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Distributed Risk: Attacker will need 
to compromise multiple devices



• Compatibility: 
Verifies w.r.t. original algorithm


• Corruption Resilience: 
Compromising some devices does not leak the signing key


• This talk: Signatures  Non-interactive Zero-knowledge⇔

⇔ π
⇔ (x, w)( , )ALI

PAY

Distributed Signing  Distributed Proving⇔



How to Distribute Signing
• Any signing scheme can be distributed via general MPC


• “Practical” efficiency usually requires more fine-grained notions 
than just feasibility


• As one proxy, practical distributed signing protocols make 
blackbox use of non-linear components of the signing algorithm:


- Integer arithmetic in  or 


- Elliptic curve group operations


- Hash functions

ℤq ℤ*N
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• Any signing scheme can be distributed via general MPC


• “Practical” efficiency usually requires more fine-grained notions 
than just feasibility


• As one proxy, practical distributed signing protocols make 
blackbox use of non-linear components of the signing algorithm:


- Integer arithmetic in  or 


- Elliptic curve group operations


- Hash functions

ℤq ℤ*N RSA, Schnorr/EdDSA, ECDSA, BLS, 
BBS+, custom constructions using 

lattices, isogenies, etc.



What about Purely Hash Based?
• [Ozdemir Boneh 22]: distributed version of Fractal 

[Cui Zhang Chen Liu Yu 21]: distributed MPC-in-the-head 
Proof size, verifier time linear in #provers


• [Khaburzaniya Chalkias Lewi Malvai 21]: aggregate Lamport 
signatures with STARKs 
Prove statements about circuit representation of hash function


• [Dziembowski Faust Lizurej 23]: “individual cryptography” 
Hash-based proofs that are designed to be hard to distribute


• [Nielsen Hall-Andersen 23]: Incrementally Verifiable Computation 
must make non-blackbox use of hash function



This Work: Limitations

• For some hash based NIZKs , there is an inherent barrier  to 
designing practical protocols  to distribute their computation.
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This Work: Limitations

• For some hash based NIZKs , there is an inherent barrier  to 
designing practical protocols  to distribute their computation.

1 2
3

1. NIZKs that have straight-line extractors in the Random-
Oracle Model

2. Attack that completely recovers the witness by corrupting 
all-but-one distributed provers

3. Protocol that is blackbox in the same hash function (i.e. 
Random Oracle) as the NIZK



Implications for distributing…

• Signing for standard schemes based on MPC-in-the-head 


• NIZKs/signatures obtained by compiling Sigma protocols via:


- Pass’ or Fischlin’s transformations (tight/concurrent security)


- Unruh’s transformation (post-quantum)


• PCPs/IOPs compiled via hash functions



Zero-knowledge Proofs
• Very powerful cryptographic primitive, introduced by 

[Goldwasser Micali Rackoff 85]


• Intuition: Prover convinces a Verifier of a statement, without 
revealing its secret trapdoor.


• In this talk, we only look at:


- Non-interactive proofs (NIZK)


- Proofs of Knowledge (PoK)



• ZK is intuitive: No information about the key should be leaked by the proof


• But what does it mean to “know” something?


• “Proof of Knowledge” is formalized by an “extractor” 𝖤𝗑𝗍

Zero-knowledge Proof:

“I know    that unlocks    ”

Bob

Zero-knowledge Proofs
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Why is  special?𝖤𝗑𝗍
• Clearly,  must not be an algorithm that just anybody 

can run


•  has carefully chosen special privileges:


- Powerful enough to accomplish extraction


- Still meaningful as a security claim


• “Straight-line” Extraction (SLE): no rewinding. 
Instead, use other trapdoor like CRS, RO, etc.

𝖤𝗑𝗍
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Bad for:

• Quantum

• Concurrency

• Tightness
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Random Oracle Model

H

H : {0,1}* ↦ {0,1}ℓ
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• Why is it a meaningful trapdoor?


- Hash functions are complex and highly unstructured


- Bob must “query” each  to  to obtain 


-  gets  without rewinding


• Practical usage:


- No “trusted setup”, each query is very cheap


- Many NIZKs happen to achieve SLE in the ROM

Qi H H(Qi)
𝖤𝗑𝗍 {Qi}

Random Oracles as  Privilege𝖤𝗑𝗍



• Multiparty protocols to securely compute RO-based 
NIZKs should ideally make blackbox use of 


- Conceptually:  should not have a circuit description


- Practically: hash functions have large circuits


• We call them “Oracle Respecting Distributed” (ORD) 
protocols

H
H

Distributing NIZKs in the ROM



Trivial Oracle Respecting Distribution

P3(x, w) :
w0 w1 w2, , ← 𝖲𝗁𝖺𝗋𝖾(w)
𝖮𝗎𝗍𝗉𝗎𝗍

π ← P(x, w) V(x, π) = 1
Consider languages where  can be “secret shared”:


           (think DLog)

(x, w)

x0 + x1 + x2 = x w0 + w1 + w2 = w
(x0, w0), (x1, w1), (x2, w2) ∈ L ⇔ (x, w) ∈ L

{πi = P(xi, wi)}i∈[3]

V3(x, π0, π1, π2) :
V(x0, π0)∧ V(x1, π1)
∧ V(x2, π2)
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Trivial Oracle Respecting Distribution
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Additive secret sharing: 
Resilience to two corruptions



Oracle Respecting Distribution: Notes

• Imagine if  had to be distributed among four parties 
instead of three


• In general:  that outputs  can be distributed 
amongst  parties, as long as  is aware of 


• We show that for any NIZK that is SLE in the ROM, this 
is inherent in the  corruption setting

P3

P* n × π
n V* n

n − 1



 “unaware” of V n

• Consider a proof system  for some language


• Assumption:  is a strict upper bound on 
queries made by  to the random oracle 


- Holds for most ‘natural’ schemes 


• We will show: any -party protocol that ORD-
computes  will leak the witness to  parties

(PH, VH)

n ∈ 𝗉𝗈𝗅𝗒(κ)
V H

n + 1
PH n
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Trimming Resilience
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Caveats
•The -party protocol must be mapped to a single party 

algorithm to apply the trimming lemma


•This mapping induces one of two artefacts:


- Protocol property: Each RO query in the protocol must 
“traceable” to the party that first made it


 OR


- NIZK property:  does not actually need 

n

𝖤𝗑𝗍( ⃗Q , π) H( ⃗Q)



Honest Majority?
• Previous technique can not be directly extended for fewer 

than  corruptions


  NIZKPoK of DLog  s.t. for any constant ,  -party 
ORD protocol to securely compute  with tolerance to 

 malicious corruptions 
Caveat: only beats trivial solution when 


• However, ORD protocols for NIZKs where  needs a 
single private query of  seem unlikely for even one 
corruption

n − O(1)
∃ π c ∃ n

π
c ⋅ n

n > κ

𝖤𝗑𝗍
P



Conclusion
• We showed that -party protocols to securely compute 

certain hash-based signatures/NIZKs can not make 
blackbox use of the same hash function


- Includes MPC-in-the-head, Fischlin/Unruh/Pass/Ks22 
transform, PCPs/IOPs


• Dist. NIZK Verifier must depend on #parties—could 
indicate that thresh. signature must grow with #signers?

n

Thanks! Thanks Eysa Lee for


