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Universally Composable

SNARKs
• Type of cryptographic proof 

- Succinct — proof size is smaller than circuit or witness 

- Non-interactive — single message 

- Argument of Knowledge — witness is “extractable” from prover 

• Many constructions, with tradeoffs in proof size, prover running 
time, verification cost, trusted setup, security guarantee 

• This talk: focus on best possible succinctness—  sized proofsOκ(1)
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Universally Composable

• Framework for concurrent security introduced in [Canetti 01] 

• Guarantees composition in any context 

• Modular, convenient to work with as a protocol designer 

• …but is challenging to achieve



Witness-Succinct

• Witness succinctness: proof size  

• Contrast with circuit succinctness: 

|π | ∈ Oκ(1)

|π | = θκ( |w | ) + oκ( |C | )



Not a problem when witness is small 
But imagine proving statements about a 
large pre-image of a public digest, etc.
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This Talk

• What will be covered: 
Technique to lift Simulation Extractable (SE) SNARKs to UC 
security at  overhead 

• What won’t be touched: 
How to instantiate SE SNARKs, intricacies and formalism of UC 
(this is to help understanding, not to hand-wave; please ask if 
something is unclear!)

Oκ(1)
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Recap: NIZK

P(x, w) V(x)
π

• Completeness: An honest proof always verifies 

• Zero-knowledge:  is simulatable without a witness (but a special trapdoor) 

• Argument of knowledge:  can be extracted from  when 

π
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• Safe to compose in any environment
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Zero-knowledge in UC
• An ideal oracle that you can use in your higher level protocol 

• Safe to compose in any environment

P V
 FR

𝗓𝗄

b = R(x, w)

x, w
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What’s Needed for UC Security?

• In a nutshell, simulation and extraction must be blackbox and 
straight-line 

- “Knowledge” of a witness may come from a larger protocol 
context / environment; rewinding the environment or looking 
at its code is not conducive to proving composition 

• Relevant to this talk:  and  that are straight-line and make 
oracle use of the adversary

𝖲𝗂𝗆 𝖤𝗑𝗍
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Starting Point: SE-SNARK

• The strongest non-malleability notion known to be satisfied by 
SNARKs so far is Simulation Extractability (SE) 

• This work is about “lifting” to full UC security 

• The difference between SE and UC is subtle; lies in blackbox 
extraction 

• In particular, SE-SNARK extractor depends on the code of the 
adversary—for each adversary , there exists an extractor 𝒜 𝖤𝗑𝗍𝒜
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Simulation Extractability

𝒜 𝖲𝗂𝗆(𝗍𝖽, ⋅ )

π̃i

xi

𝖮𝗎𝗍𝗉𝗎𝗍 ̂x, ̂π
•  wins if  but  fails to output a witness𝒜 V( ̂x, ̂π) = 1 𝖤𝗑𝗍𝒜(𝗍𝖽, π)



Non-blackbox Extraction

• SE-SNARK constructions are proven secure with non-falsifiable 
“knowledge assumptions” 

• Roughly, a knowledge assumption purports the existence of an 
extractor, which can inspect the code of an adversary to deduce useful 
information 

• Eg. Knowledge of Exponent (KEA): 
For any  s.t.  where , there exists  s.t. 

 where 
𝒜 (X, Y) ← 𝒜(g, ga) X = Ya 𝖤𝗑𝗍𝒜

y ← 𝖤𝗑𝗍𝒜(g, ga) gy = Y
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Non-blackbox Extraction to UC

• The existence of  means that an environment  that 
produces a SNARK must fundamentally know a witness 

• However  can not be invoked 

• Lifting this SNARK to a UC NIZK is then a matter of forcing the 
environment to use this knowledge within the protocol context

𝖤𝗑𝗍𝒵 𝒵

𝖤𝗑𝗍𝒵
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𝖼𝗍 = 𝖤𝗇𝖼𝗉𝗄(w)

: “  encrypts a witness to ”𝖼𝗍 x

• Validity of  follows from correctness of 
encryption+SNARK soundness

w

𝖤𝗑𝗍(𝗌𝗄, x)

w = 𝖣𝖾𝖼(𝗌𝗄, 𝖼𝗍)

π



Oκ(1)

O( |w | )Circuit succinct

Simple Approach: Encrypt-then-prove
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Simple Approach: Encrypt-then-prove

• Approach taken by [DDOPS01] for simulation-sound NIZK, and later 
C C  [KZMQCPRsS15] to obtain circuit-succinct UC SNARK 

• However encrypting the witness inherently limits this approach to 
 sized proofs 

• [KZMQCPRsS15]: “no known UC-secure zero-knowledge proof 
construction that is circuit and witness-succinct, even under non-
standard assumptions” 

•

Ø Ø

θ( |w | )



What Assumptions are Reasonable?
• The extractor clearly needs a trapdoor unavailable to the real verifier  

• A Common Reference String trapdoor alone is insufficient [CGKS22]
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• A Common Reference String trapdoor alone is insufficient [CGKS22]
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What Assumptions are Reasonable?
• The extractor clearly needs a trapdoor unavailable to the real verifier  

• A Common Reference String trapdoor alone is insufficient [CGKS22]

• We need to relax the problem, i.e. grant the extractor further powers/
trapdoors (that are still permissible in the UC setting) 

• Random Oracle Model is a good fit; easy to model in UC, and 
practitioners have experience with heuristic instantiations
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•  and  additionally make use of a common random oracle P V H
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π
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 is the list of queries  made to ⃗Q P H
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 , τ 𝗉𝗄

𝖼𝗍 = 𝖤𝗇𝖼𝗉𝗄(w)

: “  encrypts a witness to ”𝖼𝗍 xπ commits to

𝖢𝗈𝗆𝗆𝗂𝗍
Oκ(1)

PH(x, w) VH(x)



Oκ(1)

Improving the Simple Approach

 , τ 𝗉𝗄

𝖼𝗍 = 𝖤𝗇𝖼𝗉𝗄(w)

: “  encrypts a witness to ”𝖼𝗍 xπ commits to

𝖢𝗈𝗆𝗆𝗂𝗍
Oκ(1)

PH(x, w) 𝖤𝗑𝗍(𝗍𝖽, ⃗Q , x)

Now how to extract?



Extracting from the Commitment
• Extractable commitments are straightforward in the ROM: 

-  to commit to  with randomness  

- Given , : search for  such that  

• But now “  commits to a witness to ” is not a well-formed NP 
statement, as  does not have a circuit description 

• Challenge: construct a commitment scheme that is succinct, 
extractable, and has a meaningful circuit representation

𝖼𝗍 = H(m, r) m r

𝖼𝗍 ⃗Q (m, r) ∈ ⃗Q H(m, r) = 𝖼𝗍

𝖼𝗍 x
H
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Succinct Extractable Concrete Commitments

• Structure of our commitment:  

-  is a string output by a standard model commitment algorithm  

-  is a straight-line extractable proof of knowledge of opening of . 
i.e. algorithm  outputs , where 

 when  is valid 

• Ticks both boxes: “  commits to a witness to  via ” is a well-
formed NP statement, and  produces such a witness

𝖼𝗍 = (C, πC)

C 𝖢𝗈𝗆

πC C
𝖢𝗈𝗆-𝖤𝗑𝗍(𝗍𝖽, ⃗Q , 𝖼𝗍) (m, r)

𝖢𝗈𝗆(m; r) = C πC

C x 𝖢𝗈𝗆
𝖢𝗈𝗆-𝖤𝗑𝗍(𝗍𝖽, ⃗Q , 𝖼𝗍)



•  encodes  as the coefficients of a polynomial , where 
 is a parameter of the scheme, and the degree of  is 

determined by the instance

P w fw ∈ 𝔽q[X]
q ∈ ω(𝗉𝗈𝗅𝗒(κ)) fw

P

Constructing 𝖼𝗍 = (C, πC)



•  encodes  as the coefficients of a polynomial , where 
 is a parameter of the scheme, and the degree of  is 

determined by the instance

P w fw ∈ 𝔽q[X]
q ∈ ω(𝗉𝗈𝗅𝗒(κ)) fw

P fw(1) fw(n)fw(i)fw(2)

Constructing 𝖼𝗍 = (C, πC)



•  encodes  as the coefficients of a polynomial , where 
 is a parameter of the scheme, and the degree of  is 

determined by the instance

P w fw ∈ 𝔽q[X]
q ∈ ω(𝗉𝗈𝗅𝗒(κ)) fw

P fw(1) fw(n)fw(i)fw(2)
p1 p2 pi pn

Constructing 𝖼𝗍 = (C, πC)



Constructing 𝖼𝗍 = (C, πC)
•  encodes  as the coefficients of a polynomial , where 

 is a parameter of the scheme, and the degree of  is 
determined by the instance

P w fw ∈ 𝔽q[X]
q ∈ ω(𝗉𝗈𝗅𝗒(κ)) fw

P fw(1) fw(n)fw(i)fw(2)
p1 p2 pi pn

 is a  sized proof that   is consistent with pi Oκ(1) fw(i) C



Constructing 𝖼𝗍 = (C, πC)
•  encodes  as the coefficients of a polynomial , where 

 is a parameter of the scheme, and the degree of  is 
determined by the instance

P w fw ∈ 𝔽q[X]
q ∈ ω(𝗉𝗈𝗅𝗒(κ)) fw

P fw(1) fw(n)fw(i)fw(2)
p1 p2 pi pn

V

 is a  sized proof that   is consistent with pi Oκ(1) fw(i) C



Constructing 𝖼𝗍 = (C, πC)
•  encodes  as the coefficients of a polynomial , where 

 is a parameter of the scheme, and the degree of  is 
determined by the instance

P w fw ∈ 𝔽q[X]
q ∈ ω(𝗉𝗈𝗅𝗒(κ)) fw

P fw(1) fw(n)fw(i)fw(2)
p1 p2 pi pn

V

 is a  sized proof that   is consistent with pi Oκ(1) fw(i) C



Constructing 𝖼𝗍 = (C, πC)
•  encodes  as the coefficients of a polynomial , where 

 is a parameter of the scheme, and the degree of  is 
determined by the instance

P w fw ∈ 𝔽q[X]
q ∈ ω(𝗉𝗈𝗅𝗒(κ)) fw

P fw(1) fw(n)fw(i)fw(2)
p1 p2 pi pn

V

 is a  sized proof that   is consistent with pi Oκ(1) fw(i) C



 pointsr = Oκ(1)

Constructing 𝖼𝗍 = (C, πC)
•  encodes  as the coefficients of a polynomial , where 

 is a parameter of the scheme, and the degree of  is 
determined by the instance

P w fw ∈ 𝔽q[X]
q ∈ ω(𝗉𝗈𝗅𝗒(κ)) fw

P fw(1) fw(n)fw(i)fw(2)
p1 p2 pi pn

V

 is a  sized proof that   is consistent with pi Oκ(1) fw(i) C



 pointsr = Oκ(1)

Constructing 𝖼𝗍 = (C, πC)
•  encodes  as the coefficients of a polynomial , where 

 is a parameter of the scheme, and the degree of  is 
determined by the instance

P w fw ∈ 𝔽q[X]
q ∈ ω(𝗉𝗈𝗅𝗒(κ)) fw

P fw(1) fw(n)fw(i)fw(2)
p1 p2 pi pn

V
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Eg. When  and , except with  there are at least  correct evaluations of r = κ n > 2d 𝖯𝗋 < 2κ d fw



Compression via [Fischlin 05]
• [Fischlin 05] gives a method for compiling interactive 3 round 

protocols to straight-line extractable proofs in the ROM 

• Achieves more interesting compression properties than simple cut-
and-choose, which turns out to be very useful in this setting

PH VH
pi

fw(i) Validate (C, fw(i), pi)
AND

 H( fw(i), pi)
?= 0
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Compression via [Fischlin 05]

P fw(1) fw(n)fw(i)fw(2)
p1 p2 pi pn

Extraction: Except with , 
 is forced to query more than  

valid points on  to 

𝖯𝗋 < 2−κ

P d
fw H

Output length of : 
 bits

H
log κ + log d

Succinctness:  outputs  
tuples 

P r ∈ Oκ(1)
(pi, fw(i))



Putting it Together

τ
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Missing Technicalities

• The final theorem still depends on the non-blackbox extractor (and 
consequently inherits any knowledge assumptions), albeit in a “UC 
compatible” way; the NB extractor is only invoked to argue 
indistinguishability of hybrid experiments 

• Zero-knowledge/Simulation requires inflating the degree of   

• Applying Fischlin’s technique is quite subtle; we need some non-
standard uniqueness properties from the  proofs (satisfied by 
[KZG10])

fw

pi



In Summary
• We give a compiler (in the ROM) to lift any Simulation Extractable 

NIZK to a UC NIZK, while preserving the same asymptotic level of 
succinctness (ignoring security parameter terms) 

• Plugging in existing  sized proofs, we obtain the first  sized 
UC NIZK 

• Our core technical ingredient is to construct a succinct extractable 
commitment scheme in the ROM via Fischlin’s compression method

Oκ(1) Oκ(1)

Questions?


