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Eliminate single point of failure



𝗌𝗄𝖠𝗌𝗄𝖢

Threshold Signature

𝗌𝗄𝖡

𝗉𝗄

{𝗌𝗄𝖠, 𝗌𝗄𝖡, 𝗌𝗄C} ← Share(𝗌𝗄)
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Dishonest majority 
(only one device uncompromised) 
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Malicious 
(arbitrary deviations from protocol) 



Schnorr’s Signature Scheme

• Elegant signature scheme with security based on the hardness of computing 
discrete logarithms in carefully chosen group [Schnorr 89] 

• Patent initially hampered widespread adoption 

• Now seeing increased deployment across the internet in the form of EdDSA 
[Bernstein Duif Lange Schwabe Yang 11] 

• Very easy to distribute with natural threshold key generation and signing 
protocols [Stinson Strobl 01][Gennaro Jarecki Krawczyk Rabin 03]



Schnorr Key Generation

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

Public Key: exposed to the outside world
secret key: kept private



SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, e)

output σ
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Schnorr Signing

Linear function of k, sk 
Linear operations are very 

easy to distribute with most 
natural secret sharing 

schemes
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Practical Issue

• Each Schnorr signature requires a fresh, one-time nonce ( ) 

• Security is extremely sensitive to the distribution of  — even a tiny amount of 
non-uniformity across signatures can be leveraged to retrieve  in its entirety 
[Boneh Venkatesan 96][Howgrave-Graham Smart 01][Bleichenbacher 00]
[Aranha Novaes Takahashi Tibouchi Yarom 20][Albrecht Heninger 21] 

• Major concern in practice: “true” randomness is a scarce resource 

- Errors in implementation 

- Poorly seeded Random Number Generators

k, R

k
𝗌𝗄



Cryptographic Solution

• This systems-level problem can be avoided with a simple cryptographic trick 

- During (one-time) secret key generation: sample a seed  

- When signing : instead of sampling fresh , compute  

- Assuming  is a pseudorandom function, the distribution of 
 is negligibly different from that of uniform choice of  per message 

• This is a classic idea [Barwood 97][M’Raïhi Naccache Pointcheval Vaudenay 98] 
[Wigley 97] that is employed by the modern EdDSA variant of Schnorr

𝗌𝖽 ← {0,1}κ

m k k = F(𝗌𝖽, m)

F : {0,1}κ → ℤq
F(𝗌𝖽, m) k



A Simple Attempt
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← ℤq ← ℤq
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k𝖡
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General flavour of 
problem previously 

encountered in 
Resettable ZK/MPC

[Canetti Goldreich Goldwasser Micali 00]



Can be adversarially induced, or 
even due to careless mistakes

• Simple proposal: each device maintains a counter ( ), and derives for eg. 
. Each time  is accessed it is incremented,  is always fresh 

• However this introduces a new attack surface:  reuse would be catastrophic 

• Undetectable reuse of stale state is a significant concern in practice, due to: 
- Power supply interruptions 
- Restoring from backups 
- Virtual Machines loaded with old snapshots

𝖢𝖳𝖱
k𝖠 = F(𝗌𝖽𝖠, 𝖢𝖳𝖱) 𝖢𝖳𝖱 k𝖠

𝖢𝖳𝖱

Maintain a Counter?



Isn’t this a Systems problem?
• Maintaining persistent state (‘state continuity’) is difficult even on dedicated 

hardened and isolated devices [Parno Lorch Douceur Mickens McCune 11] 

• Broadly two flavours of general systems solutions: 
1. Use ‘helper’ nodes. Inapplicable to our dishonest majority setting. 
2. Special Purpose Hardware [PLDMM 11][Strackx Piessens 16] 

- Qualitatively, this induces extra physical assumptions 

- Quantitatively, trusted hardware is slow (60-100ms to increment an Intel 
SGX Trusted Monotonic Counter), expensive, and has a limited lifespan as 
non-volatile memory can wear out in a few days of continuous use 
[Matetic Ahmed Kostiainen Dhar Sommer Gervais Juels Capkun 17]



…no device need sample fresh randomness, or rely on 
updating state after (Distributed) KeyGeneration

How can we design a threshold Schnorr protocol that 
enjoys stateless deterministic signing?

Can it be a Crypto problem?

• In this work we study whether solving this as a cryptographic protocol design 
problem can be of benefit:

• We develop new techniques to construct Schnorr threshold signing that is 
stateless and deterministic by design while relying on native cryptographic 
tools that we estimate to be significantly faster than trusted hardware

Can safely restore crashed devices with long-term secrets 



Intuition

k𝖠

𝗌𝗄𝖠
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R = R𝖠 + R𝖡 R = R𝖠 + R𝖡

e = H(R∥m) e = H(R∥m)

s = s𝖠 + s𝖡 s = s𝖠 + s𝖡

R𝖠 = k𝖠 ⋅ G R𝖡 = k𝖡 ⋅ G
k𝖡

𝗌𝗄𝖡𝗌𝖽𝖠 𝗌𝖽𝖡

= F(𝗌𝖽𝖠, m) = F(𝗌𝖽𝖡, m)
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F(𝗌𝖽𝖠, )m m R𝖠

F(𝗌𝖽𝖡, ) mR𝖡 m

R = R𝖠 + R𝖡 R = R𝖠 + R𝖡



Instantiating F(𝗌𝖽, m)
• Canonical instantiation: 

- Produce  during Distributed KeyGeneration 

- When signing , prove in ZK that public parameters  satisfy the 
relation  where   

• There is a myriad of ways to construct such a proof system. We prioritise: 

- Conservative assumptions:  must be a standard PRF since security of the 
signature (which is exposed to the outside world) strongly depends on  

- Lightweight computation: friendly to weaker devices (eg. mobile 
cryptocurrency wallet) as well as institutional high-throughput settings 

- Round efficiency: match regular threshold Schnorr (3 rounds)

𝖢𝗈𝗆 = 𝖢𝗈𝗆𝗆𝗂𝗍(𝗌𝖽)
m (𝖢𝗈𝗆, R, F, m)

R = F(𝗌𝖽, m) ⋅ G 𝖣𝖾𝖼𝗈𝗆𝗆𝗂𝗍(𝖢𝗈𝗆, 𝗌𝖽) = 1

F
F



Our Approach
• Variety of candidate cryptographic tools to instantiate                  : 

- Succinct Non-interactive Arguments of Knowledge (SNARKs) 

- Generic Multiparty Computation 

- MPC-in-the-head 

- Garbled Circuits 

• Recall our constraints: 

- Standardised choice for  (eg. AES, SHA) 

- Lightweight computation 

- Match round efficiency of Threshold Schnorr

F

F(𝗌𝖽𝖠, ⋅ )
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bandwidth efficient (~1KB), 
heavy to execute (~1 second)

Zero-knowledge for 
“composite statements”



ZK for Composite Statements

• Garbled Circuits and MPC-in-the-head: lightweight proof systems that are 
traditionally efficient for Boolean Circuits, but not algebraic operations 

• Framework of [Chase Ganesh Mohassel 16] for Garbled Circuits, extended to 
MPC-in-the-head by [Backes Hanzlik Herzberg Kate Pryvalov 19] bridges these 
respective techniques with algebraic operations with good concrete efficiency 

• This is a great direction, since standardised tools (AES, SHA) have compact 
Boolean Circuit representations, and we require support for Elliptic Curve algebra 

• Our target: only cheap symmetric key operations per proof, but existing 
techniques do not achieve this out of the box



This Work
• In existing works [CGM16, BHHKP19] applied to our setting the dominant cost 

(computation and bandwidth*) lies in the logistics of the Boolean-algebraic 
bridge, and in encoding the witness  

• In particular they require  exponentiations, due to homomorphic 
commitments and Committed Oblivious Transfer (C-OT) per bit of the witness 

• [CGM16] show how to replace the commitments by garbling  extra gates, 
which concretely is more expensive than standard PRFs ( AES) 

• We focus on the garbled circuit approach [CGM16] and develop new 
techniques so that the dominant cost of a proof is garbling and evaluating 
the PRF  which is quite efficient for traditional block ciphers like AES

𝗌𝖽

Θ(κ)

Õ(κ2)
8 ×

F



Our Approach
• We make use of the Zero-Knowledge from Garbled Circuits (ZKGC) paradigm 

[Jawurek Kerschbaum Orlandi 13] augmented by a conditional-disclosure round 
compression technique [Ganesh K Patra Sarkar 18] 

• We develop the following new techniques to tailor and improve this paradigm: 

- Garbling gadget to output the exponentiation of an encoded input 

‣ Improves  Boolean gate gadget [CGM16] to  Boolean gates 

‣ Also applies to anonymous credentials based on ECDSA [CGM16] 

- Custom C-OT protocol to preprocess all public-key operations 

‣ Input encoding now cheaper than garbling  

‣ Also applies to Distributed Symmetric Encryption 
[Agrawal Mohassel Mukherjee Rindal 18]

Õ(κ2) O(κ)

F



Decoding informationInput wire labelsGarbled circuit
C̃, {X0

i , X1
i }i∈[κ], d ← 𝖦𝖺𝗋𝖻𝗅𝖾(C)

Boolean circuit Exponentiation / Curve multiplication

Garbling Gadget

X0
1 , X1

1

X0
2 , X1

2

X0
κ , X1

κ

𝖤𝗇𝖼𝗈𝖽𝖾

x

x1

x2

xκ

⋮ ⋮ C̃

𝖤𝗏𝖺𝗅𝗎𝖺𝗍𝖾 𝖣𝖾𝖼𝗈𝖽𝖾

d

Xx1
1

Xx2
2

Xxκ
κ

⋮
Z̃ Z = C(x)

• Task: garble  where , and  

• Our approach:

C(x) = φ(F(x)) F : {0,1}κ → {0,1}η φ : {0,1}η → 𝔾
φ(y1y2…yη) = y ⋅ G
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𝖤𝗏𝖺𝗅𝗎𝖺𝗍𝖾 𝖣𝖾𝖼𝗈𝖽𝖾

d

Xx1
1

Xx2
2

Xxκ
κ

⋮
Z̃ Z = C(x)F̃

• Task: garble  where , and  

• Our approach:

C(x) = φ(F(x)) F : {0,1}κ → {0,1}η φ : {0,1}η → 𝔾

φ̃

Yy1
1

Yyη
η

⋮

Any garbling scheme 
for Boolean circuits

New gadget inspired by Oblivious Linear Evaluation of [Gilboa 99]

C̃

φ(y1y2…yη) = y ⋅ G



Boolean circuit Exponentiation / Curve multiplication

Garbling Gadget

𝖤𝗏𝖺𝗅𝗎𝖺𝗍𝖾 𝖣𝖾𝖼𝗈𝖽𝖾

d

• Task: garble  where , and  

• Our approach:

C(x) = φ(F(x)) F : {0,1}κ → {0,1}η φ : {0,1}η → 𝔾

φ̃

Yy0
1

Yyη
η

⋮

New gadget inspired by Oblivious Linear Evaluation of [Gilboa 99]

𝖤𝗇𝖼(Y0
1 , α1)

𝖤𝗇𝖼(Y1
1 , α1 + β)

𝖤𝗇𝖼(Y0
η , αη)

𝖤𝗇𝖼(Y1
η , αη + 2ηβ)

⋮

α0 + y0β

αη + yη2ηβ

Σ⋮ z̃ = (α + yβ) = z̃ ⋅ GZ̃

= β−1(Z̃ − α ⋅ G)
Z = C(x)

(β, α1, α2, ⋯, αη) ← ℤη+1
q ,  and set  α = ∑

i

αi

⋮ ⋮ ⋮

φ(y1y2…yη) = y ⋅ G



Garbling Gadget

• Security intuition: 

- Soundness/Authenticity:  act as information-theoretic MAC key — 
 is hard to forge 

- Zero-knowledge/Uniqueness: Once  are fixed, one can simulate  
perfectly;  resembles simulation of a Schnorr signature 

• Efficiency:  cipher texts of size  bits each — equivalent to garbling 
 Boolean AND gates (compare with garbling  [CGM16])

(α, β)
Z̃* = α + βy*

(α, β), Z Z̃
Z̃ = β−1 ⋅ (Z − α ⋅ G)

η log2(q)
2 log2(q) ∈ O(κ) Õ(κ2)

Concrete improvement: in computation and bandwidth60 ×

Cost is now insignificant compared to garbling PRF circuit



Committed OT

• Executed to encode each bit of input to the garbled circuit [JKO13]

𝖮𝖳
m0, m1 b

mb



Committed OT

• Executed to encode each bit of input to the garbled circuit [JKO13]

𝖮𝖳
m0, m1 b

mb
“open” m1−b

𝖢-

• Unclear how to preprocess public key operations for ; standard OT Extension 
does not natively support decommitting messages without sacrificing setup 

• Relaxation: input  once and transmit an unbounded number of message pairs

𝖢-𝖮𝖳

b



: Naive Attempt𝖢-𝖮𝖳

𝖮𝖳𝗌𝖽0, 𝗌𝖽1 b
𝗌𝖽b

x
𝖼𝗍0 = p0 ⊕ m0
𝖼𝗍1 = p1 ⊕ m1 mb = 𝖼𝗍b ⊕ 𝖯𝖱𝖥(𝗌𝖽b, x)

Retrieve 

“open” 

p0 = 𝖯𝖱𝖥(𝗌𝖽0, x)
p1 = 𝖯𝖱𝖥(𝗌𝖽1, x)

p0, p1
m1−b = 𝖼𝗍1−b ⊕ p1−b



: Naive Attempt𝖢-𝖮𝖳
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p0 = 𝖯𝖱𝖥(𝗌𝖽0, x)
p1 = 𝖯𝖱𝖥(𝗌𝖽1, x)

p0, p1
m1 = 𝖼𝗍1 ⊕ p1

b = 0
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Straight-line algorithm that extracts the committed message 

Decommitment information

Verification key

Commitment key

Trapdoor

• We make use of Universally Composable commitments [Canetti 01] to construct 
our  scheme 

• Specifically, UC commitments that permit the following algorithms: 

-  

-  

-  

-

𝖢-𝖮𝖳

𝖲𝖾𝗍𝗎𝗉(1κ) : (𝗍𝖽, 𝖼𝗄, 𝗏𝗄)

𝖢𝗈𝗆𝗆𝗂𝗍(𝖼𝗄, m) : 𝖢𝗈𝗆, d

𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝖢𝗈𝗆, m, d) : {0,1}

𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗍𝖽, 𝖢𝗈𝗆) : m

Tool: UC Commitments

Conventionally a “proof artefact” that we actually execute in our construction



 from UC Commitments𝖢-𝖮𝖳

𝖲𝖾𝗍𝗎𝗉𝖼𝗄0, 𝖼𝗄1
b
𝗍𝖽b, 𝗏𝗄0, 𝗏𝗄1

𝖼𝗍0, d0 ← 𝖢𝗈𝗆𝗆𝗂𝗍(𝖼𝗄0, m0)

mb = 𝖤𝗑𝗍𝗋𝖺𝖼𝗍(𝗍𝖽b, 𝖼𝗍b)
Retrieve 

𝖼𝗍1, d1 ← 𝖢𝗈𝗆𝗆𝗂𝗍(𝖼𝗄1, m1) 𝖼𝗍0, 𝖼𝗍1

“open” 

(m0, d0), (m1, d1)
𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄0, 𝖼𝗍0, m0, d0)

∧ 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄1, 𝖼𝗍1, m1, d1)



• Security follows directly from straight-line extraction and equivocability of 
the UC commitment scheme 

• Instantiation of the commitment scheme borrows ideas from literature on UC 
Commitments from Error Correcting Codes 
[Cascudo Damgård David Giacomelli Nielsen Trifiletti 15] 

• Committing, Verification, and Extraction require only PRF evaluations (and some 
hashing) which translates to the online complexity of  

• Concretely for 128-bit computational and 60-bit statistical security, all  
instances combined cost ~16k PRF invocations (+some hashing) and ~82KB in 
bandwidth, which is roughly the same cost as garbling and evaluating a 
single AES circuit

𝖢-𝖮𝖳

𝖢-𝖮𝖳

 from UC Commitments𝖢-𝖮𝖳



In Summary
• The ZKGC paradigm [JKO13] is well suited to enabling stateless determinism in 

Threshold Schnorr when prioritising computational efficiency and standard 
assumptions 

• The dominant cost of previous techniques [CGM16] applied to this setting were in 
input encoding ( ) and garbling exponentiations 

• Our new techniques for these tasks improve their efficiencies to the point where 
the dominant cost is now garbling and evaluating the PRF circuit 

• Our cost analysis estimates computation to be faster than using trusted hardware 

• See the paper for: concrete cost analysis, optimisations and tricks, details

𝖢-𝖮𝖳
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