Witness-Succinct **Universally-Composable SNARKs**

Indian Institute of Science भारतीय विज्ञान संस्थान

Chaya Ganesh

To appear at Eurocrypt 2023

- Yashvanth Kondi Claudio Orlandi
- Mahak Pancholi Akira Takahashi

Daniel Tschudi

AARHUS

CONCORDIUM

In a Nutshell • We present the first constant-sized Universally Composable (UC)

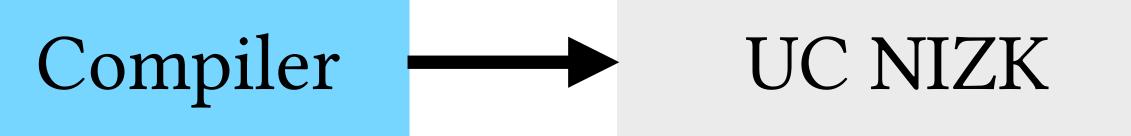
- Non-interactive Zero-Knowledge Proofs
- Our approach:

Trusted setup τ

Simulation Extractable NIZK

Random Oracle

Trusted setup τ



In a Nutshell • We present the first constant-sized Universally Composable (UC)

- Non-interactive Zero-Knowledge Proofs
- Our approach:

Trusted setup τ

Simulation Extractable NIZK

Trusted setup τ

Compiler UC NIZK

Our main theorem

Witness-Succinct Universally Composable **SNARKs**

- Type of cryptographic proof
 - Succinct proof size is smaller than circuit or witness
 - <u>Non-interactive</u> single message
 - <u>Argument of Knowledge</u> witness is "extractable" from prover
- Many constructions, with tradeoffs in proof size, prover running time, verification cost, trusted setup, security guarantee
- This talk: focus on best possible succinctness $-O_{\kappa}(1)$ sized proofs

SNARKs

- Type of cryptographic proof
 - Succinct proof size is smaller than circuit or witness
 - <u>Non-interactive</u> single message
 - <u>Argument of Knowledge</u> witness is "extractable" from prover
- Many constructions, with tradeoffs in proof size, prover running time, verification cost, trusted setup, security guarantee
- This talk: focus on best possible succinctness $-O_{\kappa}(1)$ sized proofs

SNARKs

Security parameter terms are constants

Universally Composable

- Framework for concurrent security introduced in [Canetti 01] • Guarantees composition in any context
- Modular, convenient to work with as a protocol designer
- ...but is challenging to achieve

Witness-Succinct

- Witness succinctness: proof size $|\pi| \in O_{\kappa}(1)$
- Contrast with *circuit* succinctness: $|\pi| = \theta_{\kappa}(|w|) + o_{\kappa}(|C|)$

Witness-Succinct

• Witness succinctness: proof size $|\pi| \in O_{\kappa}(1)$

• Contrast with *circuit* succinctness: $|\pi| = \frac{\theta_{\kappa}(|w|)}{\theta_{\kappa}(|C|)} + o_{\kappa}(|C|)$

Not a problem when witness is small But imagine proving statements about a large pre-image of a public digest, etc.

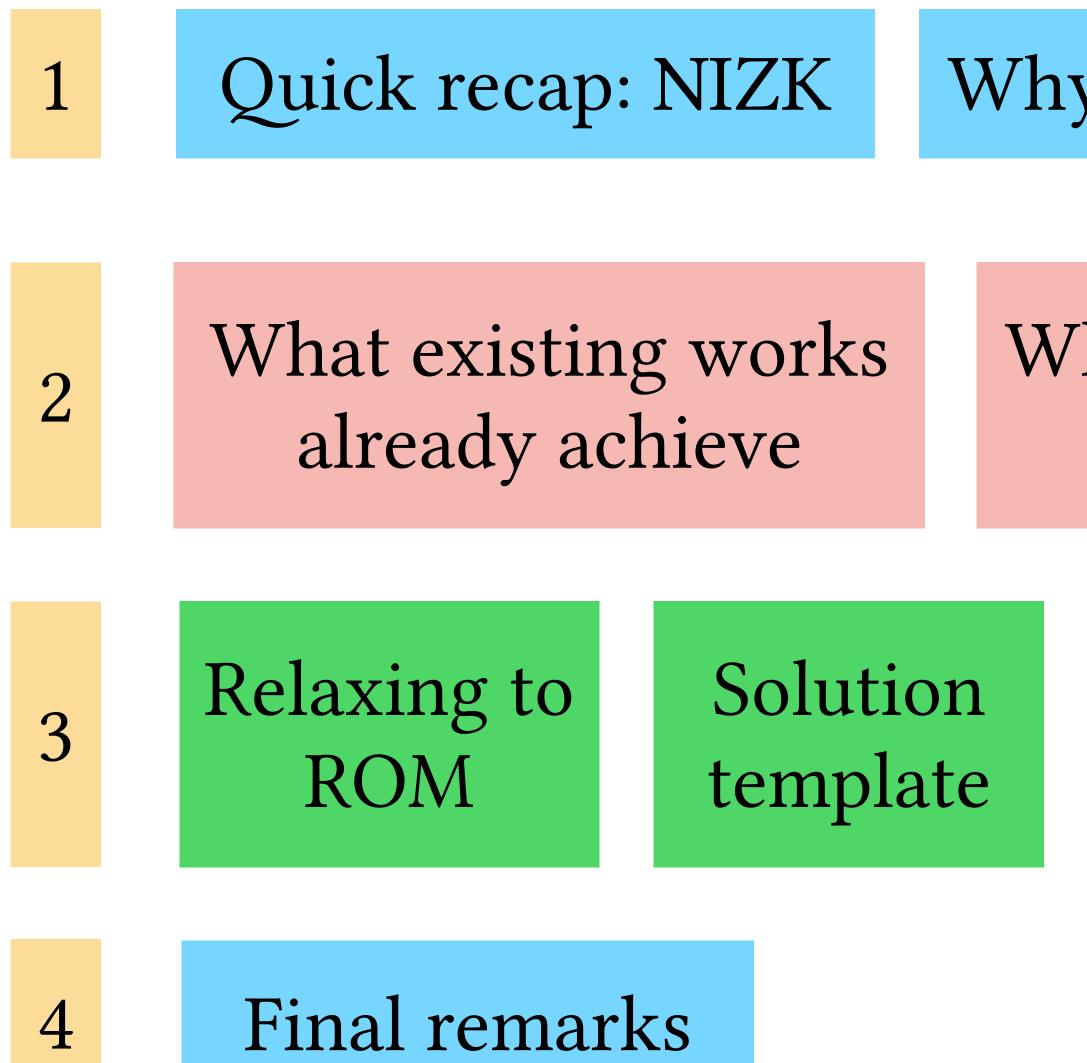
This Talk

- What will be covered: Technique to lift Simulation E security at $O_{\kappa}(1)$ overhead
- What won't be touched: How to instantiate SE SNARE (this is to help understanding something is unclear!)

Technique to lift Simulation Extractable (SE) SNARKs to UC

How to instantiate SE SNARKs, intricacies and formalism of UC (this is to help understanding, not to hand-wave; please ask if

Structure of this talk



Why UC?

What makes achieving UC difficult

A (too) simple approach

Core tool: Succinct Extractable Concrete Commitments

Structure of this talk

Quick recap: NIZK

What existing works already achieve

3

Relaxing to ROM

Solution template

Final remarks

Why UC?

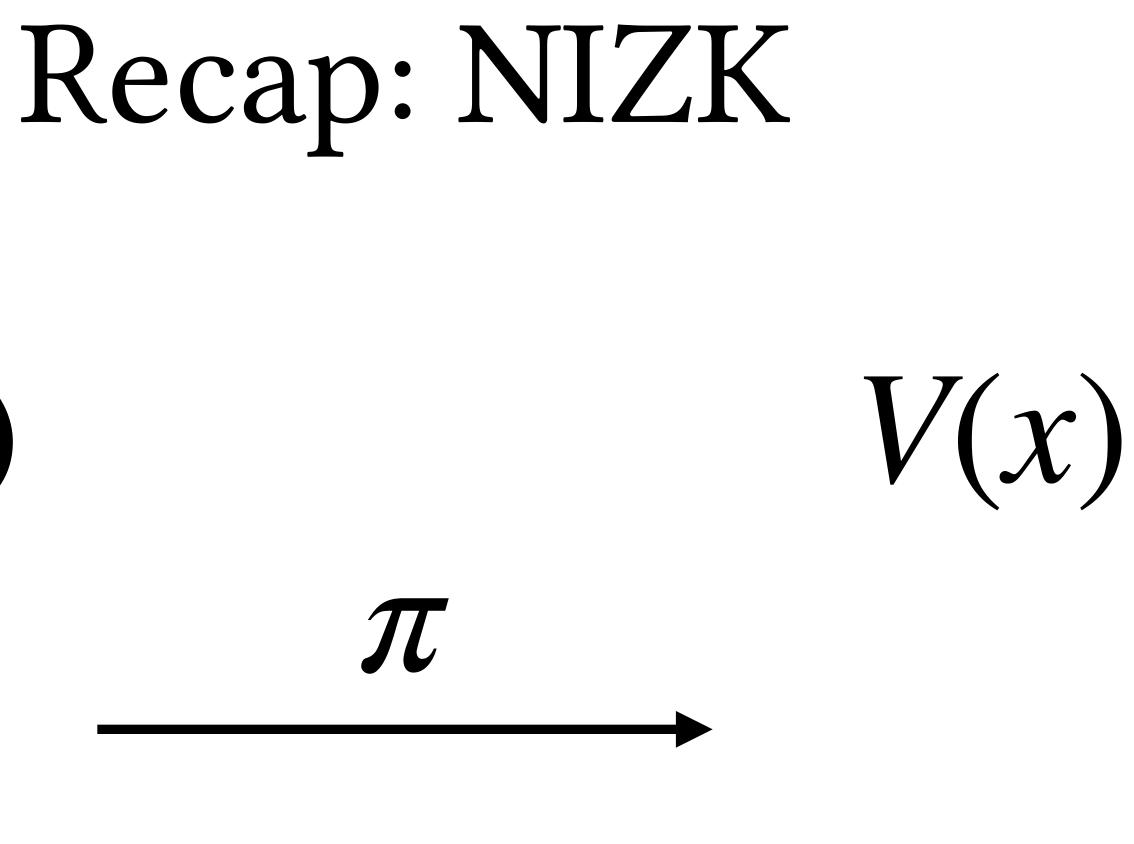
What makes achieving UC difficult

A (too) simple approach

Core tool: Succinct Extractable **Concrete Commitments**

P(x, w)

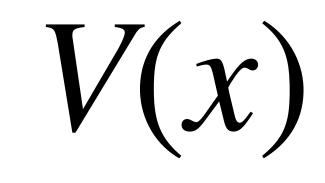
- **Completeness**: An honest proof always verifies
- Argument of knowledge: w can be extracted from π when $V(x, \pi) = 1$



$P(\chi, W)$ Trusted setup τ

- **Completeness**: An honest proof always verifies
- Argument of knowledge: w can be extracted from π when $V(x, \pi) = 1$

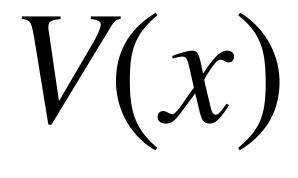
Recap: NIZK



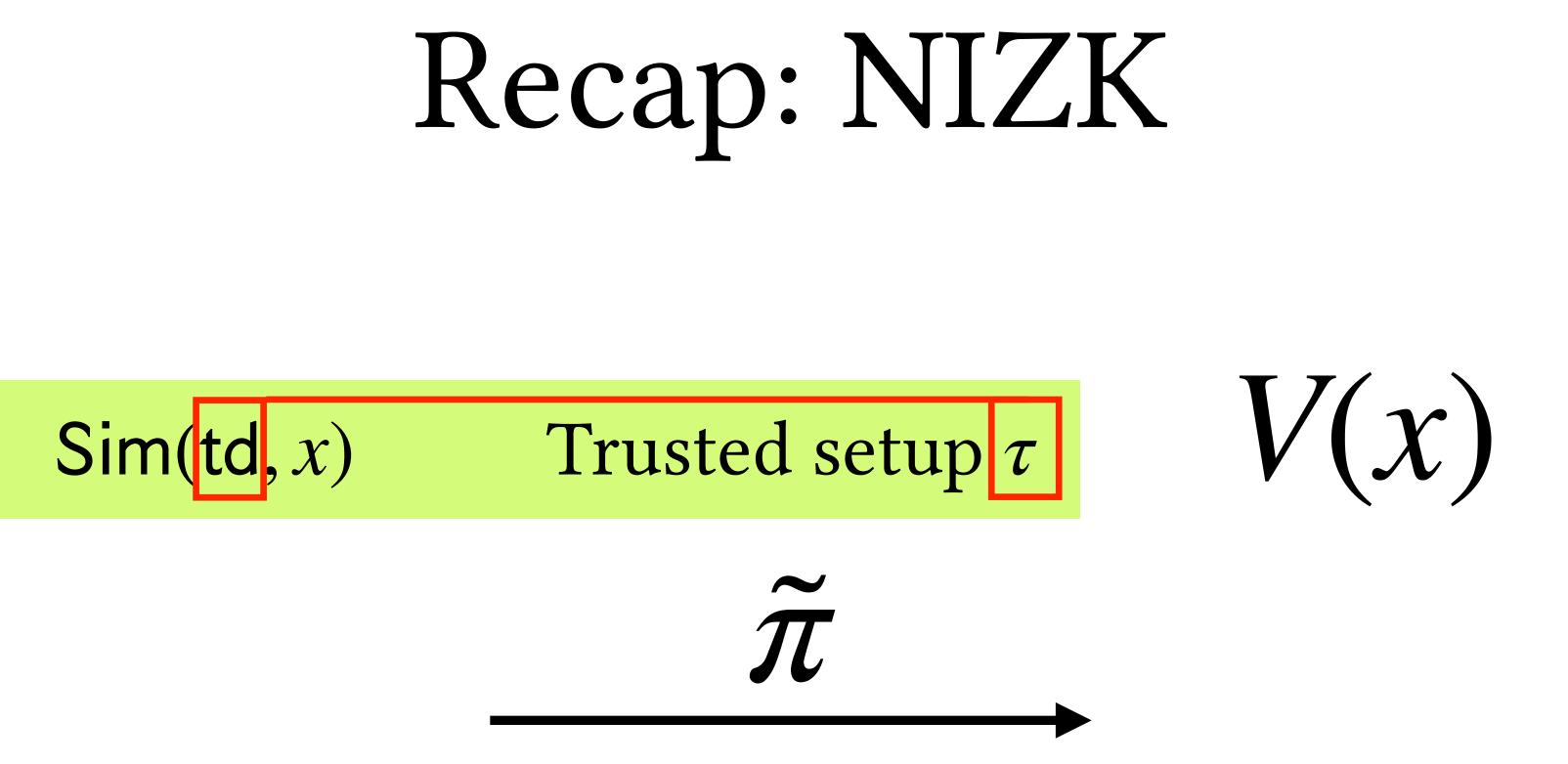
Recap: NIZK

Trusted setup τ Sim(td, x)

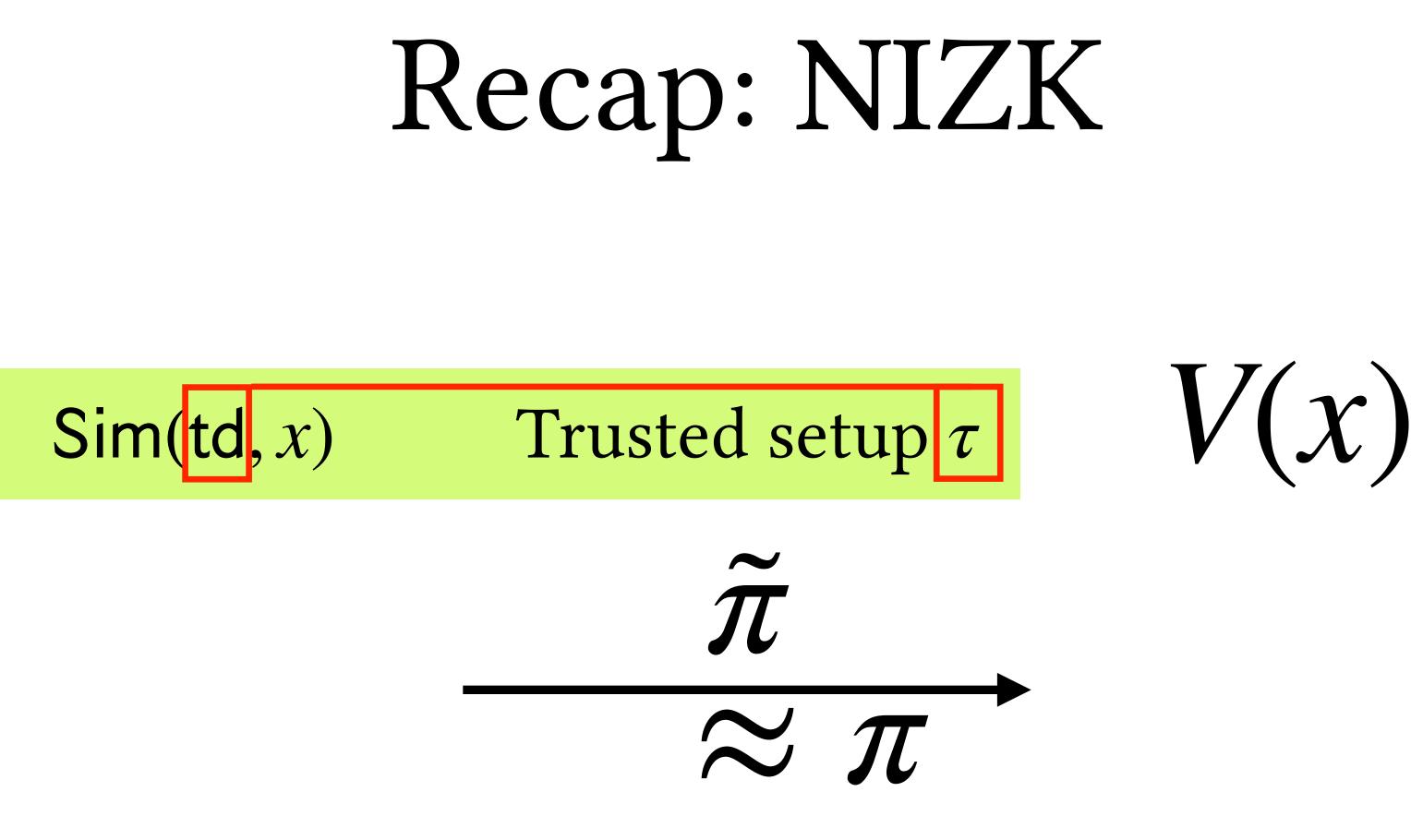
- **Completeness**: An honest proof always verifies
- Argument of knowledge: w can be extracted from π when $V(x, \pi) = 1$



Π



- **Completeness**: An honest proof always verifies
- Argument of knowledge: w can be extracted from π when $V(x, \pi) = 1$



- **Completeness**: An honest proof always verifies
- Argument of knowledge: w can be extracted from π when $V(x, \pi) = 1$

$P(\chi, W)$ Trusted setup τ

- **Completeness**: An honest proof always verifies
- Argument of knowledge: w can be extracted from π when $V(x, \pi) = 1$

Recap: NIZK

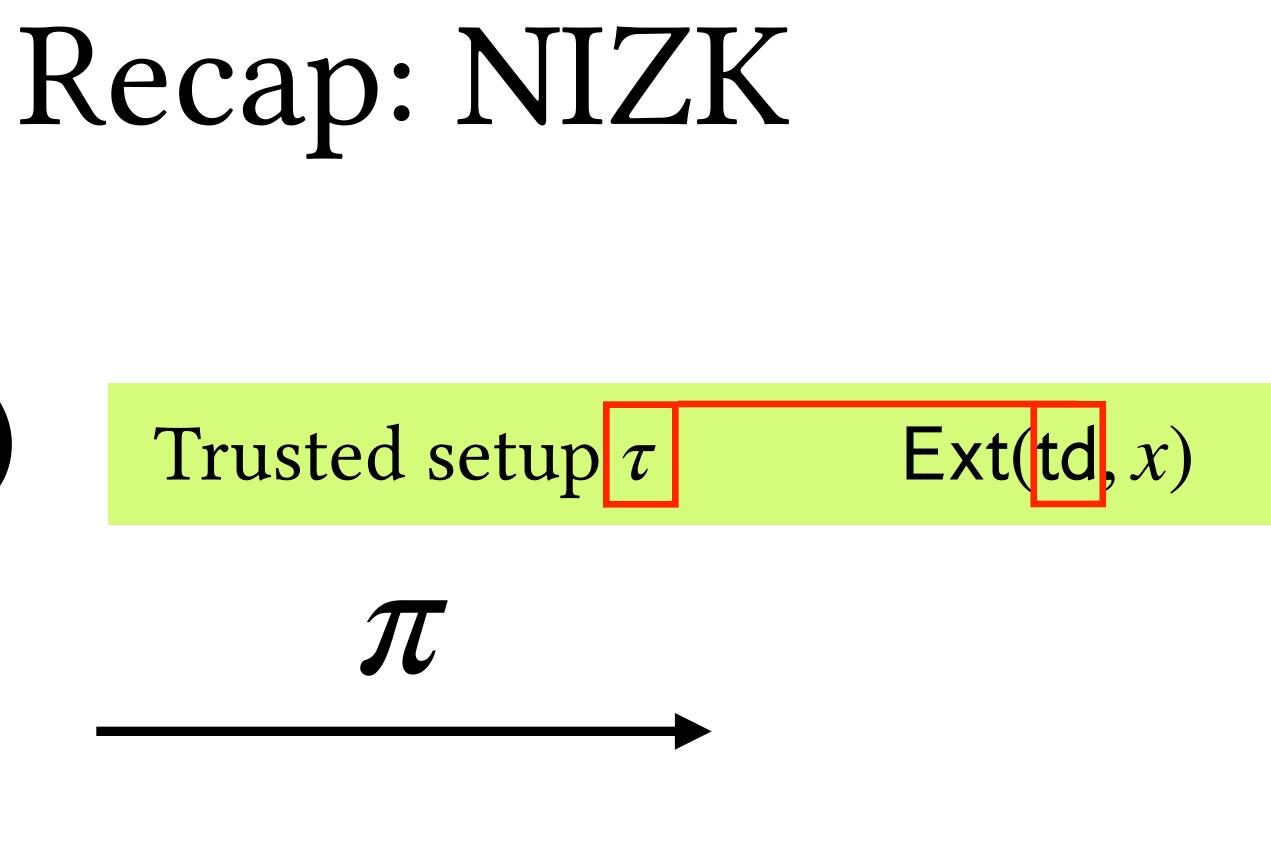
P(X, W) Trusted setup τ Ext(td, x)

- **Completeness**: An honest proof always verifies
- Argument of knowledge: w can be extracted from π when $V(x, \pi) = 1$

Recap: NIZK

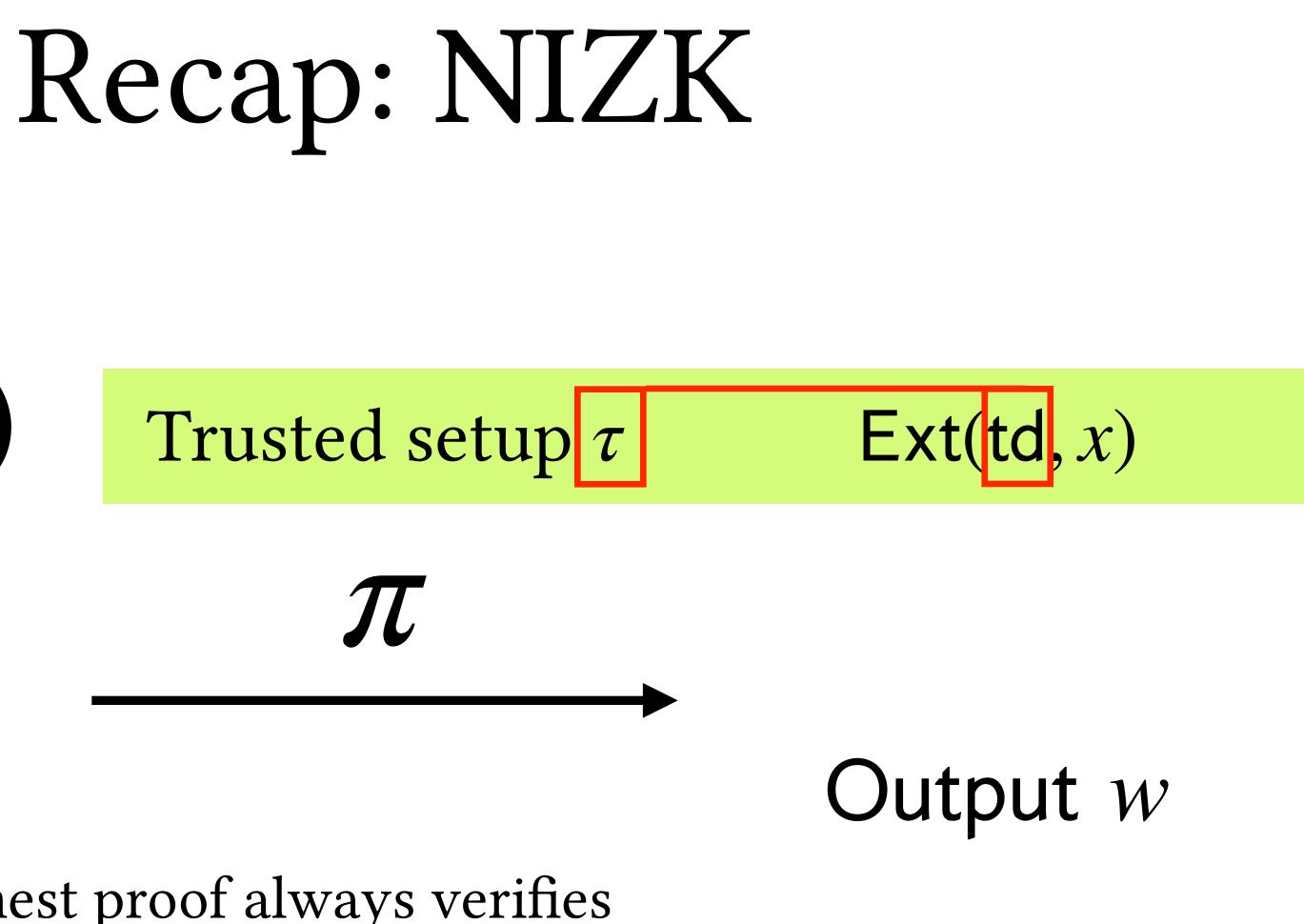
P(X, W) Trusted setup τ

- **Completeness**: An honest proof always verifies
- Argument of knowledge: w can be extracted from π when $V(x, \pi) = 1$



P(X, W) Trusted setup τ

- **Completeness**: An honest proof always verifies
- Argument of knowledge: w can be extracted from π when $V(x, \pi) = 1$



Structure of this talk

Final remarks

Why UC?

What makes achieving UC difficult

A (too) simple approach

Core tool: Succinct Extractable **Concrete Commitments**

Structure of this talk

1

Quick recap: NIZK

What existing works already achieve

3

Relaxing to ROM

Solution template

Final remarks

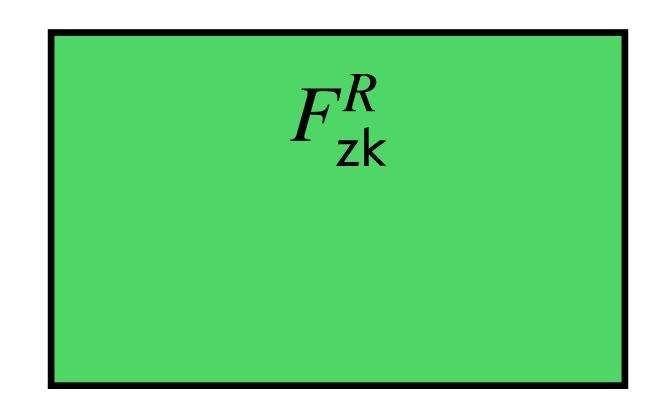
Why UC?

What makes achieving UC difficult

A (too) simple approach

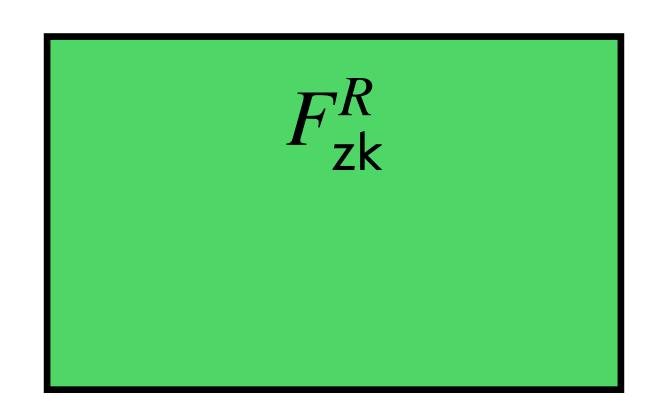
Core tool: Succinct Extractable **Concrete Commitments**

- An ideal oracle that you can use in your higher level protocol
- Safe to compose in any environment

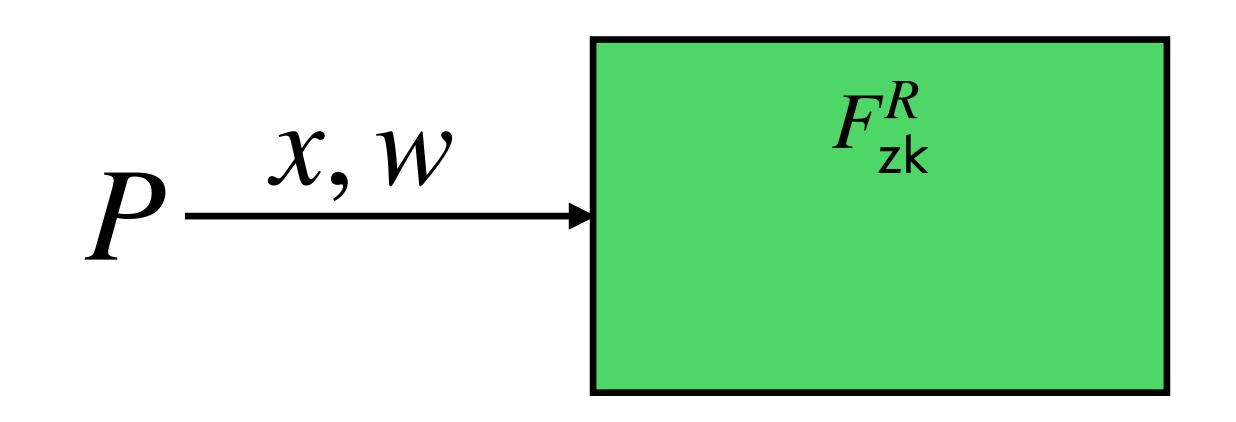


- An ideal oracle that you can use in your higher level protocol
- Safe to compose in any environment

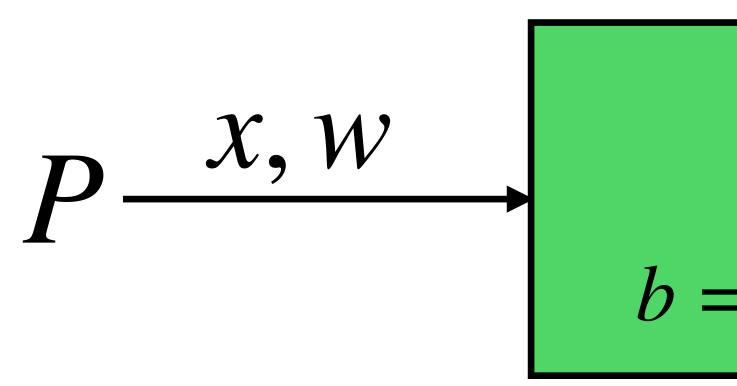
P X, W



- An ideal oracle that you can use in your higher level protocol
- Safe to compose in any environment

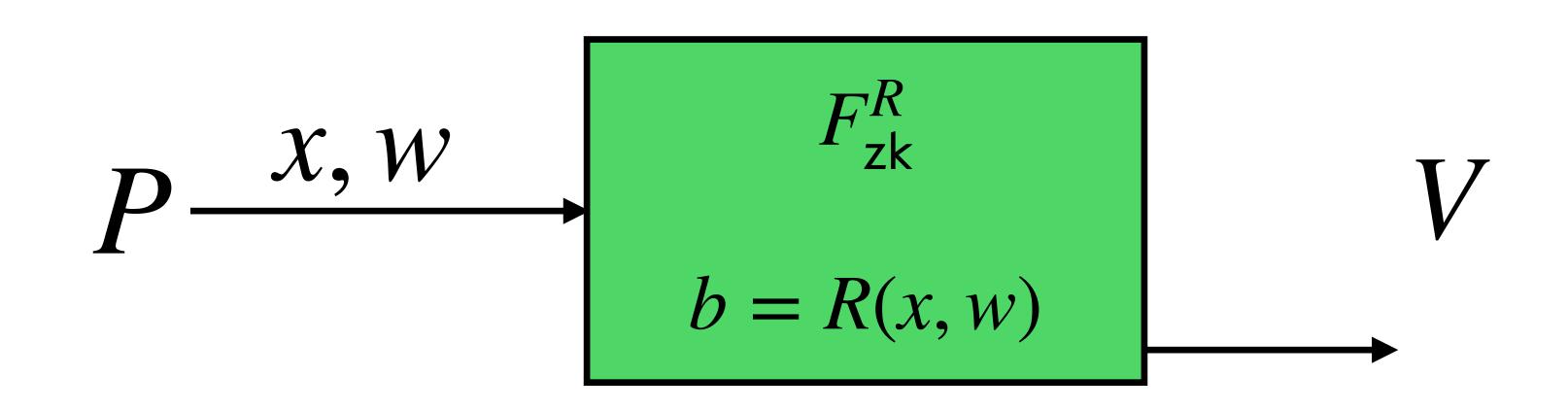


- An ideal oracle that you can use in your higher level protocol
- Safe to compose in any environment

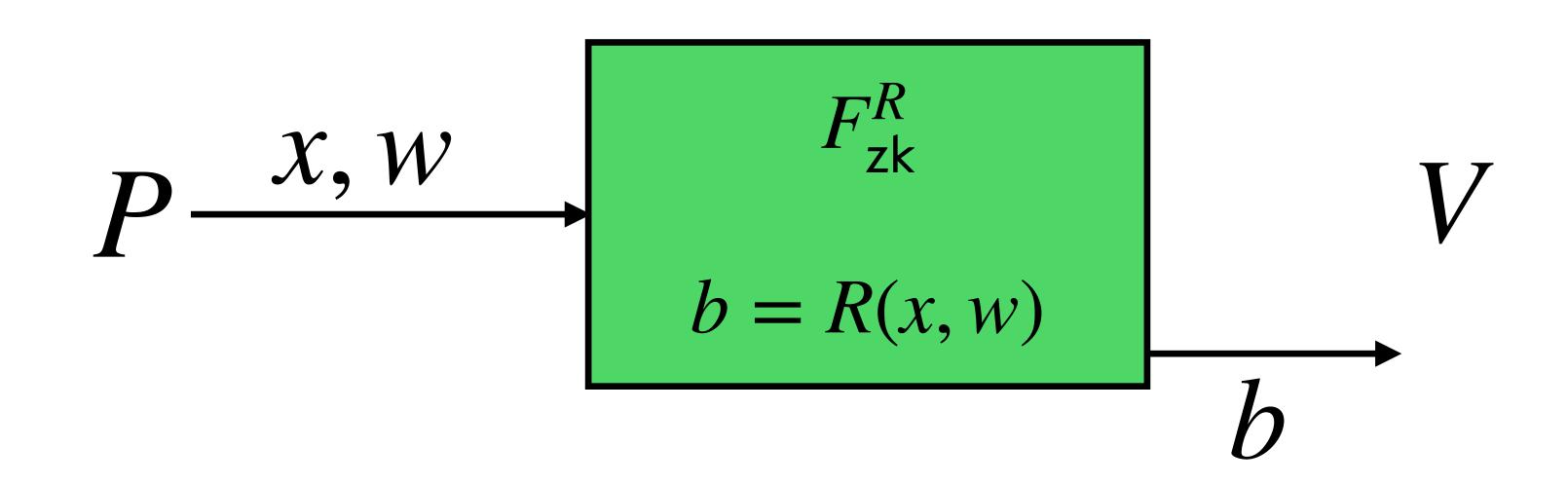


$$F_{zk}^{R}$$
$$= R(x, w)$$

- An ideal oracle that you can use in your higher level protocol
- Safe to compose in any environment



- An ideal oracle that you can use in your higher level protocol
- Safe to compose in any environment



What's Needed for UC Security?

- In a nutshell, simulation and extraction must be **blackbox** and **straight-line**
 - "Knowledge" of a witness may come from a larger protocol context / environment; rewinding the environment or looking at its code is not conducive to proving composition
- <u>Relevant to this talk</u>: Sim and Ext that are straight-line and make oracle use of the adversary

Structure of this talk

1

Quick recap: NIZK

Why UC?

What existing works already achieve

3

2

Relaxing to ROM

Solution template

Final remarks

What makes achieving UC difficult

A (too) simple approach

Core tool: Succinct Extractable **Concrete Commitments**

1

2

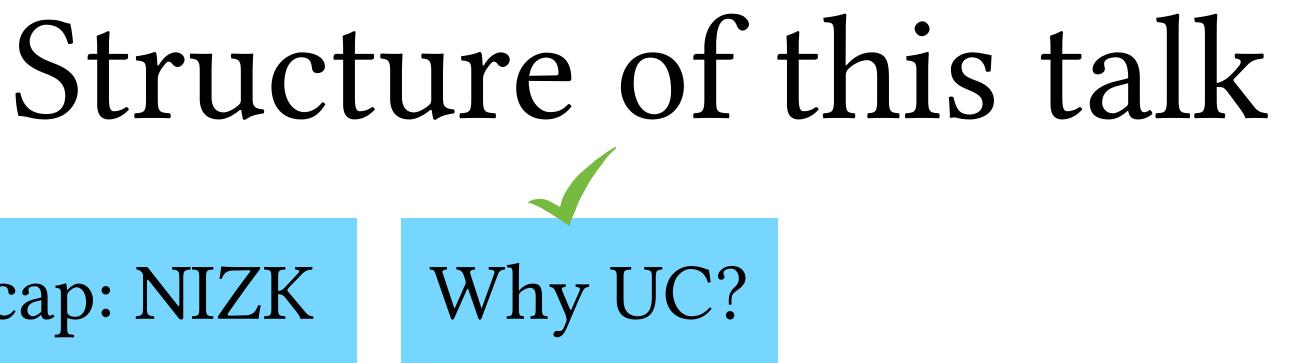
Quick recap: NIZK

What existing works already achieve

Relaxing to ROM

Solution template

Final remarks



What makes achieving UC difficult

A (too) simple approach

Core tool: Succinct Extractable **Concrete Commitments**

Starting Point: SE-SNARK

- The strongest non-malleability notion known to be satisfied by SNARKs so far is Simulation Extractability (SE)
- This work is about "lifting" to full UC security
- The difference between SE and UC is subtle; lies in blackbox extraction
- In particular, SE-SNARK extractor depends on the code of the adversary—for each adversary \mathscr{A} , there exists an extractor $\mathsf{Ext}_{\mathscr{A}}$

Simulation Extractability

$Sim(td, \cdot)$

Simulation Extractability

$Sim(td, \cdot)$

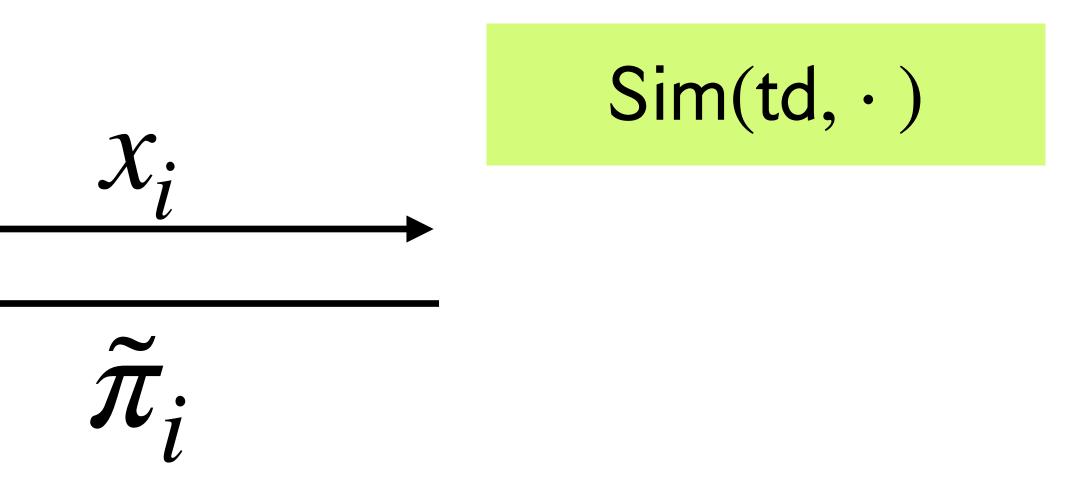
Simulation Extractability

$Sim(td, \cdot)$

Simulation Extractability

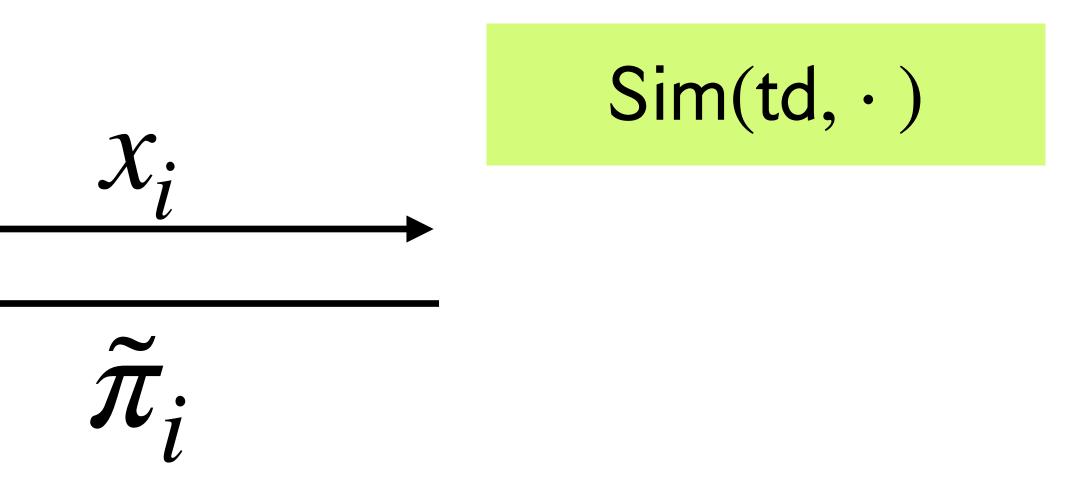
$Sim(td, \cdot)$

Simulation Extractability



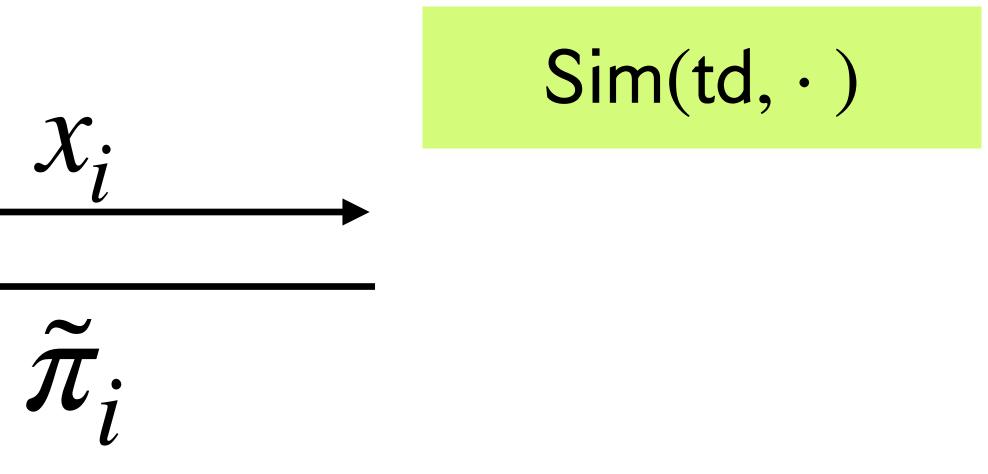
Output $\hat{x}, \hat{\pi}$

Simulation Extractability



Output $\hat{x}, \hat{\pi}$

Simulation Extractability



• \mathscr{A} wins if $V(\hat{x}, \hat{\pi}) = 1$ but $\mathsf{Ext}_{\mathscr{A}}(\mathsf{td}, \pi)$ fails to output a witness

Non-blackbox Extraction

- SE-SNARK constructions are proven secure with non-falsifiable "knowledge assumptions"
- Roughly, a knowledge assumption purports the existence of an extractor, which can inspect the code of an adversary to deduce useful information
- Eg. Knowledge of Exponent (KEA): For any \mathscr{A} s.t. $(X, Y) \leftarrow \mathscr{A}(g, g^a)$ where $X = Y^a$, there exists $\mathsf{Ext}_{\mathscr{A}}$ s.t. $y \leftarrow \mathsf{Ext}_{\mathscr{A}}(g, g^a)$ where $g^y = Y$

1

2

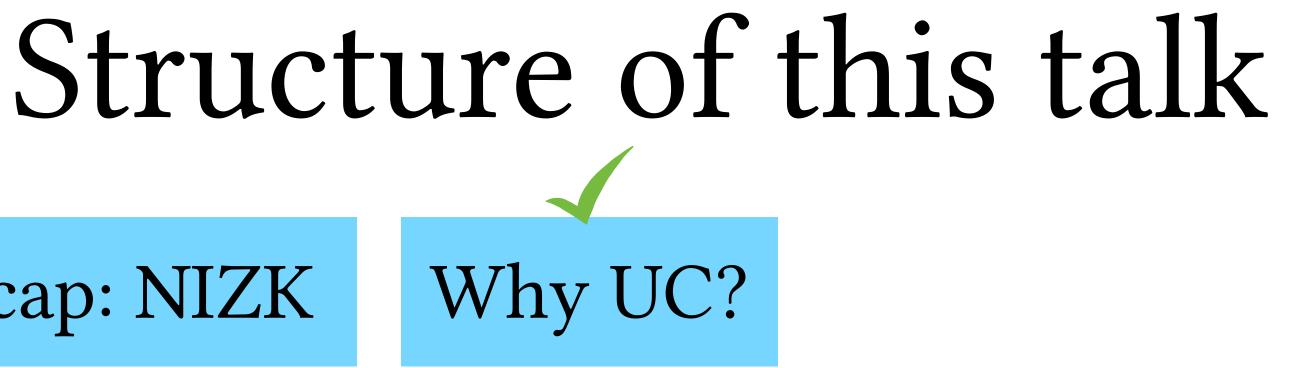
Quick recap: NIZK

What existing works already achieve

Relaxing to

Solution template

Final remarks



What makes achieving UC difficult

A (too) simple approach

Core tool: Succinct Extractable **Concrete Commitments**

1

2

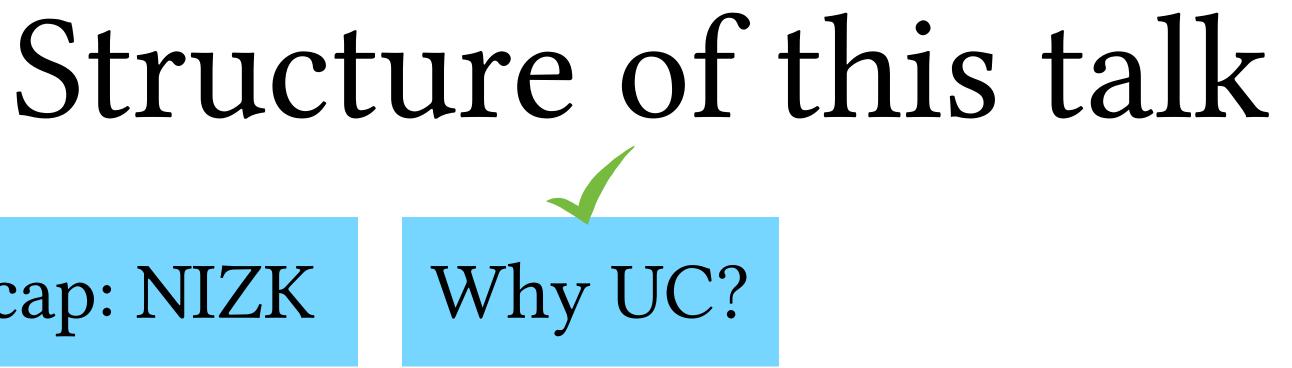
Quick recap: NIZK

What existing works already achieve

Relaxing to

Solution template

Final remarks



What makes achieving UC difficult

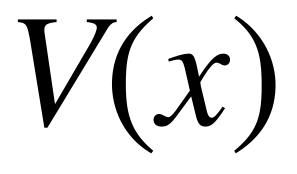
A (too) simple approach

Core tool: Succinct Extractable **Concrete Commitments**

Non-blackbox Extraction to UC

- The existence of $Ext_{\mathscr{Z}}$ means that an environment \mathscr{Z} that produces a SNARK must fundamentally know a witness
- \bullet However $\mathsf{Ext}_\mathscr{Z}$ can not be invoked
- Lifting this SNARK to a UC NIZK is then a matter of forcing the environment to use this knowledge within the protocol context

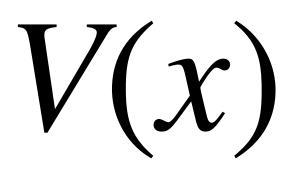
P(x, w)



τ

 π

P(x, w)



P(x, w)

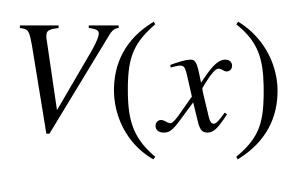
au , pk

V(x)

 ${\cal T}$ $ct = Enc_{pk}(w)$

P(x, w)

au , pk



 π : "ct encrypts a witness to x"

 $ct = Enc_{pk}(w)$

P(x, w)

au , pk

Ext(sk, x)

 π : "ct encrypts a witness to x"

 $ct = Enc_{pk}(w)$

P(x, w)

$$\tau$$
, pk Ext(sk, x)

 π : "ct encrypts a witness to x"

 $ct = Enc_{pk}(w)$

P(x, w)

$$\tau$$
, pk Ext(sk, x)

 π : "ct encrypts a witness to x"

 $ct = Enc_{pk}(w)$

w = Dec(sk, ct)

P(x, w)

ct =

• Validity of *w* follows from correctness of encryption+SNARK soundness

$$\tau$$
, pk Ext(sk, x)

 π : "ct encrypts a witness to x"

$$Enc_{pk}(w)$$

w = Dec(sk, ct)

P(x, w)

 $O_{\kappa}(1)$ O(|w|)Circuit succinct

• Validity of *w* follows from correctness of encryption+SNARK soundness

$$\tau$$
, pk Ext(sk, x)

 π : "ct encrypts a witness to x"

$$Enc_{pk}(w)$$

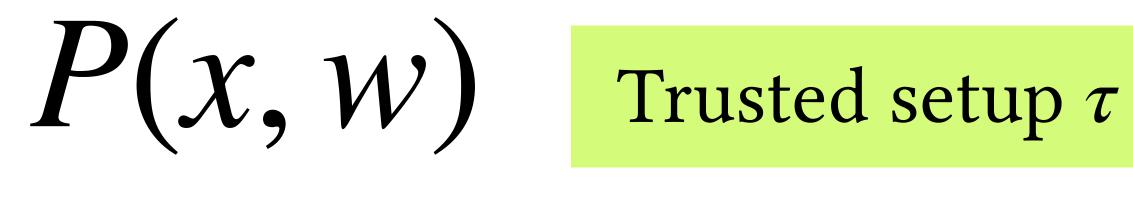
w = Dec(sk, ct)

- CØCØ [KZMQCPRsS15] to obtain circuit-succinct UC SNARK
- $\theta(|w|)$ sized proofs
- [KZMQCPRsS15]: "no known UC-secure zero-knowledge proof standard assumptions"

• Approach taken by [DDOPS01] for simulation-sound NIZK, and later

• However encrypting the witness inherently limits this approach to

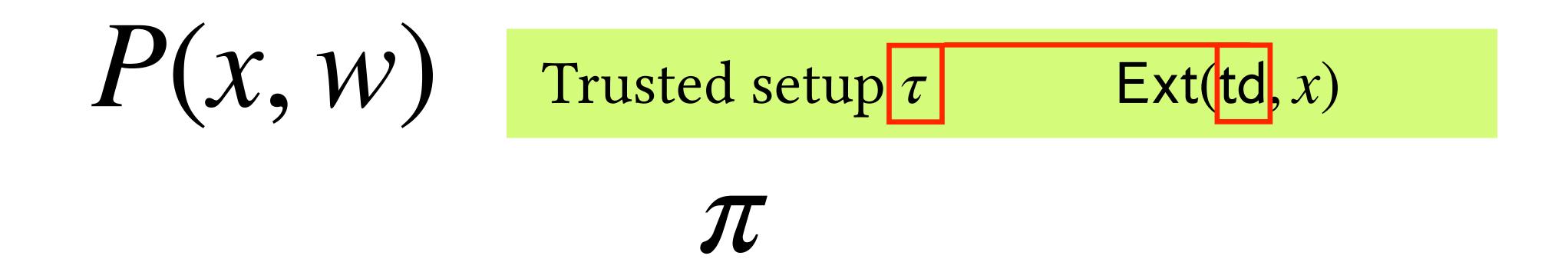
construction that is circuit and witness-succinct, even under non-



• The extractor clearly needs a trapdoor unavailable to the real verifier

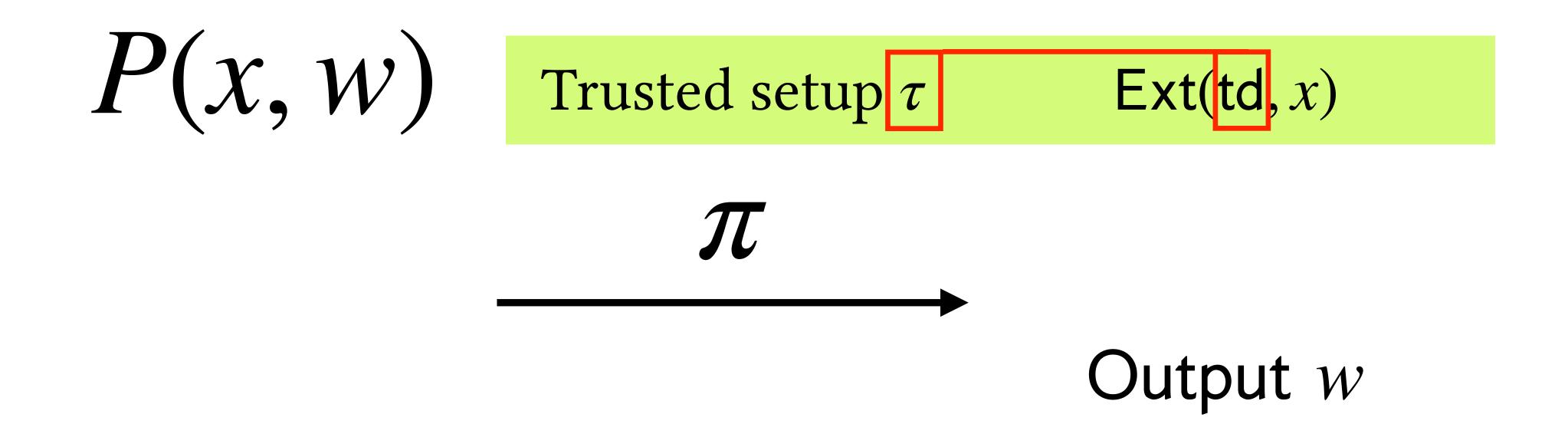
• A Common Reference String trapdoor alone is insufficient [CGKS22]

Ext(td, x)



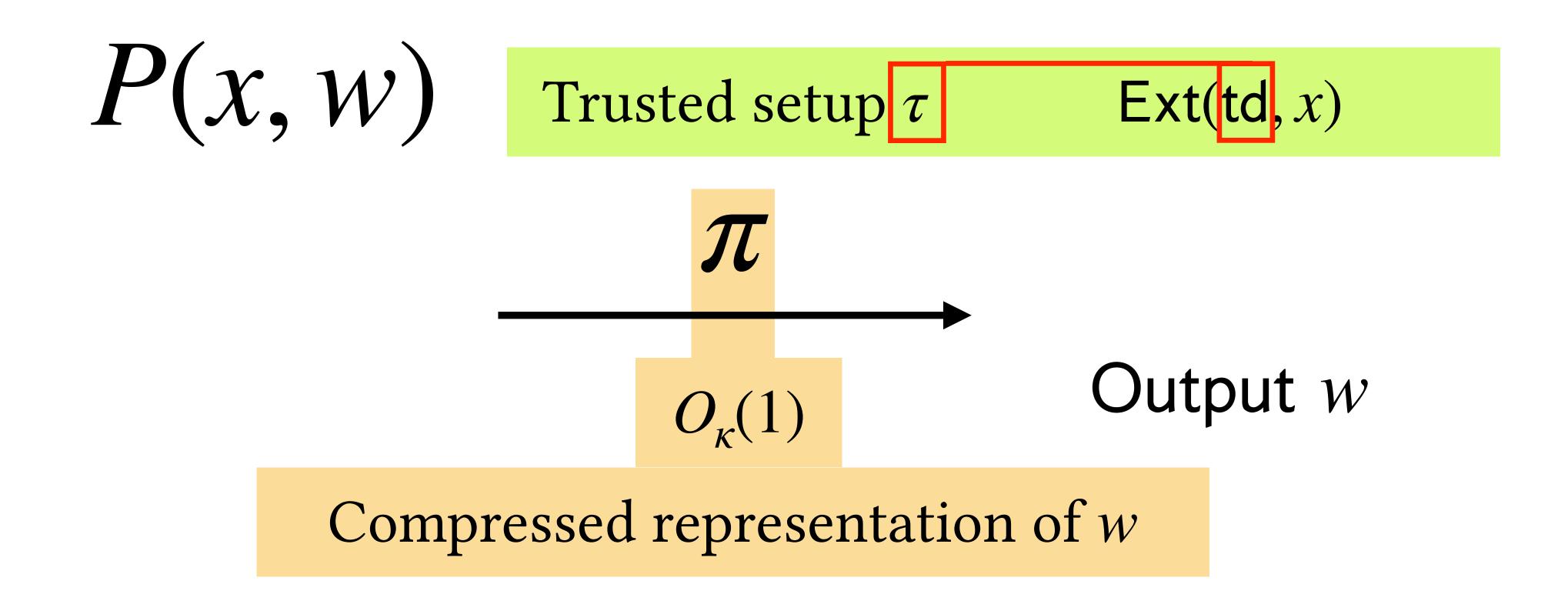
• The extractor clearly needs a trapdoor unavailable to the real verifier

• A Common Reference String trapdoor alone is insufficient [CGKS22]



• The extractor clearly needs a trapdoor unavailable to the real verifier

• A Common Reference String trapdoor alone is insufficient [CGKS22]

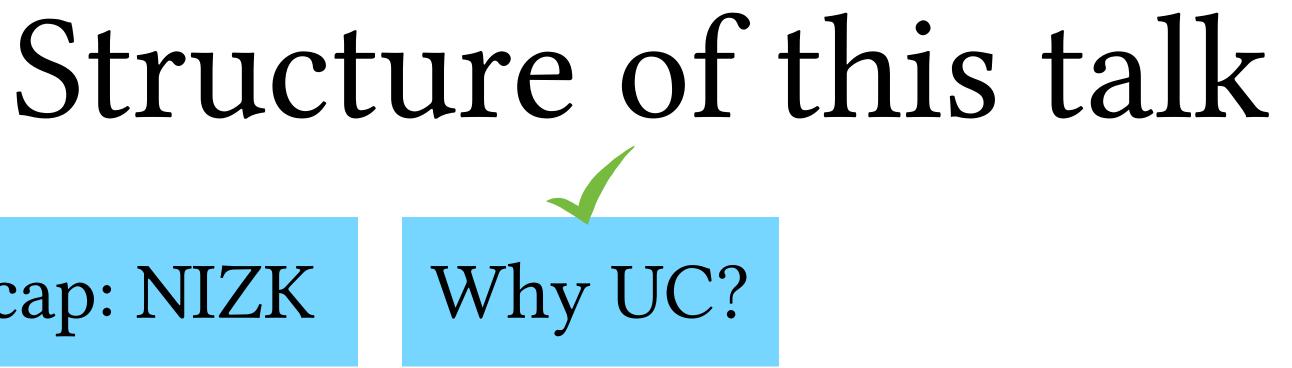


• The extractor clearly needs a trapdoor unavailable to the real verifier

• A Common Reference String trapdoor alone is insufficient [CGKS22]

- The extractor clearly needs a trapdoor unavailable to the real verifier
- A Common Reference String trapdoor alone is insufficient [CGKS22]

- We need to relax the problem, i.e. grant the extractor further powers/ trapdoors (that are still permissible in the UC setting)
- Random Oracle Model is a good fit; easy to model in UC, and practitioners have experience with heuristic instantiations



1

2

Quick recap: NIZK

What existing works already achieve

3

Relaxing to ROM

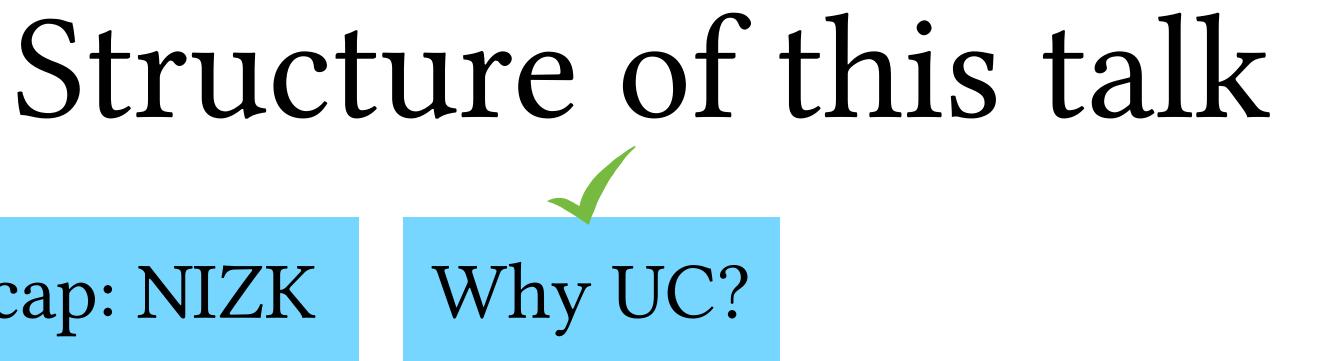
Solution template

Final remarks

What makes achieving UC difficult

A (too) simple approach

Core tool: Succinct Extractable **Concrete Commitments**



1

2

Quick recap: NIZK

What existing works already achieve

3

Relaxing to ROM

Solution template

Final remarks

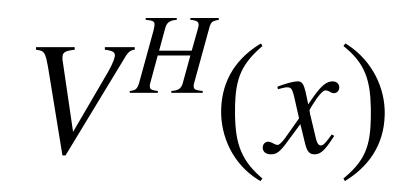
What makes achieving UC difficult

A (too) simple approach

Core tool: Succinct Extractable **Concrete Commitments**

 $P^{H}(x,w)$

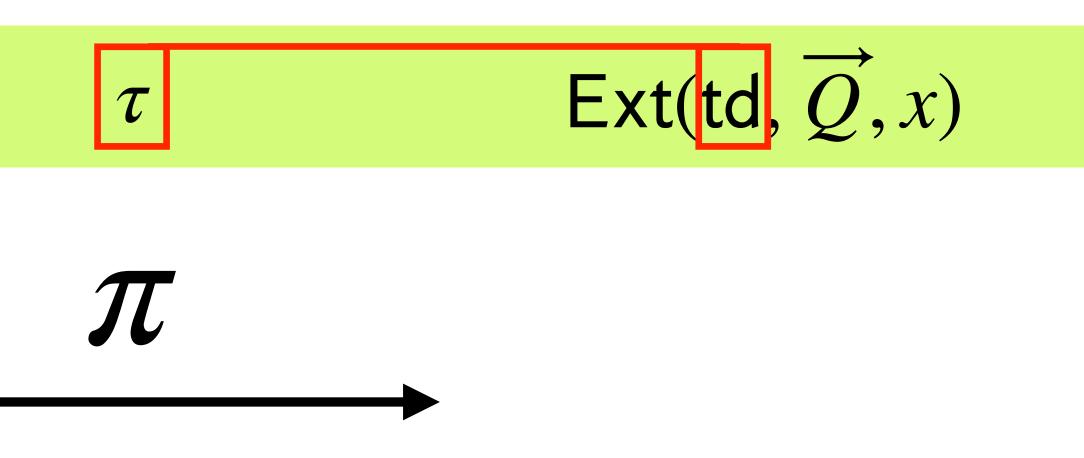
• *P* and *V* additionally make use of a common random oracle *H*



τ

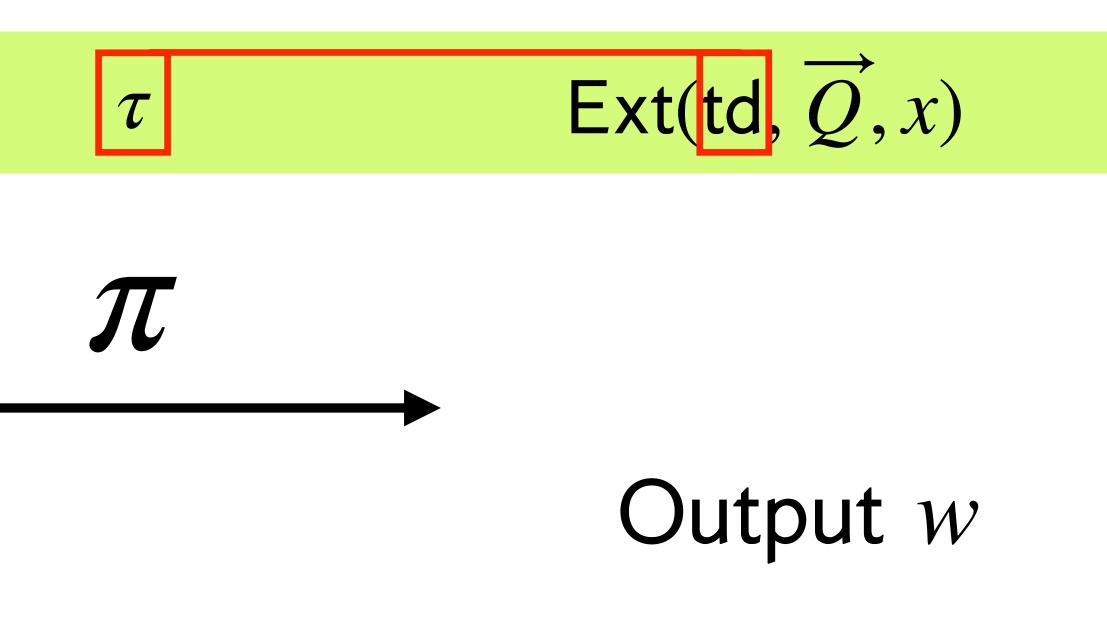
 $P^H(x,w)$

• *P* and *V* additionally make use of a common random oracle *H*



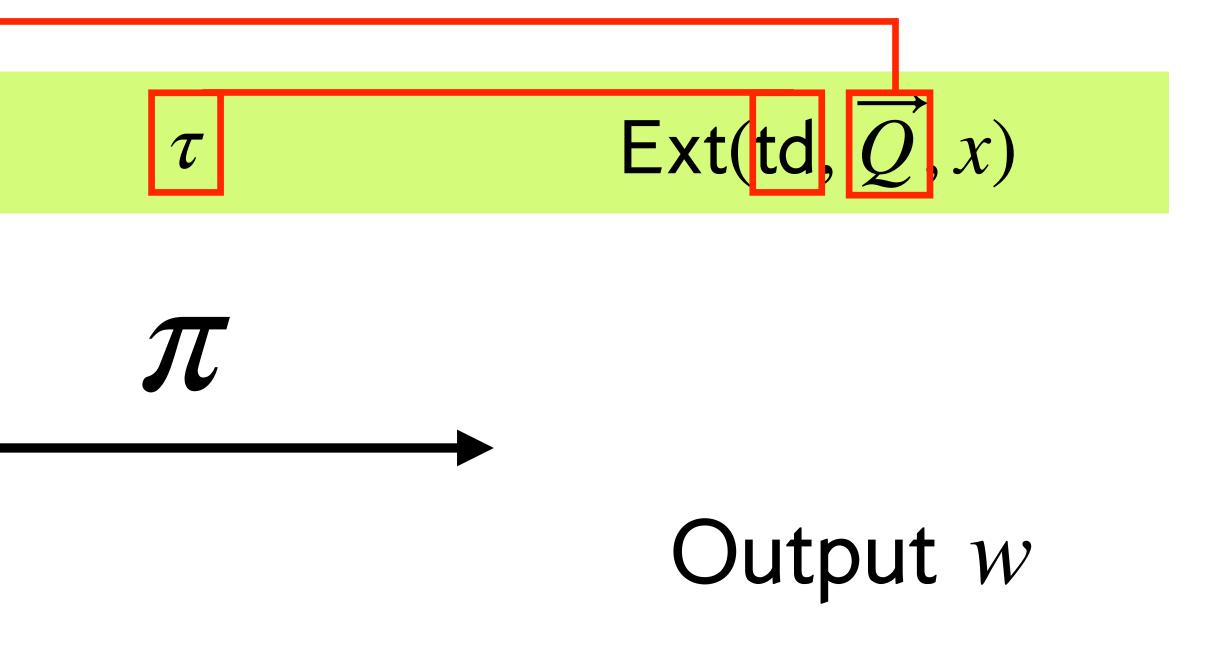
 $P^{H}(x,w)$

• *P* and *V* additionally make use of a common random oracle *H*



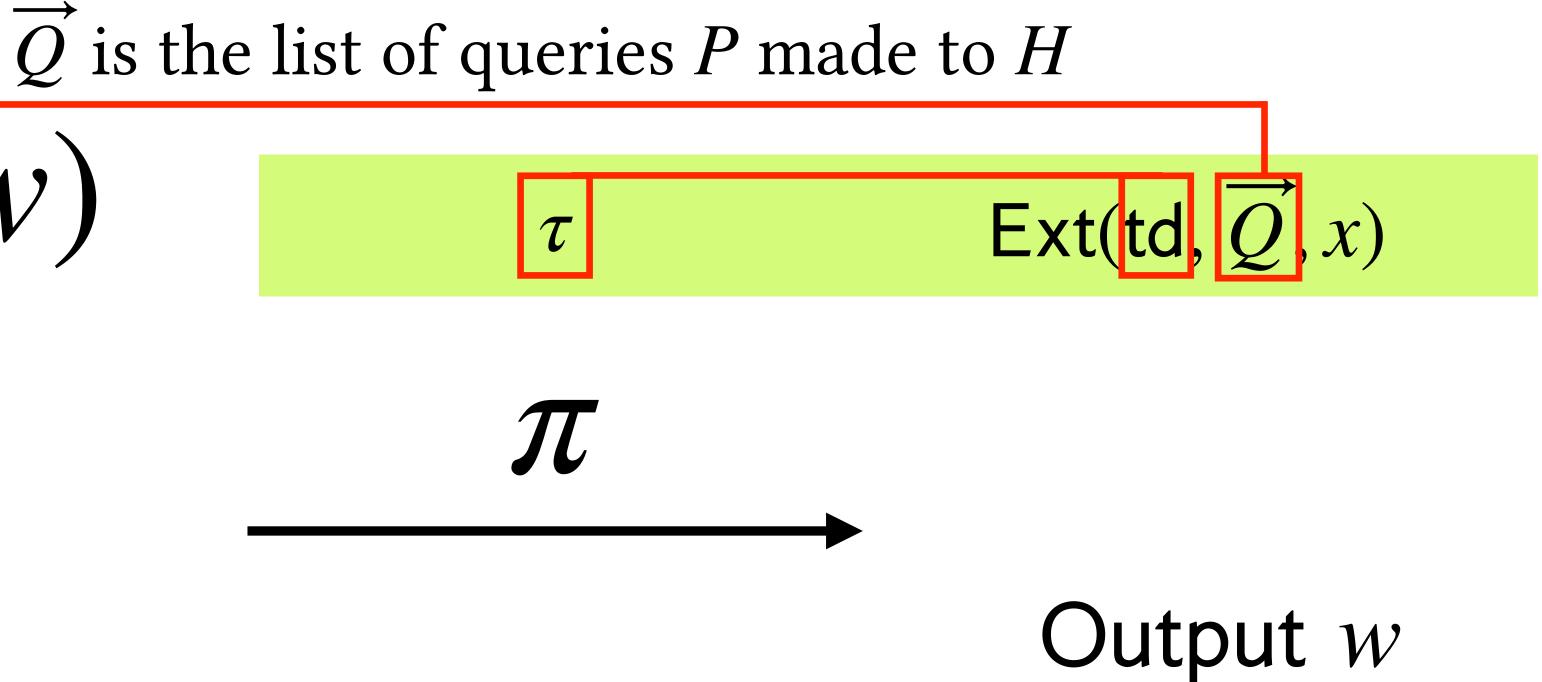
 $P^{H}(x, w)$

• *P* and *V* additionally make use of a common random oracle *H*



• P and V additionally make use of a common random oracle H

\vec{Q} is the list of $P^H(x, W)$



Improving the Simple Approach

$P^H(x,w)$

$O_{\kappa}(1)$ $Ct = Enc_{pk}(w)$ O(|w|)

 $V^{H}(x)$

au , pk

 π : "ct encrypts a witness to x"

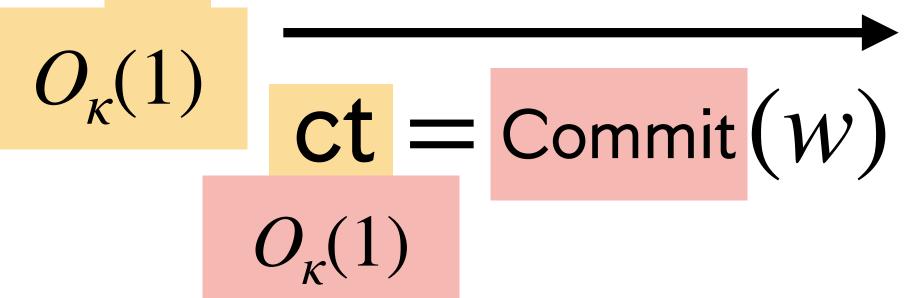
Improving the Simple Approach

$P^{H}(x,w)$ $\pi \cdot \mathbf{\hat{t}}$

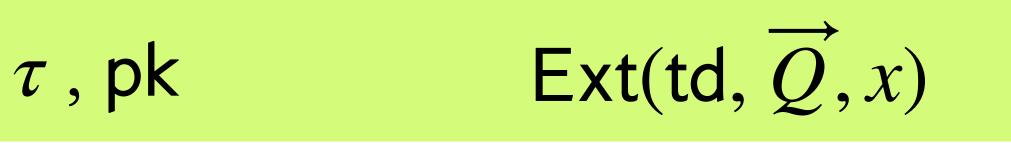
 $V^{H}(x)$

au , pk

 π : "ct commits to a witness to x"



Improving the Simple Approach



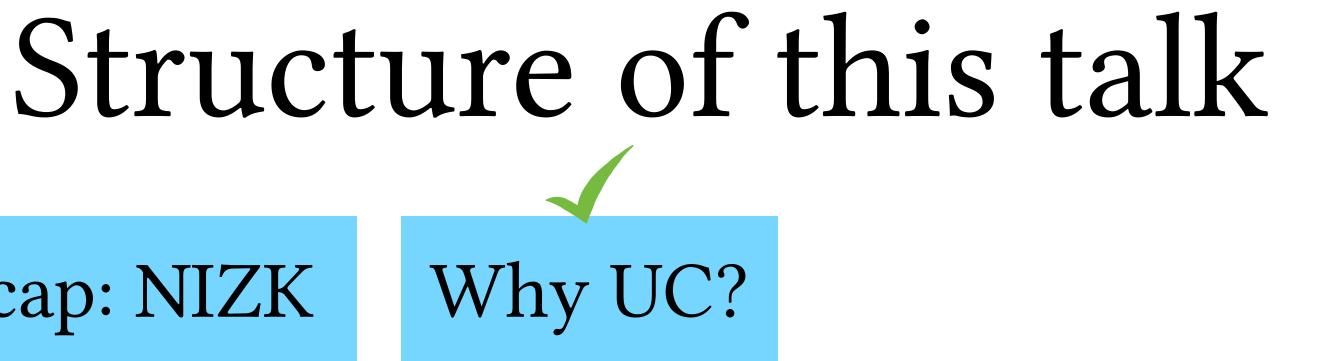
 π : "ct commits to a witness to x"

 $O_{\kappa}(1)$ Ct = Commit(W) $O_{\kappa}(1)$

Now how to extract?

Extracting from the Commitment

- Extractable commitments are straightforward in the ROM:
 - ct = H(m, r) to commit to *m* with randomness *r*
 - Given ct, \overrightarrow{Q} : search for $(m, r) \in \overrightarrow{Q}$ such that H(m, r) = ct
- But now "ct commits to a witness to *x*" is not a well-formed NP statement, as *H* does not have a circuit description
- <u>Challenge</u>: construct a commitment scheme that is succinct, extractable, and has a meaningful circuit representation



1

2

Quick recap: NIZK

What existing works already achieve

3

Relaxing to ROM

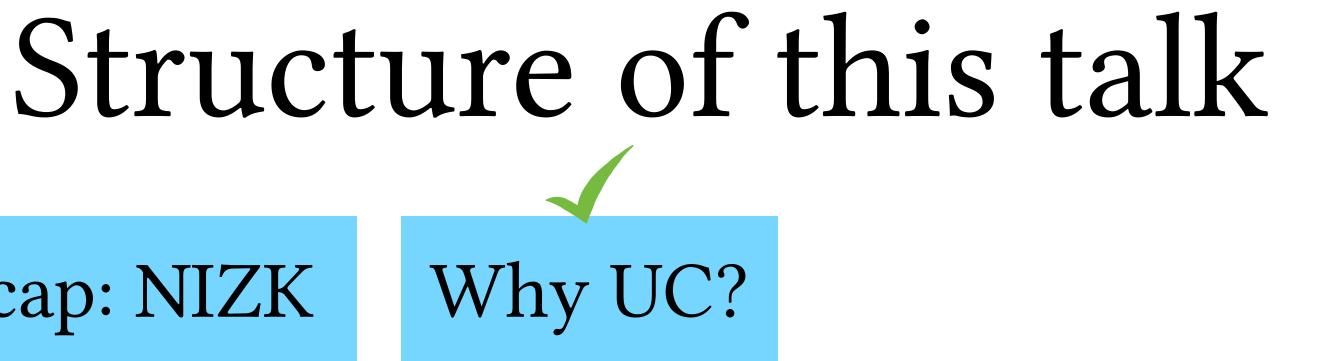
Solution template

Final remarks

What makes achieving UC difficult

A (too) simple approach

Core tool: Succinct Extractable **Concrete** Commitments



1

2

Quick recap: NIZK

What existing works already achieve

3

Relaxing to ROM

Solution template

Final remarks

What makes achieving UC difficult

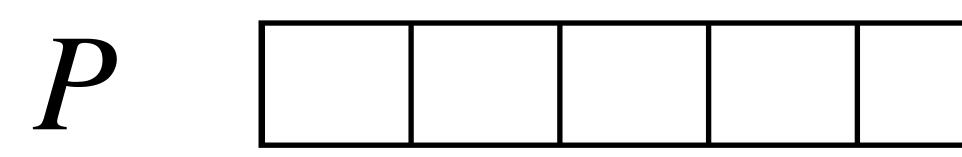
A (too) simple approach

Core tool: Succinct Extractable **Concrete** Commitments

Succinct Extractable Concrete Commitments

- Structure of our commitment: $ct = (C, \pi_C)$
 - *C* is a string output by a standard model commitment algorithm Com
 - π_C is a straight-line extractable proof of knowledge of opening of *C*. i.e. algorithm Com-Ext(td, \overrightarrow{Q} , ct) outputs (*m*, *r*), where Com(*m*; *r*) = *C* when π_C is valid
- Ticks both boxes: "*C* commits to a witness to *x* via Com" is a well-formed NP statement, and Com-Ext(td, \overrightarrow{Q} , ct) produces such a witness

P encodes *w* as the coefficients of a polynomial *f_w* ∈ F_q[X], where
q ∈ ω(poly(κ)) is a parameter of the scheme, and the degree of *f_w* is determined by the instance



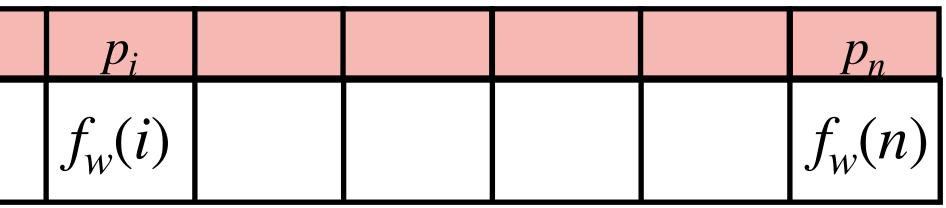
P encodes *w* as the coefficients of a polynomial *f_w* ∈ F_q[X], where
q ∈ ω(poly(κ)) is a parameter of the scheme, and the degree of *f_w* is determined by the instance

$$P \qquad f_w(1) f_w(2)$$

	$f_w(i)$					$f_w(n)$
--	----------	--	--	--	--	----------

P encodes *w* as the coefficients of a polynomial *f_w* ∈ F_q[X], where
q ∈ ω(poly(κ)) is a parameter of the scheme, and the degree of *f_w* is determined by the instance

p_1	p_2		
$f_w(1)$	$f_w(2)$		



• P encodes w as the coefficients of a polynomial $f_w \in \mathbb{F}_q[X]$, where $q \in \omega(\operatorname{poly}(\kappa))$ is a parameter of the scheme, and the degree of f_w is p_i is a $O_{\kappa}(1)$ sized proof that $f_{w}(i)$ is consistent with C determined by the instance

$$\begin{array}{c|c} p_1 & p_2 \\ f_w(1) & f_w(2) \end{array}$$

p_i			p_n
$f_w(i)$			$f_w(n)$

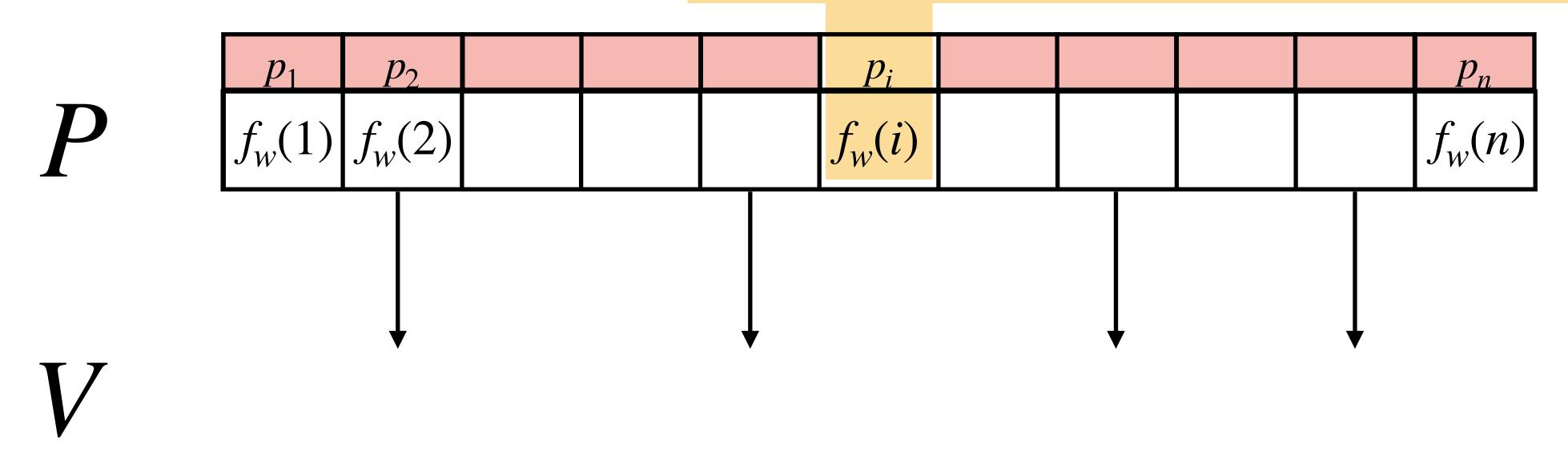
• P encodes w as the coefficients of a polynomial $f_w \in \mathbb{F}_q[X]$, where $q \in \omega(\operatorname{poly}(\kappa))$ is a parameter of the scheme, and the degree of f_w is p_i is a $O_{\kappa}(1)$ sized proof that $f_{w}(i)$ is consistent with C determined by the instance

$$p_1 p_2$$

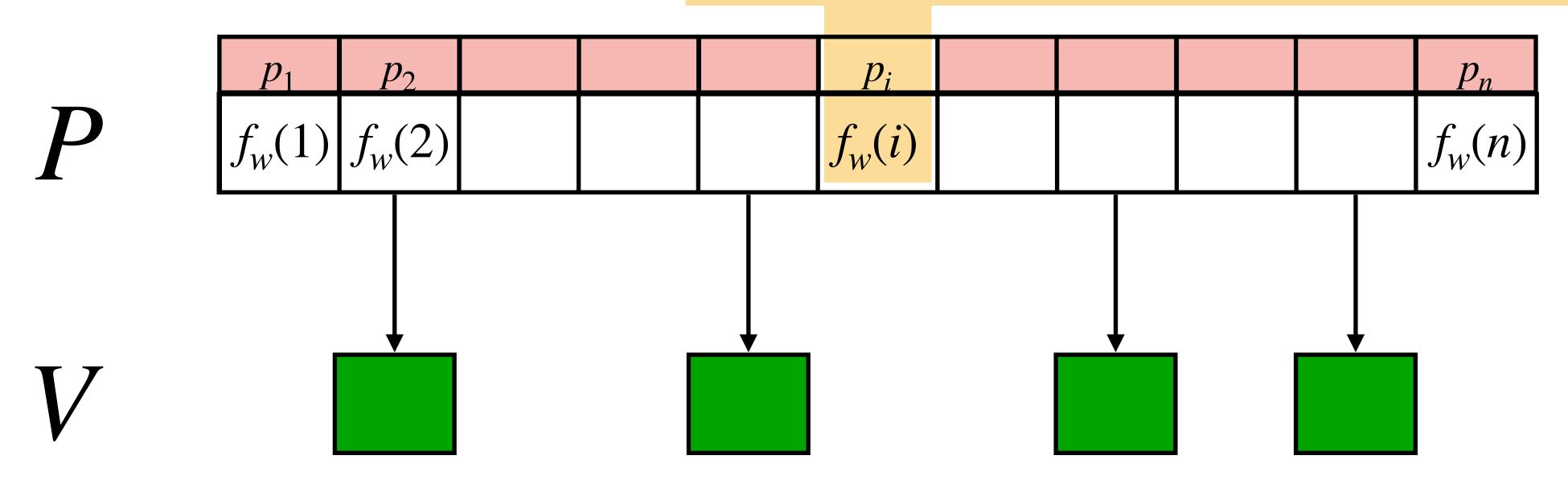
 $f_w(1) f_w(2)$

p_i			p_n
$f_w(i)$			$f_w(n)$

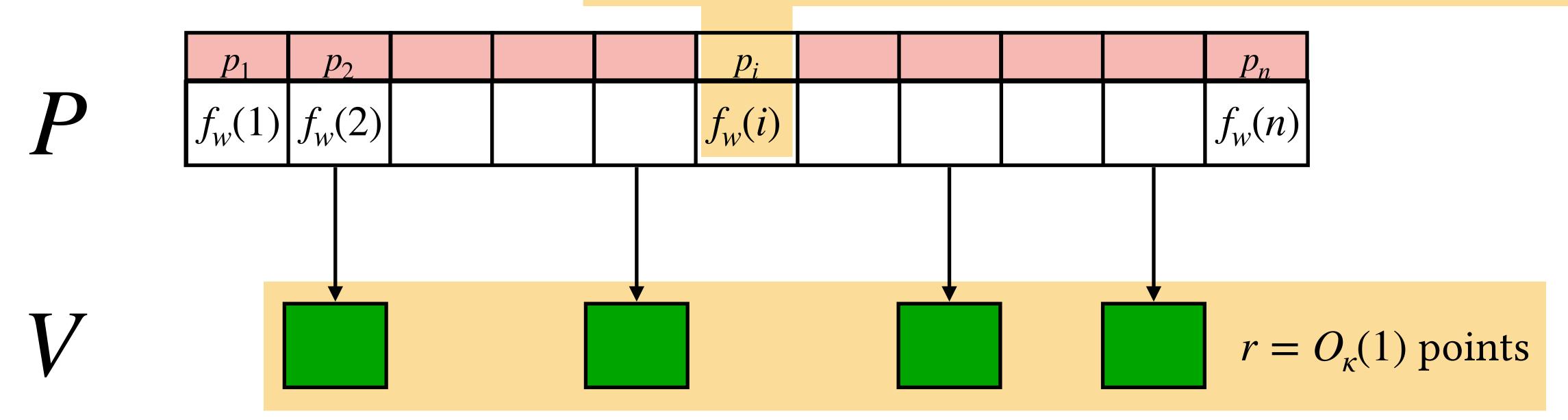
• P encodes w as the coefficients of a polynomial $f_w \in \mathbb{F}_q[X]$, where $q \in \omega(\operatorname{poly}(\kappa))$ is a parameter of the scheme, and the degree of f_w is determined by the instance p_i is a $O_{\kappa}(1)$ sized proof that $f_w(i)$ is consistent with C



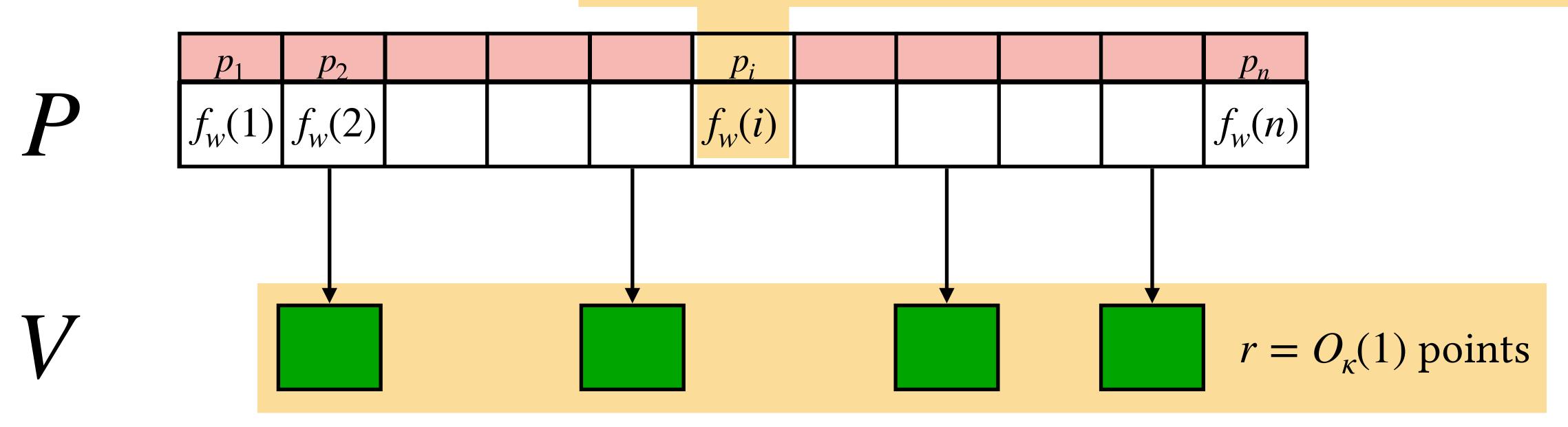
• P encodes w as the coefficients of a polynomial $f_w \in \mathbb{F}_q[X]$, where $q \in \omega(\operatorname{poly}(\kappa))$ is a parameter of the scheme, and the degree of f_w is determined by the instance p_i is a $O_{\kappa}(1)$ sized proof that $f_w(i)$ is consistent with C



• P encodes w as the coefficients of a polynomial $f_w \in \mathbb{F}_q[X]$, where $q \in \omega(\operatorname{poly}(\kappa))$ is a parameter of the scheme, and the degree of f_w is determined by the instance p_i is a $O_{\kappa}(1)$ sized proof that $f_{W}(i)$ is consistent with C

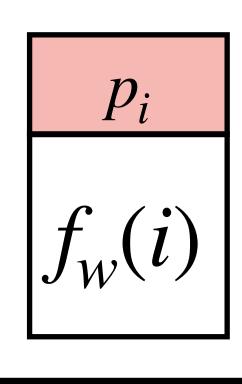


• P encodes w as the coefficients of a polynomial $f_w \in \mathbb{F}_q[X]$, where $q \in \omega(\operatorname{poly}(\kappa))$ is a parameter of the scheme, and the degree of f_w is determined by the instance p_i is a $O_{\kappa}(1)$ sized proof that $f_{W}(i)$ is consistent with C



Eq. When $r = \kappa$ and n > 2d, except with $\Pr < 2^{\kappa}$ there are at least d correct evaluations of f_{w}

- [Fischlin 05] gives a method for compiling interactive 3 round protocols to straight-line extractable proofs in the ROM
- and-choose, which turns out to be very useful in this setting



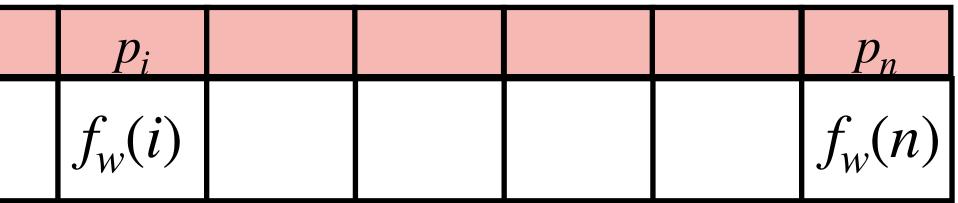
• Achieves more interesting compression properties than simple cut-

$$V^H$$

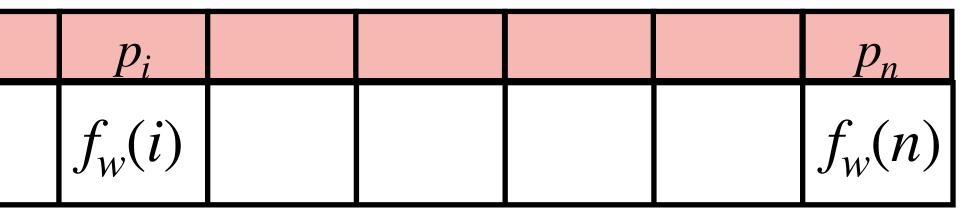
Validate
$$(C, f_w(i), p_i)$$

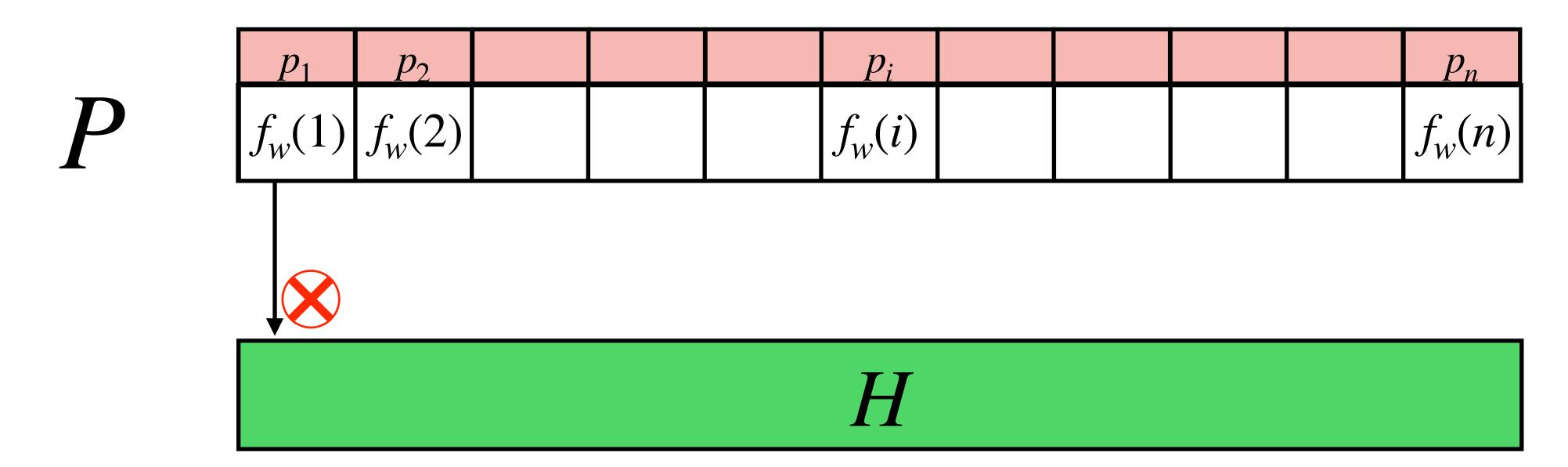
AND
 $H(f_w(i), p_i) \stackrel{?}{=} 0$

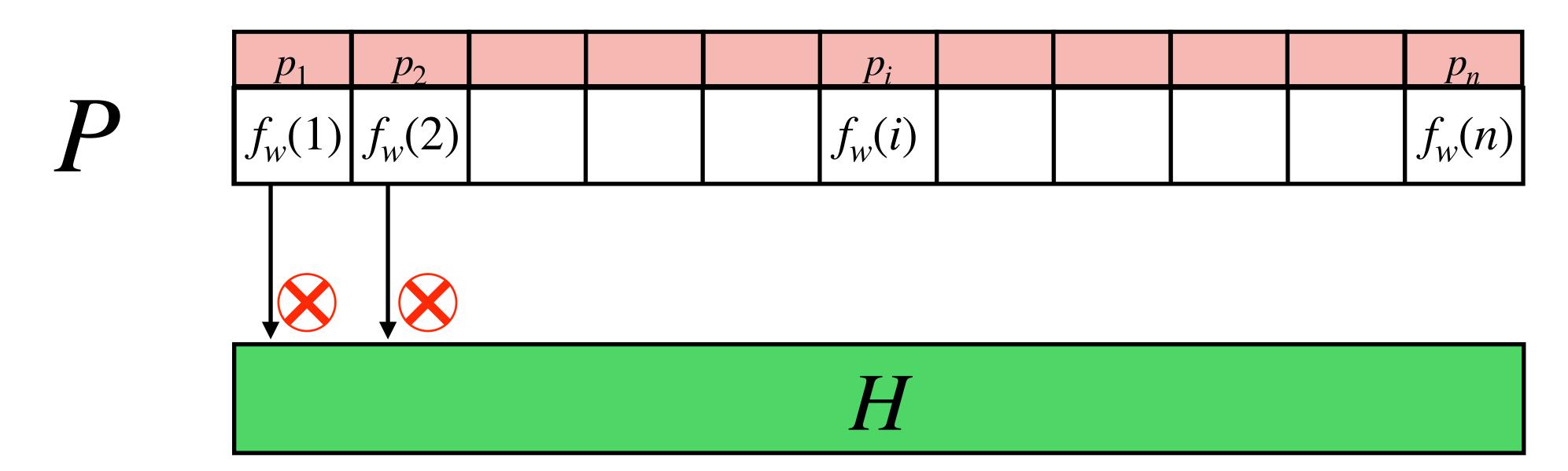
	<i>p</i> ₁	p_2		
P	$f_{w}(1)$	$f_w(2)$		

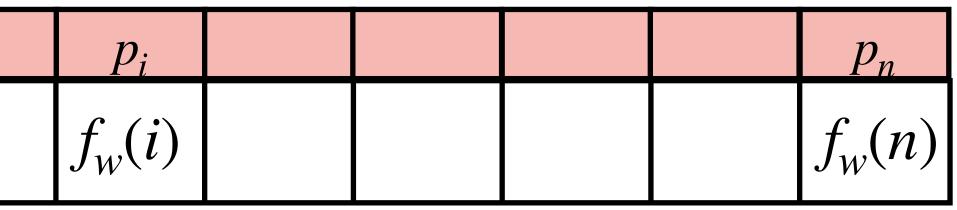


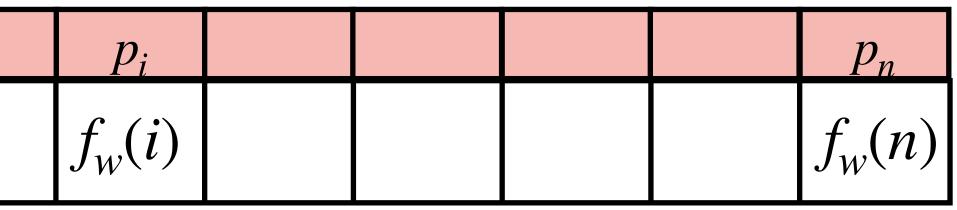
	<i>p</i> ₁	p_2		
P	$f_{w}(1)$	$f_w(2)$		



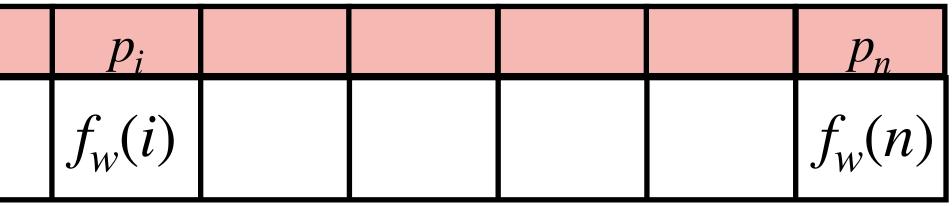


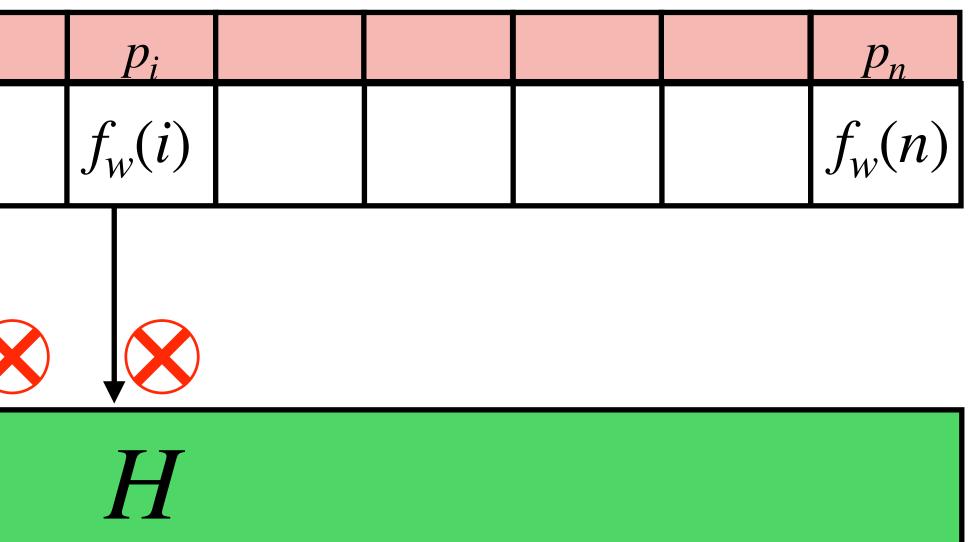


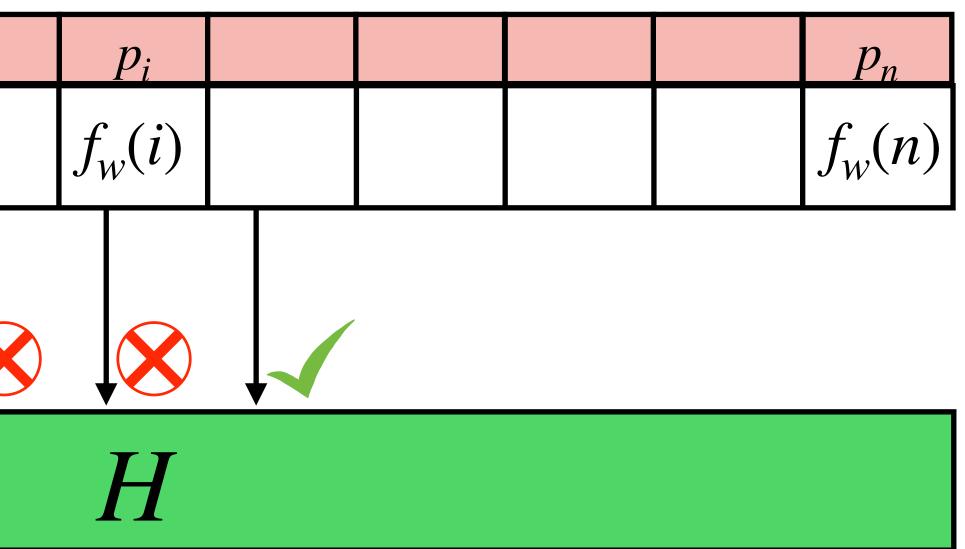


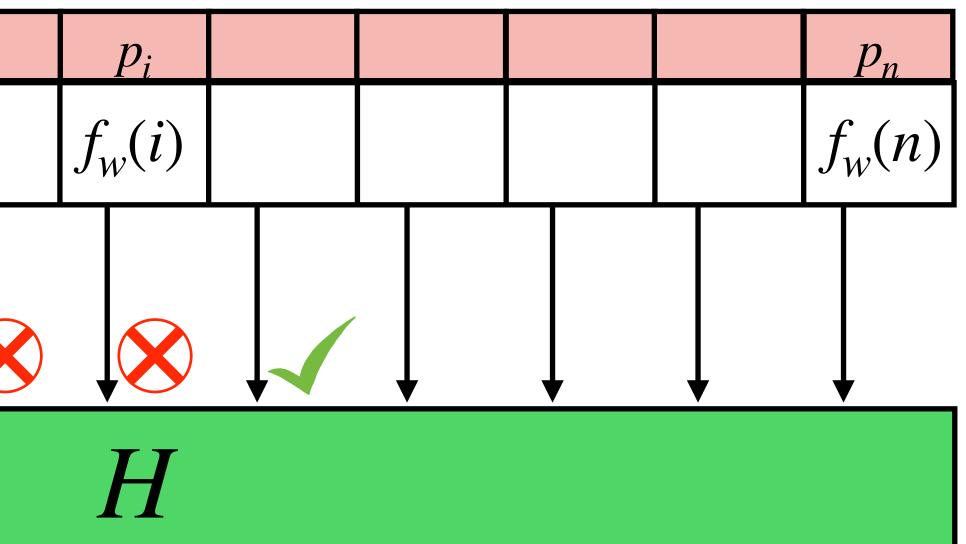


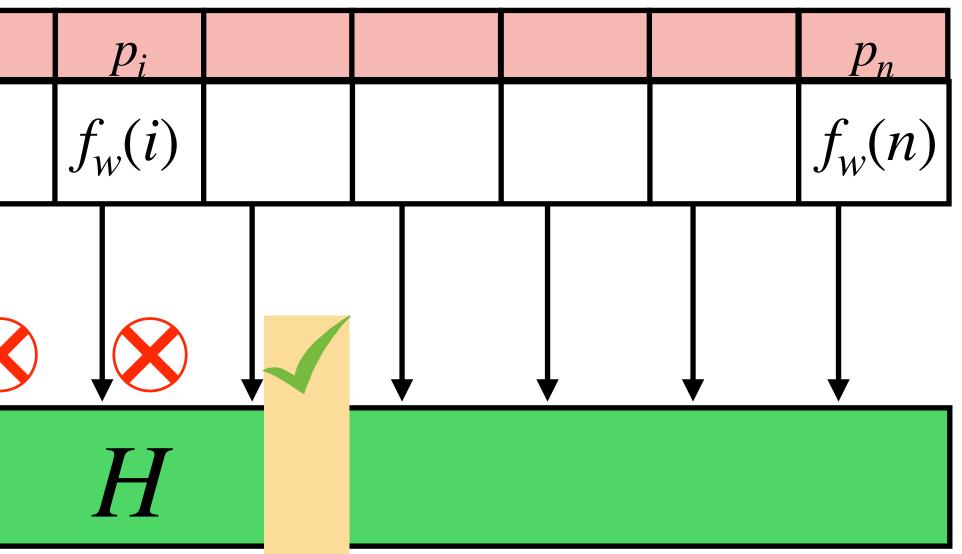
 p_{γ} P $f_w(1) f_w(2)$



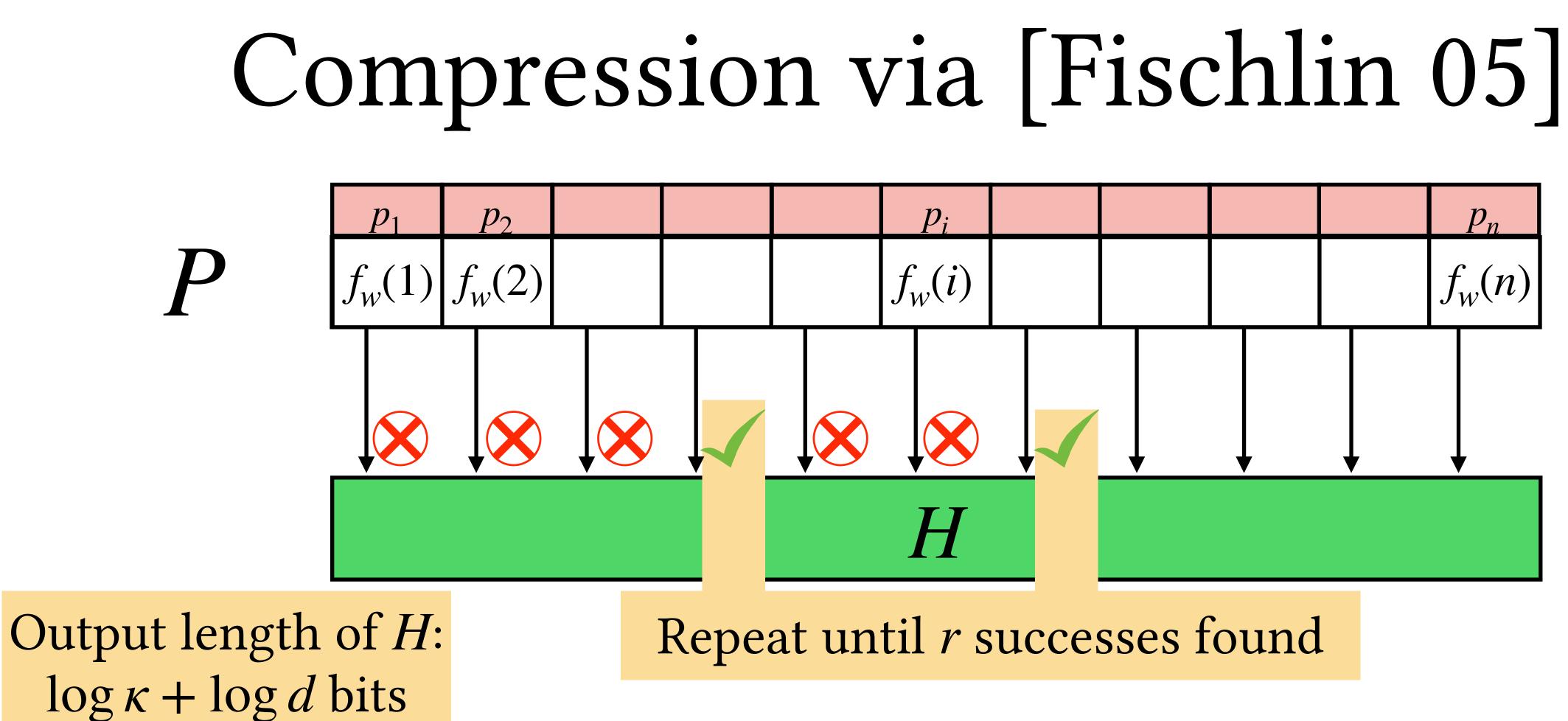


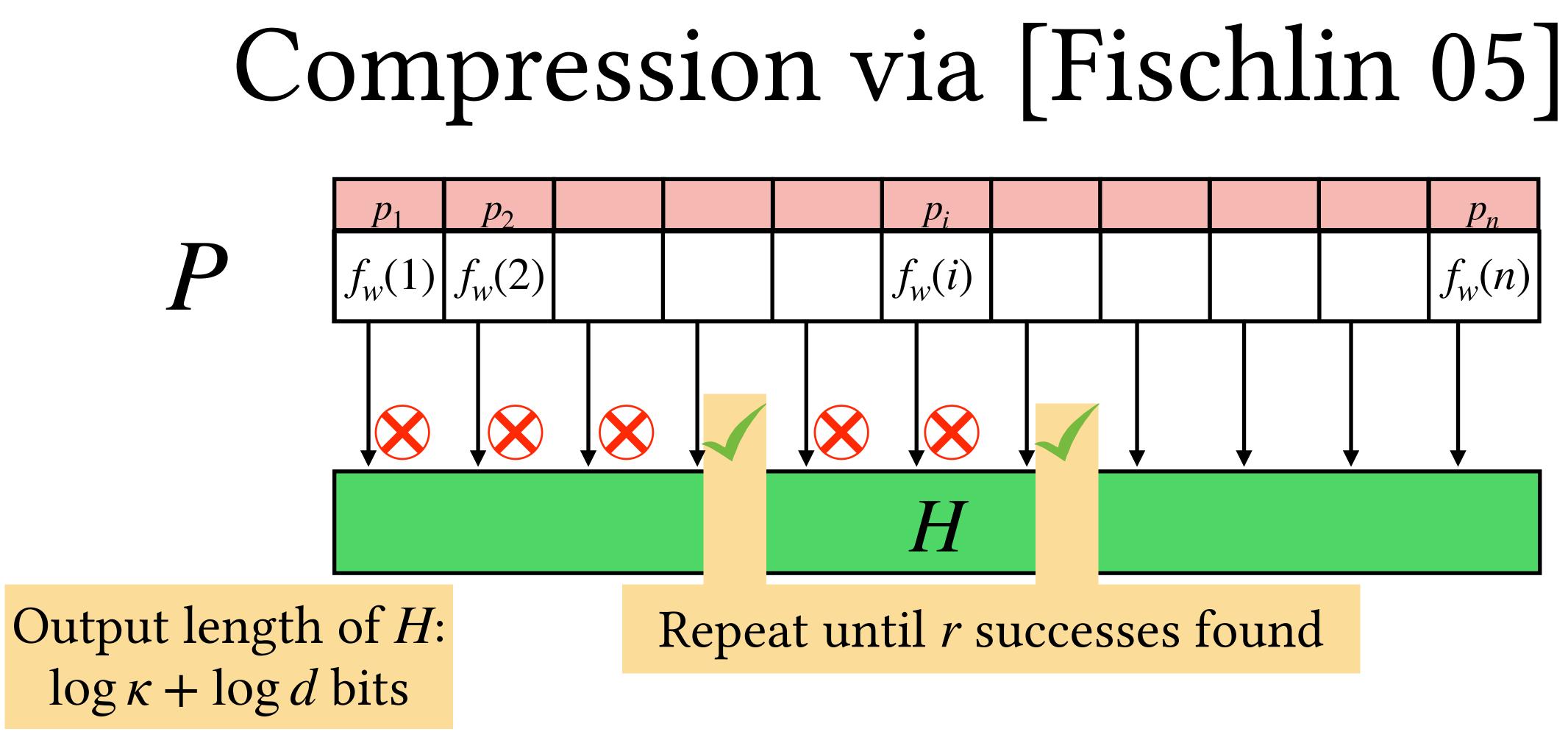




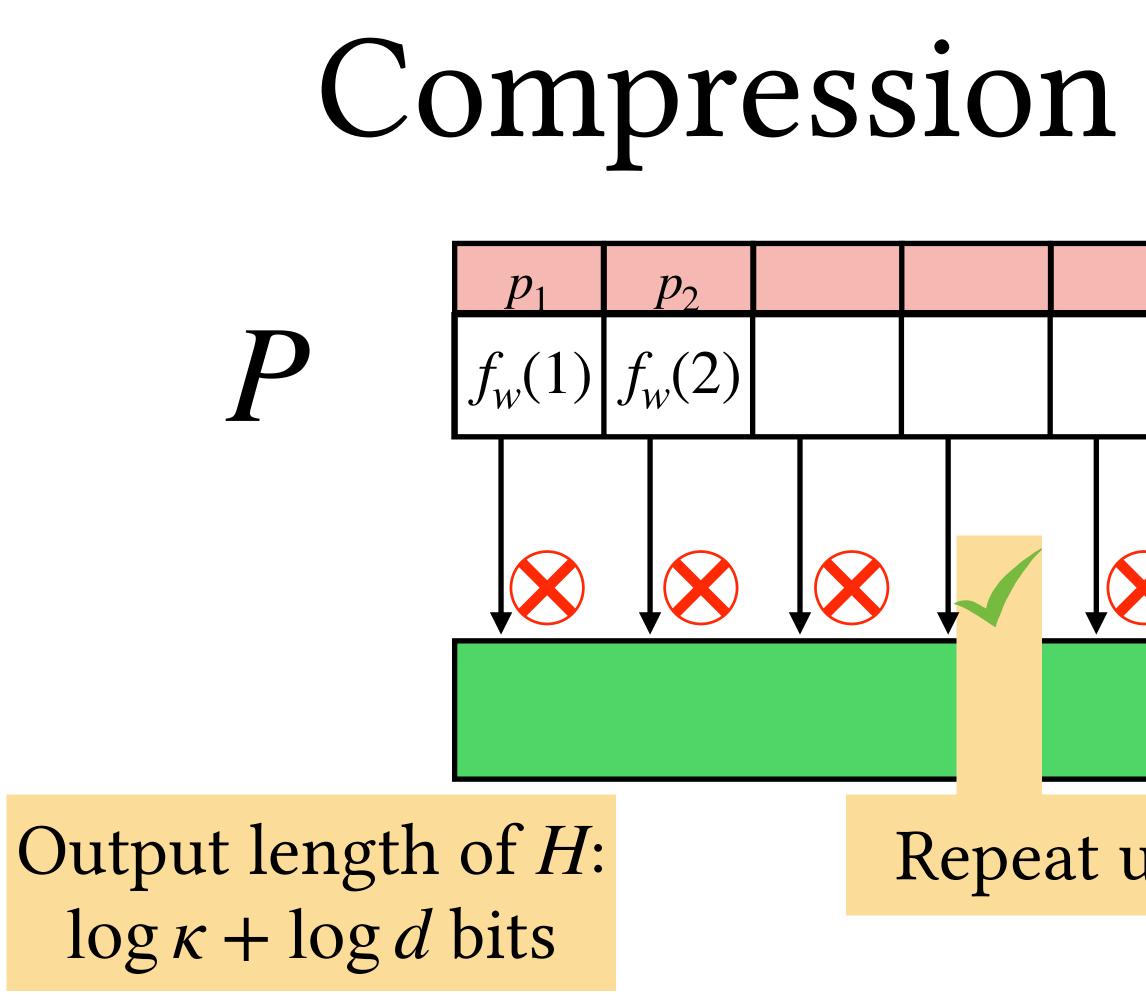


Repeat until *r* successes found





Extraction: Except with $Pr < 2^{-\kappa}$, *P* is forced to query more than *d* valid points on f_w to H



Extraction: Except with $Pr < 2^{-\kappa}$, *P* is forced to query more than *d* valid points on f_w to H

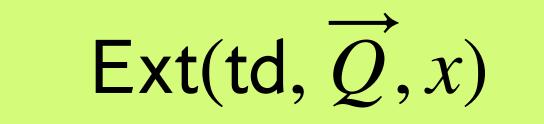
Compression via [Fischlin 05] p_n p_i $f_w(i)$ $f_w(n)$ Repeat until *r* successes found

<u>Succinctness</u>: P outputs $r \in O_{\kappa}(1)$ tuples $(p_i, f_w(i))$

τ

$P^H(x,w)$

π : "*C* = Com(*w*), and *R*(*x*, *w*) = 1"

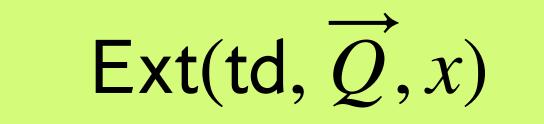


 $\operatorname{ct} = (C, \pi_C)$

τ

$P^H(x,w)$

π : "*C* = Com(*w*), and *R*(*x*, *w*) = 1" $O_{\kappa}(1) \qquad \text{ct} = (C, \pi_{C})$



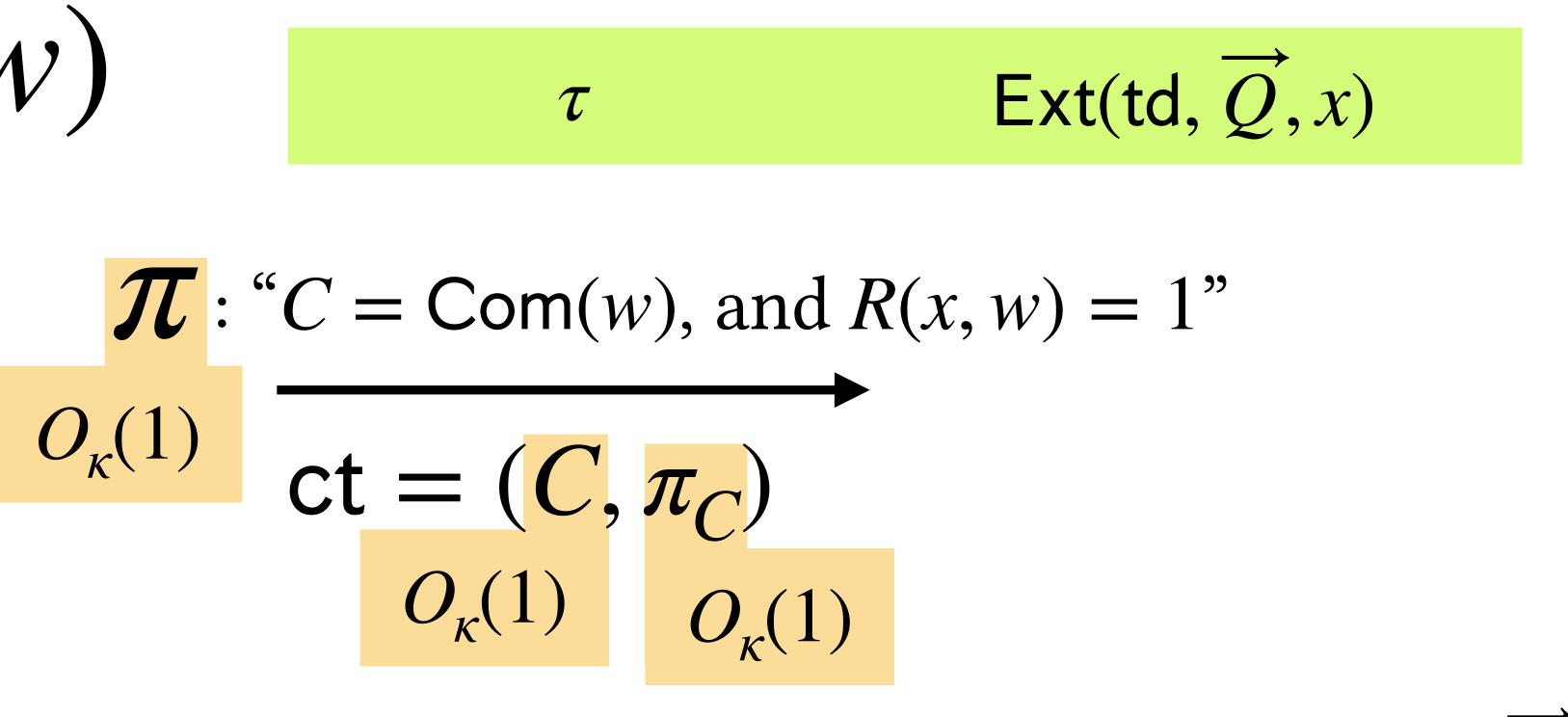
τ

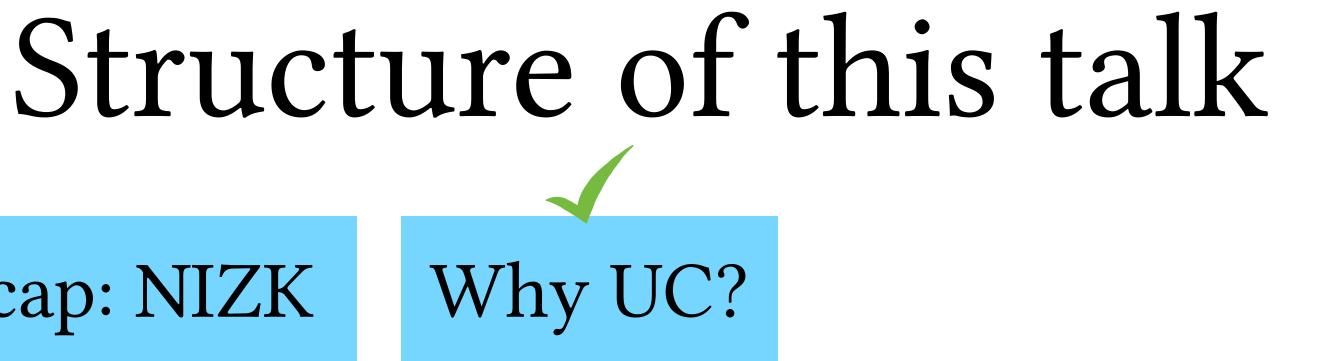
$P^H(x,w)$

π : "*C* = Com(*w*), and *R*(*x*, *w*) = 1" $O_{\kappa}(1)$ $\mathsf{ct} = (C, \pi_{C})$ $O_{\kappa}(1)$

 $\mathsf{Ext}(\mathsf{td}, \overrightarrow{Q}, x)$

$P^H(x,w)$





1

2

Quick recap: NIZK

What existing works already achieve

3

4

Relaxing to ROM

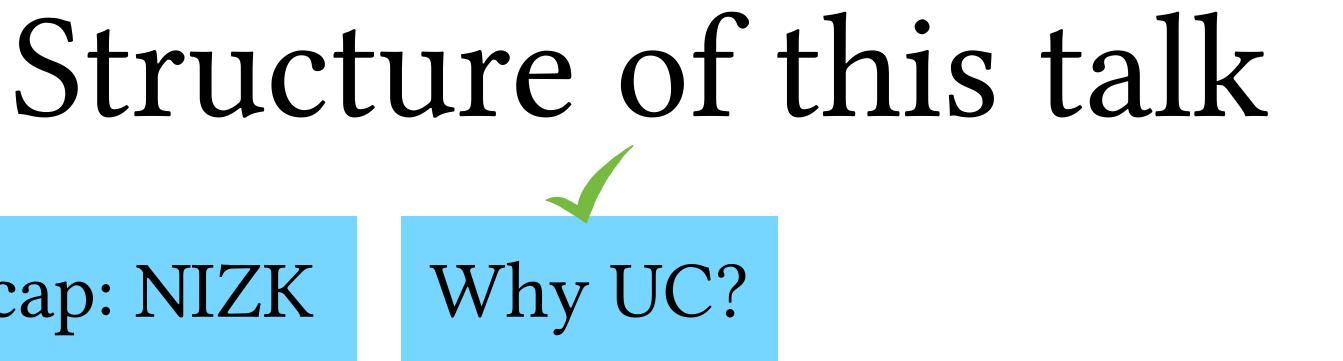
Solution template

Final remarks

What makes achieving UC difficult

A (too) simple approach

Core tool: Succinct Extractable **Concrete** Commitments



1

2

Quick recap: NIZK

What existing works already achieve

3

4

Relaxing to ROM

Solution template

Final remarks

What makes achieving UC difficult

A (too) simple approach

Core tool: Succinct Extractable **Concrete** Commitments

Missing Technicalities

- The final theorem still depends on the non-blackbox extractor (and consequently inherits any knowledge assumptions), albeit in a "UC compatible" way; the NB extractor is only invoked to argue indistinguishability of hybrid experiments
- Zero-knowledge/Simulation requires inflating the degree of f_w
- Applying Fischlin's technique is quite subtle; we need some nonstandard *uniqueness* properties from the p_i proofs (satisfied by [KZG10])

In Summary

- succinctness (ignoring security parameter terms)
- UC NIZK

• We give a compiler (in the ROM) to lift any Simulation Extractable NIZK to a UC NIZK, while preserving the same asymptotic level of

• Plugging in existing $O_{\kappa}(1)$ sized proofs, we obtain the first $O_{\kappa}(1)$ sized

• Our core technical ingredient is to construct a succinct extractable commitment scheme in the ROM via Fischlin's compression method

Questions?