unlocks ”

Bob

Zero-knowledge Proofs

P(x, w) :

Why is special?𝖤𝗑𝗍
• Clearly, must not be an algorithm that just anybody

can run

• has carefully chosen special privileges:

- Powerful enough to accomplish extraction

- Still meaningful as a security claim

• “Straight-line” Extraction (SLE): no rewinding. 
Instead, use other trapdoor like CRS, RO, etc.

𝖤𝗑𝗍

𝖤𝗑𝗍

Bad for:

• Quantum

• Concurrency

• Tightness

Why is special?𝖤𝗑𝗍
• Clearly, must not be an algorithm that just anybody

can run

• has carefully chosen special privileges:

- Powerful enough to accomplish extraction

- Still meaningful as a security claim

• “Straight-line” Extraction (SLE): no rewinding. 
Instead, use other trapdoor like CRS, RO, etc.

𝖤𝗑𝗍

𝖤𝗑𝗍

Random Oracle Model

H

H : {0,1}* ↦ {0,1}ℓ

Random Oracles as Privilege𝖤𝗑𝗍

Q1 Q2 Qi Qn⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
H

P(x, w)

V(x)

H : {0,1}* ↦ {0,1}ℓ

Random Oracles as Privilege𝖤𝗑𝗍

Q1 Q2 Qi Qn⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
H

P(x, w)

V(x)

H : {0,1}* ↦ {0,1}ℓ

Random Oracles as Privilege𝖤𝗑𝗍

Q1 Q2 Qi Qn⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
H

P(x, w)

V(x)

H : {0,1}* ↦ {0,1}ℓ

Random Oracles as Privilege𝖤𝗑𝗍

Q1 Q2 Qi Qn⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
H

P(x, w)

V(x)

H : {0,1}* ↦ {0,1}ℓ

Random Oracles as Privilege𝖤𝗑𝗍

Q1 Q2 Qi Qn⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
H

P(x, w)

V(x)

H : {0,1}* ↦ {0,1}ℓ

Random Oracles as Privilege𝖤𝗑𝗍

Q1 Q2 Qi Qn⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
H

H

P(x, w)

V(x)

H : {0,1}* ↦ {0,1}ℓ

Random Oracles as Privilege𝖤𝗑𝗍

Q1 Q2 Qi Qn⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
H

H
Accept/Reject

P(x, w)

V(x)

H : {0,1}* ↦ {0,1}ℓ

𝖤𝗑𝗍

Random Oracles as Privilege𝖤𝗑𝗍

Q1 Q2 Qi Qn⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
H

H
Accept/Reject

P(x, w)

V(x)

H : {0,1}* ↦ {0,1}ℓ

𝖤𝗑𝗍

Random Oracles as Privilege𝖤𝗑𝗍

Q1 Q2 Qi Qn⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
H

H
Accept/Reject

P(x, w)

V(x)

w

H : {0,1}* ↦ {0,1}ℓ

• Why is it a meaningful trapdoor?

- Hash functions are complex and highly unstructured

- Bob must “query” each to to obtain

- gets without rewinding

• Practical usage:

- No “trusted setup”, each query is very cheap

- Many NIZKs happen to achieve SLE in the ROM

Qi H H(Qi)
𝖤𝗑𝗍 {Qi}

Random Oracles as Privilege𝖤𝗑𝗍

• Multiparty protocols to securely compute RO-based
NIZKs should ideally make blackbox use of

- Conceptually: should not have a circuit description

- Practically: hash functions have large circuits

• We call them “Oracle Respecting Distributed” (ORD)
protocols

H
H

Distributing NIZKs in the ROM

Trivial Oracle Respecting Distribution

P3(x, w) :
w0 w1 w2, , ← 𝖲𝗁𝖺𝗋𝖾(w)
𝖮𝗎𝗍𝗉𝗎𝗍

π ← P(x, w) V(x, π) = 1
Consider languages where can be “secret shared”:

 (think DLog)

(x, w)

x0 + x1 + x2 = x w0 + w1 + w2 = w
(x0, w0), (x1, w1), (x2, w2) ∈ L ⇔ (x, w) ∈ L

{πi = P(xi, wi)}i∈[3]

V3(x, π0, π1, π2) :
V(x0, π0)∧ V(x1, π1)
∧ V(x2, π2)

Trivial Oracle Respecting Distribution

P3(x, w) :
w0 w1 w2, , ← 𝖲𝗁𝖺𝗋𝖾(w)
𝖮𝗎𝗍𝗉𝗎𝗍

π ← P(x, w) V(x, π) = 1
Consider languages where can be “secret shared”:

 (think DLog)

(x, w)

x0 + x1 + x2 = x w0 + w1 + w2 = w
(x0, w0), (x1, w1), (x2, w2) ∈ L ⇔ (x, w) ∈ L

{πi = P(xi, wi)}i∈[3]

V3(x, π0, π1, π2) :
V(x0, π0)∧ V(x1, π1)
∧ V(x2, π2)

Trivial Oracle Respecting Distribution

P3(x, w) :
w0 w1 w2, , ← 𝖲𝗁𝖺𝗋𝖾(w)
𝖮𝗎𝗍𝗉𝗎𝗍 {πi = P(xi, wi)}i∈[3]

V(x, π0, π1, π2) :
V(x0, π0)∧ V(x1, π1)
∧ V(x2, π2)

Trivial Oracle Respecting Distribution

V(x, π0, π1, π2) :
V(x0, π0)∧ V(x1, π1)
∧ V(x2, π2)

w0 w1 w2

P3(x, w) :

Trivial Oracle Respecting Distribution

V(x, π0, π1, π2) :
V(x0, π0)∧ V(x1, π1)
∧ V(x2, π2)

w0 w1 w2

P3(x, w) :

π0 ← P(w0) π2 ← P(w2)π1 ← P(w1)

Trivial Oracle Respecting Distribution

𝖮𝗎𝗍𝗉𝗎𝗍 (π0, π1, π2)
V(x, π0, π1, π2) :

V(x0, π0)∧ V(x1, π1)
∧ V(x2, π2)

w0 w1 w2

P3(x, w) :

π0 ← P(w0) π2 ← P(w2)π1 ← P(w1)

Trivial Oracle Respecting Distribution

𝖮𝗎𝗍𝗉𝗎𝗍 (π0, π1, π2)
V(x, π0, π1, π2) :

V(x0, π0)∧ V(x1, π1)
∧ V(x2, π2)

w0 w1 w2

P3(x, w) :

π0 ← P(w0) π2 ← P(w2)π1 ← P(w1)
H H H

Trivial Oracle Respecting Distribution

𝖮𝗎𝗍𝗉𝗎𝗍 (π0, π1, π2)
V(x, π0, π1, π2) :

V(x0, π0)∧ V(x1, π1)
∧ V(x2, π2)

w0 w1 w2

P3(x, w) :

π0 ← P(w0) π2 ← P(w2)π1 ← P(w1)
H H H

Additive secret sharing: 
Resilience to two corruptions

Oracle Respecting Distribution: Notes

• Imagine if had to be distributed among four parties
instead of three

• In general: that outputs can be distributed
amongst parties, as long as is aware of

• We show that for any NIZK that is SLE in the ROM, this
is inherent in the corruption setting

P3

P* n × π
n V* n

n − 1

 “unaware” of V n

• Consider a proof system for some language

• Assumption: is a strict upper bound on
queries made by to the random oracle

- Holds for most ‘natural’ schemes

• We will show: any -party protocol that ORD-
computes will leak the witness to parties

(PH, VH)

n ∈ 𝗉𝗈𝗅𝗒(κ)
V H

n + 1
PH n

Trimming Resilience

H

P(x, w)

π
Q1 Q2 Q5Q3 Q4 Q7Q6 Q8 Q9

Trimming Resilience

H

P(x, w)

π

V(x)

 checks at most
 queries

V
n = 2

Q1 Q2 Q5Q3 Q4 Q7Q6 Q8 Q9

Trimming Resilience

H

P(x, w)

π

V(x)

Q3 Q6

 checks at most
 queries

V
n = 2

Q1 Q2 Q5Q3 Q4 Q7Q6 Q8 Q9

Trimming Resilience

H

P(x, w)

π

H
V(x)

Q3 Q6

 checks at most
 queries

V
n = 2

Q1 Q2 Q5Q3 Q4 Q7Q6 Q8 Q9

Trimming Resilience

Q1 Q2 Q5

H

P(x, w)
Q3 Q4 Q7Q6 Q8 Q9

H
V(x)

 checks at most
 queries

V
n = 2

Trimming Resilience

Q1 Q2 Q5

H

P(x, w)
Q3 Q4 Q7Q6 Q8 Q9

H
V(x)

 checks at most
 queries

V
n = 2

Trimming Resilience

Q1 Q2 Q5

H

P(x, w)
Q3 Q4 Q7Q6 Q8 Q9

H
V(x)

 checks at most
 queries

V
n = 2

At most two partitions
will be touched by V

Trimming Resilience

Q1 Q2 Q5

H

P(x, w)
Q3 Q4 Q7Q6 Q8 Q9

H
V(x)

 checks at most
 queries

V
n = 2

At most two partitions
will be touched by V

Trimming Resilience

Q1 Q2 Q5

H

P(x, w)
Q3 Q4 Q7Q6 Q8 Q9

H
V(x)

 checks at most
 queries

V
n = 2

At most two partitions
will be touched by V

Randomly selected partition: 
𝖯𝗋[untouched by V] ≥ 1/3

Trimming Resilience

Q1 Q2 Q5

H

P(x, w)
Q3 Q4 Q7Q6 Q8 Q9

H
V(x)

 checks at most
 queries

V
n = 2

At most two partitions
will be touched by V

Randomly selected partition: 
𝖯𝗋[untouched by V] ≥ 1/3

Trimming Resilience

Q1 Q2 Q5

H

P(x, w)
Q3 Q4 Q7Q6 Q8 Q9

V(x)

 checks at most
 queries

V
n = 2

Trimming Resilience

Q1 Q2 Q5

H

P(x, w)
Q3 Q4 Q7Q6 Q8 Q9

V(x)

H*

 checks at most
 queries

V
n = 2

Trimming Resilience

Q1 Q2 Q5

H

P(x, w)
Q3 Q4 Q7Q6 Q8 Q9

V(x)

H*

 checks at most
 queries

V
n = 2

Trimming Resilience

Q1 Q2 Q5

H

P(x, w)
Q3 Q4 Q7Q6 Q8 Q9

V(x)

H*

 checks at most
 queries

V
n = 2

Trimming Resilience

Q1 Q2 Q5

H

P(x, w)
Q3 Q4 Q7Q6 Q8 Q9

V(x)

H*

 checks at most
 queries

V
n = 2

Trimming Resilience

Q1 Q2 Q5

H

P(x, w)
Q3 Q4 Q7Q6 Q8 Q9

V(x)

H*

 checks at most
 queries

V
n = 2

Trimming Resilience

Q1 Q2 Q5

H

P(x, w)
Q3 Q4 Q7Q6 Q8 Q9

H
V(x)

 checks at most
 queries

V
n = 2

H*

Trimming Resilience

Q1 Q2 Q5

H

P(x, w)
Q3 Q4 Q7Q6 Q8 Q9

H
V(x)

 checks at most
 queries

V
n = 2

H*

Trimming Resilience

Q1 Q2 Q5

H

P(x, w)
Q3 Q4 Q7Q6 Q8 Q9

H
V(x)

 checks at most
 queries

V
n = 2

H*

𝖱𝖾𝗃𝖾𝖼𝗍

Trimming Resilience

Q1 Q2 Q5

H

P(x, w)
Q3 Q4 Q7Q6 Q8 Q9

H
V(x)

 checks at most
 queries

V
n = 2

H*

Trimming Resilience

Q1 Q2 Q5

H

P(x, w)
Q3 Q4 Q7Q6 Q8 Q9

H
V(x)

 checks at most
 queries

V
n = 2

H*

𝖯𝗋[V accepts] ≥ 1/3

Trimming Resilience

Q1 Q2 Q5

H

P(x, w)
Q3 Q4 Q7Q6 Q8 Q9

H
V(x)

 checks at most
 queries

V
n = 2

H*

Never “leaves”
prover

𝖯𝗋[V accepts] ≥ 1/3

Trimming Resilience

Q1 Q2 Q5

H

P(x, w)
Q3 Q4 Q7Q6 Q8 Q9

H
V(x)

H*
𝖤𝗑𝗍 w

 checks at most
 queries

V
n = 2

Never “leaves”
prover

𝖯𝗋[V accepts] ≥ 1/3

Trimming Resilience

Q1 Q2 Q5

H

P(x, w)
Q3 Q4 Q7Q6 Q8 Q9

H
V(x)

with 𝖯𝗋 ≳ 1/3

H*
𝖤𝗑𝗍 w

 checks at most
 queries

V
n = 2

Never “leaves”
prover

𝖯𝗋[V accepts] ≥ 1/3

Trimming Resilience

Q1 Q2Q5

H

P(x, w)
Q3 Q4Q7 Q6Q8 Q9

H
V(x)

with 𝖯𝗋 ≳ 1/3

H*
𝖤𝗑𝗍 w

(for any 3-partitioning)

 checks at most
 queries

V
n = 2

Never “leaves”
prover

𝖯𝗋[V accepts] ≥ 1/3

Trimming Resilience

Q1 Q2Q5

H

P(x, w)
Q3 Q4Q7 Q6Q8 Q9

H*
𝖤𝗑𝗍 w

Lemma: For any -partitioning of RO queries,
omitting one partition still allows extraction

n + 1

V(x)

(w. noticeable
probability) (random)

Trimming Resilience

Q1 Q2Q5

H

P(x, w)
Q3 Q4Q7 Q6Q8 Q9

H*
𝖤𝗑𝗍 w

Lemma: For any -partitioning of RO queries,
omitting one partition still allows extraction

n + 1

V(x)

Oracle Respecting Distribution

(x, w)
w0 w1 w2, , ← 𝖲𝗁𝖺𝗋𝖾(w)

Oracle Respecting Distribution

w0 w1 w2

H H H

V(x)

(x, w)

Oracle Respecting Distribution

w0 w1 w2

H H H

V(x)

(x, w)

Oracle Respecting Distribution

w0 w1 w2

H H H

V(x)

(x, w)

π

Oracle Respecting Distribution

w0 w1 w2

H H H

 checks at most
 queries

V
n = 2H V(x)

(x, w)

π

Oracle Respecting Distribution

w0 w1 w2

H H H

 checks at most
 queries

V
n = 2H V(x)

(x, w)

π

Oracle Respecting Distribution

w0 w1 w2

H H H

 checks at most
 queries

V
n = 2H V(x)

(x, w)

π

Natural partitioning

Oracle Respecting Distribution

w0 w1 w2

H H

 checks at most
 queries

V
n = 2H V(x)

(x, w)

π

H*

Natural partitioning

Oracle Respecting Distribution

w0 w1 w2

H H

V(x)

(x, w)

π

Natural partitioning

w𝖤𝗑𝗍
Trimming Resilience Lemma

Oracle Respecting Distribution

w0 w1 w2

H H

V(x)

(x, w)

π

Natural partitioning

w𝖤𝗑𝗍
Trimming Resilience Lemma

Oracle Respecting Distribution

w0 w1 w2

H H

V(x)

(x, w)

π

Natural partitioning

Two views are sufficient to reconstruct the witness

w𝖤𝗑𝗍
Trimming Resilience Lemma

Oracle Respecting Distribution

w0 w1 w2

H H

V(x)

(x, w)

π

Natural partitioning

Two views are sufficient to reconstruct the witness
 party ORD protocol can not withstand passive corruptions3 2

w𝖤𝗑𝗍
Trimming Resilience Lemma

Oracle Respecting Distribution

w0 w1 w2

H H

V(x)

(x, w)

π

Natural partitioning

Two views are sufficient to reconstruct the witness
 party ORD protocol can not withstand passive corruptions3 2n n-1

Caveats
•The -party protocol must be mapped to a single party

algorithm to apply the trimming lemma

•This mapping induces one of two artefacts:

- Protocol property: Each RO query in the protocol must
“traceable” to the party that first made it

 OR

- NIZK property: does not actually need

n

𝖤𝗑𝗍(⃗Q , π) H(⃗Q)

Honest Majority?
• Previous technique can not be directly extended for fewer

than corruptions

 NIZKPoK of DLog s.t. for any constant , -party
ORD protocol to securely compute with tolerance to

 malicious corruptions 
Caveat: only beats trivial solution when

• However, ORD protocols for NIZKs where needs a
single private query of seem unlikely for even one
corruption

n − O(1)
∃ π c ∃ n

π
c ⋅ n

n > κ

𝖤𝗑𝗍
P

Conclusion
• We showed that -party protocols to securely compute

certain hash-based signatures/NIZKs can not make
blackbox use of the same hash function

- Includes MPC-in-the-head, Fischlin/Unruh/Pass/Ks22
transform, PCPs/IOPs

• Dist. NIZK Verifier must depend on #parties—could
indicate that thresh. signature must grow with #signers?

n

Thanks! Thanks Eysa Lee for

