
Threshold Schnorr with
Stateless Deterministic Signing

from Standard Assumptions
Yashvanth KondiFrançois Garillot Payman Mohassel Valeria Nikolaenko

ALICE
PAY

 2BTC

𝗌𝗄

PAY

 2BTC
ALICE

𝗌𝗄

PAY

 2BTC
ALICE

𝗌𝗄𝗌𝗄

PAY

 2BTC
ALICE

𝗌𝗄

PAY

 2BTC
h4CK3r

𝗌𝗄

PAY

 2BTC
h4CK3r

𝗌𝗄
𝗌𝗄′

Eliminate single point of failure

𝗌𝗄𝖠𝗌𝗄𝖢

Threshold Signature

𝗌𝗄𝖡

𝗉𝗄

{𝗌𝗄𝖠, 𝗌𝗄𝖡, 𝗌𝗄C} ← Share(𝗌𝗄)

Adversary Model
• Corruption threshold

Dishonest majority
(only one device uncompromised)

Adversary Model
• Corruption threshold

Dishonest majority
(only one device uncompromised)

• Adversarial behaviour

Adversary Model
• Corruption threshold

Dishonest majority
(only one device uncompromised)

• Adversarial behaviour

Malicious
(arbitrary deviations from protocol)

Schnorr’s Signature Scheme

• Elegant signature scheme with security based on the hardness of computing
discrete logarithms in carefully chosen group [Schnorr 89]

• Patent initially hampered widespread adoption

• Now seeing increased deployment across the internet in the form of EdDSA
[Bernstein Duif Lange Schwabe Yang 11]

• Very easy to distribute with natural threshold key generation and signing
protocols [Stinson Strobl 01][Gennaro Jarecki Krawczyk Rabin 03]

Schnorr Key Generation

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

Public Key: exposed to the outside world
secret key: kept private

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, e)

output σ

Schnorr Signing

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

Schnorr Signing

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, e)

output σ

NONCE
One-time use

value

Schnorr Signing

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, e)

output σ

NONCE
One-time use

value

Schnorr Signing

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, e)

output σ

NONCE
One-time use

value

Schnorr Signing

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, e)

output σ

(𝗆𝗈𝖽 q)

NONCE
One-time use

value

Schnorr Signing

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

(𝗆𝗈𝖽 q)

NONCE
One-time use

value

Verifying a signature: s ⋅ G ?= R−e ⋅ 𝖯𝖪

Schnorr Signing

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

(𝗆𝗈𝖽 q)

NONCE
One-time use

value

Verifying a signature: s ⋅ G ?= R−e ⋅ 𝖯𝖪

Schnorr Signing

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

(𝗆𝗈𝖽 q)

k ⋅ G 𝗌𝗄 ⋅ G

s ⋅ G ?= (k−e ⋅ 𝗌𝗄) ⋅ G

NONCE
One-time use

value

Verifying a signature: s ⋅ G ?= R−e ⋅ 𝖯𝖪

Schnorr Signing

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

(𝗆𝗈𝖽 q)

k ⋅ G 𝗌𝗄 ⋅ G

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

Schnorr Signing

Schnorr Signing

Linear function of k, sk
Linear operations are very

easy to distribute with most
natural secret sharing

schemes

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

+ = 𝗌𝗄𝗌𝗄𝖠 𝗌𝗄𝖡

Distributing Schnorr Signing

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

+ = kk𝖠 k𝖡

𝗌𝗄𝖠 𝗌𝗄𝖡SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

Distributing Schnorr Signing

k𝖠 k𝖡

𝗌𝗄𝖠 𝗌𝗄𝖡

← ℤq ← ℤq

R𝖠 = k𝖠 ⋅ G R𝖡 = k𝖡 ⋅ GR𝖡R𝖠

Distributing Schnorr Signing

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

k𝖠 k𝖡

𝗌𝗄𝖠 𝗌𝗄𝖡

← ℤq ← ℤq

R𝖠 = k𝖠 ⋅ G R𝖡 = k𝖡 ⋅ G
R𝖠R𝖡

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

Distributing Schnorr Signing

k𝖠 k𝖡

𝗌𝗄𝖠 𝗌𝗄𝖡

← ℤq ← ℤq

R = R𝖠 + R𝖡 R = R𝖠 + R𝖡R𝖠R𝖡

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

Distributing Schnorr Signing

k𝖠 k𝖡

𝗌𝗄𝖠 𝗌𝗄𝖡

← ℤq ← ℤq

R = R𝖠 + R𝖡 R = R𝖠 + R𝖡R𝖠R𝖡

e = H(R∥m) e = H(R∥m)

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

Distributing Schnorr Signing

k𝖠 k𝖡

𝗌𝗄𝖠 𝗌𝗄𝖡

← ℤq ← ℤq

R𝖠R𝖡

s𝖠 = k𝖠 − 𝗌𝗄𝖠 ⋅ e s𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ es𝖡s𝖠

R = R𝖠 + R𝖡 R = R𝖠 + R𝖡

e = H(R∥m) e = H(R∥m)

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

Distributing Schnorr Signing

k𝖠 k𝖡

𝗌𝗄𝖠 𝗌𝗄𝖡

← ℤq ← ℤq

R𝖠R𝖡

s𝖠 = k𝖠 − 𝗌𝗄𝖠 ⋅ e s𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e

s𝖡 s𝖠

R = R𝖠 + R𝖡 R = R𝖠 + R𝖡

e = H(R∥m) e = H(R∥m)

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

Distributing Schnorr Signing

k𝖠 k𝖡

𝗌𝗄𝖠 𝗌𝗄𝖡

← ℤq ← ℤq

R𝖠R𝖡

s𝖠 = k𝖠 − 𝗌𝗄𝖠 ⋅ e s𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e

s𝖡s = s𝖠 + s𝖡 s = s𝖠 + s𝖡

R = R𝖠 + R𝖡 R = R𝖠 + R𝖡

e = H(R∥m) e = H(R∥m)

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

Distributing Schnorr Signing

k𝖠 k𝖡

𝗌𝗄𝖠 𝗌𝗄𝖡

← ℤq ← ℤq

R𝖠R𝖡

s𝖠 = k𝖠 − 𝗌𝗄𝖠 ⋅ e s𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e

s𝖡

R = R𝖠 + R𝖡 R = R𝖠 + R𝖡

e = H(R∥m) e = H(R∥m)

s = s𝖠 + s𝖡 s = s𝖠 + s𝖡

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

Generalizes to n parties easily

Distributing Schnorr Signing

Practical Issue

• Each Schnorr signature requires a fresh, one-time nonce ()

• Security is extremely sensitive to the distribution of — even a tiny amount of
non-uniformity across signatures can be leveraged to retrieve in its entirety
[Boneh Venkatesan 96][Howgrave-Graham Smart 01][Bleichenbacher 00]
[Aranha Novaes Takahashi Tibouchi Yarom 20][Albrecht Heninger 21]

• Major concern in practice: “true” randomness is a scarce resource

- Errors in implementation

- Poorly seeded Random Number Generators

k, R

k
𝗌𝗄

Cryptographic Solution

• This systems-level problem can be avoided with a simple cryptographic trick

- During (one-time) secret key generation: sample a seed

- When signing : instead of sampling fresh , compute

- Assuming is a pseudorandom function, the distribution of
 is negligibly different from that of uniform choice of per message

• This is a classic idea [Barwood 97][M’Raïhi Naccache Pointcheval Vaudenay 98]
[Wigley 97] that is employed by the modern EdDSA variant of Schnorr

𝗌𝖽 ← {0,1}κ

m k k = F(𝗌𝖽, m)

F : {0,1}κ → ℤq
F(𝗌𝖽, m) k

A Simple Attempt

k𝖠

𝗌𝗄𝖠 𝗌𝗄𝖡

← ℤq ← ℤq

R𝖠R𝖡

s𝖠 = k𝖠 − 𝗌𝗄𝖠 ⋅ e s𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e

s𝖡

R = R𝖠 + R𝖡 R = R𝖠 + R𝖡

e = H(R∥m) e = H(R∥m)

s = s𝖠 + s𝖡 s = s𝖠 + s𝖡

R𝖠 = k𝖠 ⋅ G R𝖡 = k𝖡 ⋅ G
k𝖡

A Simple Attempt

k𝖠

𝗌𝗄𝖠

← ℤq ← ℤq

R𝖠R𝖡

s𝖠 = k𝖠 − 𝗌𝗄𝖠 ⋅ e s𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e

s𝖡

R = R𝖠 + R𝖡 R = R𝖠 + R𝖡

e = H(R∥m) e = H(R∥m)

s = s𝖠 + s𝖡 s = s𝖠 + s𝖡

R𝖠 = k𝖠 ⋅ G R𝖡 = k𝖡 ⋅ G
k𝖡

𝗌𝖽𝖠 𝗌𝖽𝖡 𝗌𝗄𝖡

A Simple Attempt

R𝖠R𝖡

s𝖠 = k𝖠 − 𝗌𝗄𝖠 ⋅ e s𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e

s𝖡

R = R𝖠 + R𝖡 R = R𝖠 + R𝖡

e = H(R∥m) e = H(R∥m)

s = s𝖠 + s𝖡 s = s𝖠 + s𝖡

s𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e

has collected

𝗌𝗄𝖠

k𝖠 k𝖡= F(𝗌𝖽𝖠, m) = F(𝗌𝖽𝖡, m)
R𝖠 = k𝖠 ⋅ G R𝖡 = k𝖡 ⋅ G

𝗌𝖽𝖠 𝗌𝖽𝖡 𝗌𝗄𝖡

A Simple Attempt

R𝖠R𝖡

s𝖠 = k𝖠 − 𝗌𝗄𝖠 ⋅ e s𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e

s𝖡

R = R𝖠 + R𝖡 R = R𝖠 + R𝖡

e = H(R∥m) e = H(R∥m)

s = s𝖠 + s𝖡 s = s𝖠 + s𝖡

s𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e

has collected

𝗌𝗄𝖠

R𝖠 = k𝖠 ⋅ G R𝖡 = k𝖡 ⋅ G
k𝖠 k𝖡= F(𝗌𝖽𝖠, m) = F(𝗌𝖽𝖡, m)

𝗌𝖽𝖠 𝗌𝖽𝖡 𝗌𝗄𝖡

A Simple Attempt

s𝖠 = k𝖠 − 𝗌𝗄𝖠 ⋅ e s𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e

s𝖡

R = R𝖠 + R𝖡 R = R𝖠 + R𝖡

e = H(R∥m) e = H(R∥m)

s = s𝖠 + s𝖡 s = s𝖠 + s𝖡

s𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e

has collected

𝗌𝗄𝖠

k*𝖠 +1
R𝖠 = k𝖠 ⋅ G R𝖡 = k𝖡 ⋅ G

k𝖡= F(𝗌𝖽𝖠, m) = F(𝗌𝖽𝖡, m)

𝗌𝖽𝖠 𝗌𝖽𝖡 𝗌𝗄𝖡

A Simple Attempt

s𝖠 = k𝖠 − 𝗌𝗄𝖠 ⋅ e s𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e

s𝖡

R = R𝖠 + R𝖡 R = R𝖠 + R𝖡

e = H(R∥m) e = H(R∥m)

s = s𝖠 + s𝖡 s = s𝖠 + s𝖡

s𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e

has collected

𝗌𝗄𝖠

k*𝖠 +1
R*𝖠 = k*𝖠 ⋅ G R𝖡 = k𝖡 ⋅ G

k𝖡= F(𝗌𝖽𝖠, m) = F(𝗌𝖽𝖡, m)

𝗌𝖽𝖠 𝗌𝖽𝖡 𝗌𝗄𝖡

A Simple Attempt

s𝖠 = k𝖠 − 𝗌𝗄𝖠 ⋅ e s𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e

s𝖡

R* = R*𝖠 + R𝖡 R* = R*𝖠 + R𝖡

e = H(R∥m) e = H(R∥m)

s = s𝖠 + s𝖡 s = s𝖠 + s𝖡

s𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e

has collected

𝗌𝗄𝖠

k*𝖠 +1
R*𝖠 = k*𝖠 ⋅ G R𝖡 = k𝖡 ⋅ G

k𝖡= F(𝗌𝖽𝖠, m) = F(𝗌𝖽𝖡, m)

𝗌𝖽𝖠 𝗌𝖽𝖡 𝗌𝗄𝖡

A Simple Attempt

s𝖠 = k𝖠 − 𝗌𝗄𝖠 ⋅ e s𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e

s𝖡

R* = R*𝖠 + R𝖡 R* = R*𝖠 + R𝖡

e* = H(R*∥m) e* = H(R*∥m)

s = s𝖠 + s𝖡 s = s𝖠 + s𝖡

s𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e

has collected

𝗌𝗄𝖠

k*𝖠 +1
R*𝖠 = k*𝖠 ⋅ G R𝖡 = k𝖡 ⋅ G

k𝖡= F(𝗌𝖽𝖠, m) = F(𝗌𝖽𝖡, m)

𝗌𝖽𝖠 𝗌𝖽𝖡 𝗌𝗄𝖡

A Simple Attempt

s*𝖠 = k*𝖠 − 𝗌𝗄𝖠 ⋅ e* s*𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e*

s𝖡

R* = R*𝖠 + R𝖡 R* = R*𝖠 + R𝖡

e* = H(R*∥m) e* = H(R*∥m)

s = s𝖠 + s𝖡 s = s𝖠 + s𝖡

s𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e

has collected

s*𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e*

𝗌𝗄𝖠

k*𝖠 +1
R*𝖠 = k*𝖠 ⋅ G R𝖡 = k𝖡 ⋅ G

k𝖡= F(𝗌𝖽𝖠, m) = F(𝗌𝖽𝖡, m)

𝗌𝖽𝖠 𝗌𝖽𝖡 𝗌𝗄𝖡

A Simple Attempt

s*𝖠 = k*𝖠 − 𝗌𝗄𝖠 ⋅ e* s*𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e*

s𝖡

R* = R*𝖠 + R𝖡 R* = R*𝖠 + R𝖡

e* = H(R*∥m) e* = H(R*∥m)

s = s𝖠 + s𝖡 s = s𝖠 + s𝖡

s𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e

has collected

s*𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e*

𝗌𝗄𝖠

k*𝖠 +1
R*𝖠 = k*𝖠 ⋅ G R𝖡 = k𝖡 ⋅ G

k𝖡= F(𝗌𝖽𝖠, m) = F(𝗌𝖽𝖡, m)

𝗌𝖽𝖠 𝗌𝖽𝖡 𝗌𝗄𝖡

A Simple Attempt

s*𝖠 = k*𝖠 − 𝗌𝗄𝖠 ⋅ e* s*𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e*

s𝖡

R* = R*𝖠 + R𝖡 R* = R*𝖠 + R𝖡

e* = H(R*∥m) e* = H(R*∥m)

s = s𝖠 + s𝖡 s = s𝖠 + s𝖡

s𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e

has collected

s*𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e*

Two linear equations
in two unknowns

Simply solve for
and reconstruct

𝗌𝗄𝖡
𝗌𝗄

𝗌𝗄𝖠

k*𝖠 +1
R*𝖠 = k*𝖠 ⋅ G R𝖡 = k𝖡 ⋅ G

k𝖡= F(𝗌𝖽𝖠, m) = F(𝗌𝖽𝖡, m)

[Maxwell Poelstra Seurin Wuille 19]

𝗌𝖽𝖠 𝗌𝖽𝖡 𝗌𝗄𝖡

A Simple Attempt

s*𝖠 = k*𝖠 − 𝗌𝗄𝖠 ⋅ e* s*𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e*

s𝖡

R* = R*𝖠 + R𝖡 R* = R*𝖠 + R𝖡

e* = H(R*∥m) e* = H(R*∥m)

s = s𝖠 + s𝖡 s = s𝖠 + s𝖡

s𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e

has collected

s*𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e*

Two linear equations
in two unknowns

Simply solve for
and reconstruct

𝗌𝗄𝖡
𝗌𝗄

𝗌𝗄𝖠

k*𝖠 +1
R*𝖠 = k*𝖠 ⋅ G R𝖡 = k𝖡 ⋅ G

k𝖡= F(𝗌𝖽𝖠, m) = F(𝗌𝖽𝖡, m)

[Maxwell Poelstra Seurin Wuille 19]

𝗌𝖽𝖠 𝗌𝖽𝖡 𝗌𝗄𝖡

General flavour of
problem previously

encountered in
Resettable ZK/MPC

[Canetti Goldreich Goldwasser Micali 00]

Can be adversarially induced, or
even due to careless mistakes

• Simple proposal: each device maintains a counter (), and derives for eg.
. Each time is accessed it is incremented, is always fresh

• However this introduces a new attack surface: reuse would be catastrophic

• Undetectable reuse of stale state is a significant concern in practice, due to:
- Power supply interruptions
- Restoring from backups
- Virtual Machines loaded with old snapshots

𝖢𝖳𝖱
k𝖠 = F(𝗌𝖽𝖠, 𝖢𝖳𝖱) 𝖢𝖳𝖱 k𝖠

𝖢𝖳𝖱

Maintain a Counter?

Isn’t this a Systems problem?
• Maintaining persistent state (‘state continuity’) is difficult even on dedicated

hardened and isolated devices [Parno Lorch Douceur Mickens McCune 11]

• Broadly two flavours of general systems solutions:
1. Use ‘helper’ nodes. Inapplicable to our dishonest majority setting.
2. Special Purpose Hardware [PLDMM 11][Strackx Piessens 16]

- Qualitatively, this induces extra physical assumptions

- Quantitatively, trusted hardware is slow (60-100ms to increment an Intel
SGX Trusted Monotonic Counter), expensive, and has a limited lifespan as
non-volatile memory can wear out in a few days of continuous use
[Matetic Ahmed Kostiainen Dhar Sommer Gervais Juels Capkun 17]

…no device need sample fresh randomness, or rely on
updating state after (Distributed) KeyGeneration

How can we design a threshold Schnorr protocol that
enjoys stateless deterministic signing?

Can it be a Crypto problem?

• In this work we study whether solving this as a cryptographic protocol design
problem can be of benefit:

• We develop new techniques to construct Schnorr threshold signing that is
stateless and deterministic by design while relying on native cryptographic
tools that we estimate to be significantly faster than trusted hardware

Can safely restore crashed devices with long-term secrets

Intuition

k𝖠

𝗌𝗄𝖠

s𝖠 = k𝖠 − 𝗌𝗄𝖠 ⋅ e s𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e

s𝖡

R = R𝖠 + R𝖡 R = R𝖠 + R𝖡

e = H(R∥m) e = H(R∥m)

s = s𝖠 + s𝖡 s = s𝖠 + s𝖡

R𝖠 = k𝖠 ⋅ G R𝖡 = k𝖡 ⋅ G
k𝖡

𝗌𝗄𝖡𝗌𝖽𝖠 𝗌𝖽𝖡

= F(𝗌𝖽𝖠, m) = F(𝗌𝖽𝖡, m)

Intuition

k𝖠

𝗌𝗄𝖠

s𝖠 = k𝖠 − 𝗌𝗄𝖠 ⋅ e s𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e
s𝖡

e = H(R∥m) e = H(R∥m)

s = s𝖠 + s𝖡 s = s𝖠 + s𝖡

R𝖠 = k𝖠 ⋅ G R𝖡 = k𝖡 ⋅ G
k𝖡

𝗌𝗄𝖡𝗌𝖽𝖠 𝗌𝖽𝖡

= F(𝗌𝖽𝖠, m) = F(𝗌𝖽𝖡, m)

F(𝗌𝖽𝖠,)m m R𝖠

F(𝗌𝖽𝖡,) mR𝖡 m

R = R𝖠 + R𝖡 R = R𝖠 + R𝖡

Instantiating F(𝗌𝖽, m)
• Canonical instantiation:

- Produce during Distributed KeyGeneration

- When signing , prove in ZK that public parameters satisfy the
relation where

• There is a myriad of ways to construct such a proof system. We prioritise:

- Conservative assumptions: must be a standard PRF since security of the
signature (which is exposed to the outside world) strongly depends on

- Lightweight computation: friendly to weaker devices (eg. mobile
cryptocurrency wallet) as well as institutional high-throughput settings

- Round efficiency: match regular threshold Schnorr (3 rounds)

𝖢𝗈𝗆 = 𝖢𝗈𝗆𝗆𝗂𝗍(𝗌𝖽)
m (𝖢𝗈𝗆, R, F, m)

R = F(𝗌𝖽, m) ⋅ G 𝖣𝖾𝖼𝗈𝗆𝗆𝗂𝗍(𝖢𝗈𝗆, 𝗌𝖽) = 1

F
F

Our Approach
• Variety of candidate cryptographic tools to instantiate :

- Succinct Non-interactive Arguments of Knowledge (SNARKs)

- Generic Multiparty Computation

- MPC-in-the-head

- Garbled Circuits

• Recall our constraints:

- Standardised choice for (eg. AES, SHA)

- Lightweight computation

- Match round efficiency of Threshold Schnorr

F

F(𝗌𝖽𝖠, ⋅)

Our Approach
• Variety of candidate cryptographic tools to instantiate :

- Succinct Non-interactive Arguments of Knowledge (SNARKs)

- Generic Multiparty Computation

- MPC-in-the-head

- Garbled Circuits

• Recall our constraints:

- Standardised choice for (eg. AES, SHA)

- Lightweight computation

- Match round efficiency of Threshold Schnorr

F

F(𝗌𝖽𝖠, ⋅)

[Nick Ruffing Seurin Wuille 20]
Custom PRF+Bulletproofs very
bandwidth efficient (~1KB),
heavy to execute (~1 second)

Our Approach
• Variety of candidate cryptographic tools to instantiate :

- Succinct Non-interactive Arguments of Knowledge (SNARKs)

- Generic Multiparty Computation

- MPC-in-the-head

- Garbled Circuits

• Recall our constraints:

- Standardised choice for (eg. AES, SHA)

- Lightweight computation

- Match round efficiency of Threshold Schnorr

F

F(𝗌𝖽𝖠, ⋅)

[Nick Ruffing Seurin Wuille 20]
Custom PRF+Bulletproofs very
bandwidth efficient (~1KB),
heavy to execute (~1 second)

Zero-knowledge for
“composite statements”

ZK for Composite Statements

• Garbled Circuits and MPC-in-the-head: lightweight proof systems that are
traditionally efficient for Boolean Circuits, but not algebraic operations

• Framework of [Chase Ganesh Mohassel 16] for Garbled Circuits, extended to
MPC-in-the-head by [Backes Hanzlik Herzberg Kate Pryvalov 19] bridges these
respective techniques with algebraic operations with good concrete efficiency

• This is a great direction, since standardised tools (AES, SHA) have compact
Boolean Circuit representations, and we require support for Elliptic Curve algebra

• Our target: only cheap symmetric key operations per proof, but existing
techniques do not achieve this out of the box

This Work
• In existing works [CGM16, BHHKP19] applied to our setting the dominant cost

(computation and bandwidth*) lies in the logistics of the Boolean-algebraic
bridge, and in encoding the witness

• In particular they require exponentiations, due to homomorphic
commitments and Committed Oblivious Transfer (C-OT) per bit of the witness

• [CGM16] show how to replace the commitments by garbling extra gates,
which concretely is more expensive than standard PRFs (AES)

• We focus on the garbled circuit approach [CGM16] and develop new
techniques so that the dominant cost of a proof is garbling and evaluating
the PRF which is quite efficient for traditional block ciphers like AES

𝗌𝖽

Θ(κ)

Õ(κ2)
8 ×

F

Our Approach
• We make use of the Zero-Knowledge from Garbled Circuits (ZKGC) paradigm

[Jawurek Kerschbaum Orlandi 13] augmented by a conditional-disclosure round
compression technique [Ganesh K Patra Sarkar 18]

• We develop the following new techniques to tailor and improve this paradigm:

- Garbling gadget to output the exponentiation of an encoded input

‣ Improves Boolean gate gadget [CGM16] to Boolean gates

‣ Also applies to anonymous credentials based on ECDSA [CGM16]

- Custom C-OT protocol to preprocess all public-key operations

‣ Input encoding now cheaper than garbling

‣ Also applies to Distributed Symmetric Encryption
[Agrawal Mohassel Mukherjee Rindal 18]

Õ(κ2) O(κ)

F

Decoding informationInput wire labelsGarbled circuit
C̃, {X0

i , X1
i }i∈[κ], d ← 𝖦𝖺𝗋𝖻𝗅𝖾(C)

Boolean circuit Exponentiation / Curve multiplication

Garbling Gadget

X0
1 , X1

1

X0
2 , X1

2

X0
κ , X1

κ

𝖤𝗇𝖼𝗈𝖽𝖾

x

x1

x2

xκ

⋮ ⋮ C̃

𝖤𝗏𝖺𝗅𝗎𝖺𝗍𝖾 𝖣𝖾𝖼𝗈𝖽𝖾

d

Xx1
1

Xx2
2

Xxκ
κ

⋮
Z̃ Z = C(x)

• Task: garble where , and

• Our approach:

C(x) = φ(F(x)) F : {0,1}κ → {0,1}η φ : {0,1}η → 𝔾
φ(y1y2…yη) = y ⋅ G

Boolean circuit Exponentiation / Curve multiplication

Garbling Gadget

X0
1 , X1

1

X0
2 , X1

2

X0
κ , X1

κ

𝖤𝗇𝖼𝗈𝖽𝖾

x

x1

x2

xκ

⋮ ⋮

𝖤𝗏𝖺𝗅𝗎𝖺𝗍𝖾 𝖣𝖾𝖼𝗈𝖽𝖾

d

Xx1
1

Xx2
2

Xxκ
κ

⋮
Z̃ Z = C(x)F̃

• Task: garble where , and

• Our approach:

C(x) = φ(F(x)) F : {0,1}κ → {0,1}η φ : {0,1}η → 𝔾

φ̃

Yy1
1

Yyη
η

⋮

Any garbling scheme
for Boolean circuits

New gadget inspired by Oblivious Linear Evaluation of [Gilboa 99]

C̃

φ(y1y2…yη) = y ⋅ G

Boolean circuit Exponentiation / Curve multiplication

Garbling Gadget

𝖤𝗏𝖺𝗅𝗎𝖺𝗍𝖾 𝖣𝖾𝖼𝗈𝖽𝖾

d

• Task: garble where , and

• Our approach:

C(x) = φ(F(x)) F : {0,1}κ → {0,1}η φ : {0,1}η → 𝔾

φ̃

Yy0
1

Yyη
η

⋮

New gadget inspired by Oblivious Linear Evaluation of [Gilboa 99]

𝖤𝗇𝖼(Y0
1 , α1)

𝖤𝗇𝖼(Y1
1 , α1 + β)

𝖤𝗇𝖼(Y0
η , αη)

𝖤𝗇𝖼(Y1
η , αη + 2ηβ)

⋮

α0 + y0β

αη + yη2ηβ

Σ⋮ z̃ = (α + yβ) = z̃ ⋅ GZ̃

= β−1(Z̃ − α ⋅ G)
Z = C(x)

(β, α1, α2, ⋯, αη) ← ℤη+1
q , and set α = ∑

i

αi

⋮ ⋮ ⋮

φ(y1y2…yη) = y ⋅ G

Garbling Gadget

• Security intuition:

- Soundness/Authenticity: act as information-theoretic MAC key —
 is hard to forge

- Zero-knowledge/Uniqueness: Once are fixed, one can simulate
perfectly; resembles simulation of a Schnorr signature

• Efficiency: cipher texts of size bits each — equivalent to garbling
 Boolean AND gates (compare with garbling [CGM16])

(α, β)
Z̃* = α + βy*

(α, β), Z Z̃
Z̃ = β−1 ⋅ (Z − α ⋅ G)

η log2(q)
2 log2(q) ∈ O(κ) Õ(κ2)

Concrete improvement: in computation and bandwidth60 ×

Cost is now insignificant compared to garbling PRF circuit

Committed OT

• Executed to encode each bit of input to the garbled circuit [JKO13]

𝖮𝖳
m0, m1 b

mb

Committed OT

• Executed to encode each bit of input to the garbled circuit [JKO13]

𝖮𝖳
m0, m1 b

mb
“open” m1−b

𝖢-

• Unclear how to preprocess public key operations for ; standard OT Extension
does not natively support decommitting messages without sacrificing setup

• Relaxation: input once and transmit an unbounded number of message pairs

𝖢-𝖮𝖳

b

: Naive Attempt𝖢-𝖮𝖳

𝖮𝖳𝗌𝖽0, 𝗌𝖽1 b
𝗌𝖽b

x
𝖼𝗍0 = p0 ⊕ m0
𝖼𝗍1 = p1 ⊕ m1 mb = 𝖼𝗍b ⊕ 𝖯𝖱𝖥(𝗌𝖽b, x)

Retrieve

“open”

p0 = 𝖯𝖱𝖥(𝗌𝖽0, x)
p1 = 𝖯𝖱𝖥(𝗌𝖽1, x)

p0, p1
m1−b = 𝖼𝗍1−b ⊕ p1−b

: Naive Attempt𝖢-𝖮𝖳

𝖮𝖳𝗌𝖽0, 𝗌𝖽1 0
𝗌𝖽0

x
𝖼𝗍0 = p0 ⊕ m0
𝖼𝗍1 = p1 ⊕ m1 m0 = 𝖼𝗍0 ⊕ 𝖯𝖱𝖥(𝗌𝖽0, x)

Retrieve

“open”

p0 = 𝖯𝖱𝖥(𝗌𝖽0, x)
p1 = 𝖯𝖱𝖥(𝗌𝖽1, x)

p0, p1
m1 = 𝖼𝗍1 ⊕ p1

b = 0

: Naive Attempt𝖢-𝖮𝖳

𝖮𝖳𝗌𝖽0, 𝗌𝖽1 0
𝗌𝖽0

x
𝖼𝗍0 = p0 ⊕ m0
𝖼𝗍1 = p1 ⊕ m1 m0 = 𝖼𝗍0 ⊕ 𝖯𝖱𝖥(𝗌𝖽0, x)

Retrieve

“open”

p0 = 𝖯𝖱𝖥(𝗌𝖽0, x)
p1 = 𝖯𝖱𝖥(𝗌𝖽1, x)

p0, p*1
m1 = 𝖼𝗍1 ⊕ p1

: Naive Attempt𝖢-𝖮𝖳

𝖮𝖳𝗌𝖽0, 𝗌𝖽1 0
𝗌𝖽0

x
𝖼𝗍0 = p0 ⊕ m0
𝖼𝗍1 = p1 ⊕ m1 m0 = 𝖼𝗍0 ⊕ 𝖯𝖱𝖥(𝗌𝖽0, x)

Retrieve

“open”

p0 = 𝖯𝖱𝖥(𝗌𝖽0, x)
p1 = 𝖯𝖱𝖥(𝗌𝖽1, x)

p0, p*1 m*1 = 𝖼𝗍1 ⊕ p*1

Straight-line algorithm that extracts the committed message

Decommitment information

Verification key

Commitment key

Trapdoor

• We make use of Universally Composable commitments [Canetti 01] to construct
our scheme

• Specifically, UC commitments that permit the following algorithms:

-

-

-

-

𝖢-𝖮𝖳

𝖲𝖾𝗍𝗎𝗉(1κ) : (𝗍𝖽, 𝖼𝗄, 𝗏𝗄)

𝖢𝗈𝗆𝗆𝗂𝗍(𝖼𝗄, m) : 𝖢𝗈𝗆, d

𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝖢𝗈𝗆, m, d) : {0,1}

𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗍𝖽, 𝖢𝗈𝗆) : m

Tool: UC Commitments

Conventionally a “proof artefact” that we actually execute in our construction

 from UC Commitments𝖢-𝖮𝖳

𝖲𝖾𝗍𝗎𝗉𝖼𝗄0, 𝖼𝗄1
b
𝗍𝖽b, 𝗏𝗄0, 𝗏𝗄1

𝖼𝗍0, d0 ← 𝖢𝗈𝗆𝗆𝗂𝗍(𝖼𝗄0, m0)

mb = 𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗍𝖽b, 𝖼𝗍b)
Retrieve

𝖼𝗍1, d1 ← 𝖢𝗈𝗆𝗆𝗂𝗍(𝖼𝗄1, m1) 𝖼𝗍0, 𝖼𝗍1

“open”

(m0, d0), (m1, d1)
𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄0, 𝖼𝗍0, m0, d0)

∧ 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄1, 𝖼𝗍1, m1, d1)

• Security follows directly from straight-line extraction and equivocability of
the UC commitment scheme

• Instantiation of the commitment scheme borrows ideas from literature on UC
Commitments from Error Correcting Codes
[Cascudo Damgård David Giacomelli Nielsen Trifiletti 15]

• Committing, Verification, and Extraction require only PRF evaluations (and some
hashing) which translates to the online complexity of

• Concretely for 128-bit computational and 60-bit statistical security, all
instances combined cost ~16k PRF invocations (+some hashing) and ~82KB in
bandwidth, which is roughly the same cost as garbling and evaluating a
single AES circuit

𝖢-𝖮𝖳

𝖢-𝖮𝖳

 from UC Commitments𝖢-𝖮𝖳

In Summary
• The ZKGC paradigm [JKO13] is well suited to enabling stateless determinism in

Threshold Schnorr when prioritising computational efficiency and standard
assumptions

• The dominant cost of previous techniques [CGM16] applied to this setting were in
input encoding () and garbling exponentiations

• Our new techniques for these tasks improve their efficiencies to the point where
the dominant cost is now garbling and evaluating the PRF circuit

• Our cost analysis estimates computation to be faster than using trusted hardware

• See the paper for: concrete cost analysis, optimisations and tricks, details

𝖢-𝖮𝖳

Thanks!
ccs.neu.edu/~ykondi

Thanks Eysa Lee for

http://ccs.neu.edu/~ykondi
http://ccs.neu.edu/~ykondi

