
Yashvanth Kondi
Chaya Ganesh

Witness-Succinct 
Universally-Composable SNARKs

Claudio Orlandi

Mahak Pancholi Akira Takahashi
Daniel Tschudi

To appear at Eurocrypt 2023

In a Nutshell
• We present the first constant-sized Universally Composable (UC)

Non-interactive Zero-Knowledge Proofs

• Our approach:

CompilerSimulation
Extractable NIZK

UC NIZK

Trusted setup τ Trusted setup τ

Random Oracle

Our main theorem

In a Nutshell
• We present the first constant-sized Universally Composable (UC)

Non-interactive Zero-Knowledge Proofs

• Our approach:

CompilerSimulation
Extractable NIZK

UC NIZK

Trusted setup τ Trusted setup τ

Random Oracle

Witness-Succinct

Universally Composable

SNARKs

Universally Composable

SNARKs
• Type of cryptographic proof

- Succinct — proof size is smaller than circuit or witness

- Non-interactive — single message

- Argument of Knowledge — witness is “extractable” from prover

• Many constructions, with tradeoffs in proof size, prover running
time, verification cost, trusted setup, security guarantee

• This talk: focus on best possible succinctness— sized proofsOκ(1)

Security parameter terms are constants

Universally Composable

SNARKs
• Type of cryptographic proof

- Succinct — proof size is smaller than circuit or witness

- Non-interactive — single message

- Argument of Knowledge — witness is “extractable” from prover

• Many constructions, with tradeoffs in proof size, prover running
time, verification cost, trusted setup, security guarantee

• This talk: focus on best possible succinctness— sized proofsOκ(1)

Universally Composable

• Framework for concurrent security introduced in [Canetti 01]

• Guarantees composition in any context

• Modular, convenient to work with as a protocol designer

• …but is challenging to achieve

Witness-Succinct

• Witness succinctness: proof size

• Contrast with circuit succinctness:

|π | ∈ Oκ(1)

|π | = θκ(|w |) + oκ(|C |)

Not a problem when witness is small

But imagine proving statements about a
large pre-image of a public digest, etc.

Witness-Succinct

• Witness succinctness: proof size

• Contrast with circuit succinctness:

|π | ∈ Oκ(1)

|π | = θκ(|w |) + oκ(|C |)

This Talk

• What will be covered: 
Technique to lift Simulation Extractable (SE) SNARKs to UC
security at overhead

• What won’t be touched: 
How to instantiate SE SNARKs, intricacies and formalism of UC 
(this is to help understanding, not to hand-wave; please ask if
something is unclear!)

Oκ(1)

Structure of this talk
Why UC?

What existing works
already achieve

What makes achieving
UC difficult

Quick recap: NIZK

A (too) simple
approach

Relaxing to
ROM

Solution
template

Core tool: Succinct Extractable
Concrete Commitments

Final remarks

1

2

3

4

Structure of this talk
Why UC?

What existing works
already achieve

What makes achieving
UC difficult

Quick recap: NIZK

A (too) simple
approach

Relaxing to
ROM

Solution
template

Core tool: Succinct Extractable
Concrete Commitments

Final remarks

1

2

3

4

Recap: NIZK

P(x, w) V(x)
π

• Completeness: An honest proof always verifies

• Zero-knowledge: is simulatable without a witness (but a special trapdoor)

• Argument of knowledge: can be extracted from when

π

w π V(x, π) = 1

Recap: NIZK

P(x, w) V(x)
π

• Completeness: An honest proof always verifies

• Zero-knowledge: is simulatable without a witness (but a special trapdoor)

• Argument of knowledge: can be extracted from when

π

w π V(x, π) = 1

Trusted setup τ

Recap: NIZK

V(x)
π̃

• Completeness: An honest proof always verifies

• Zero-knowledge: is simulatable without a witness (but a special trapdoor)

• Argument of knowledge: can be extracted from when

π

w π V(x, π) = 1

Trusted setup τ𝖲𝗂𝗆(𝗍𝖽, x)

Recap: NIZK

V(x)
π̃

• Completeness: An honest proof always verifies

• Zero-knowledge: is simulatable without a witness (but a special trapdoor)

• Argument of knowledge: can be extracted from when

π

w π V(x, π) = 1

Trusted setup τ𝖲𝗂𝗆(𝗍𝖽, x)

Recap: NIZK

V(x)
π̃

• Completeness: An honest proof always verifies

• Zero-knowledge: is simulatable without a witness (but a special trapdoor)

• Argument of knowledge: can be extracted from when

π

w π V(x, π) = 1

Trusted setup τ𝖲𝗂𝗆(𝗍𝖽, x)

≈ π

Recap: NIZK

P(x, w) V(x)
π

• Completeness: An honest proof always verifies

• Zero-knowledge: is simulatable without a witness (but a special trapdoor)

• Argument of knowledge: can be extracted from when

π

w π V(x, π) = 1

Trusted setup τ

Recap: NIZK

P(x, w)
π

• Completeness: An honest proof always verifies

• Zero-knowledge: is simulatable without a witness (but a special trapdoor)

• Argument of knowledge: can be extracted from when

π

w π V(x, π) = 1

Trusted setup τ 𝖤𝗑𝗍(𝗍𝖽, x)

Recap: NIZK

P(x, w)
π

• Completeness: An honest proof always verifies

• Zero-knowledge: is simulatable without a witness (but a special trapdoor)

• Argument of knowledge: can be extracted from when

π

w π V(x, π) = 1

Trusted setup τ 𝖤𝗑𝗍(𝗍𝖽, x)

Recap: NIZK

P(x, w)
π

• Completeness: An honest proof always verifies

• Zero-knowledge: is simulatable without a witness (but a special trapdoor)

• Argument of knowledge: can be extracted from when

π

w π V(x, π) = 1

Trusted setup τ 𝖤𝗑𝗍(𝗍𝖽, x)

𝖮𝗎𝗍𝗉𝗎𝗍 w

Structure of this talk
Why UC?

What existing works
already achieve

What makes achieving
UC difficult

Quick recap: NIZK

A (too) simple
approach

Relaxing to
ROM

Solution
template

Core tool: Succinct Extractable
Concrete Commitments

Final remarks

1

2

3

4

Structure of this talk
Why UC?

What existing works
already achieve

What makes achieving
UC difficult

Quick recap: NIZK

A (too) simple
approach

Relaxing to
ROM

Solution
template

Core tool: Succinct Extractable
Concrete Commitments

Final remarks

1

2

3

4

Zero-knowledge in UC
• An ideal oracle that you can use in your higher level protocol

• Safe to compose in any environment

P V

FR

𝗓𝗄

b = R(x, w)

Zero-knowledge in UC
• An ideal oracle that you can use in your higher level protocol

• Safe to compose in any environment

P V

FR

𝗓𝗄

b = R(x, w)

x, w

Zero-knowledge in UC
• An ideal oracle that you can use in your higher level protocol

• Safe to compose in any environment

P V

FR

𝗓𝗄

b = R(x, w)

x, w

Zero-knowledge in UC
• An ideal oracle that you can use in your higher level protocol

• Safe to compose in any environment

P V

FR

𝗓𝗄

b = R(x, w)

x, w

Zero-knowledge in UC
• An ideal oracle that you can use in your higher level protocol

• Safe to compose in any environment

P V

FR

𝗓𝗄

b = R(x, w)

x, w

Zero-knowledge in UC
• An ideal oracle that you can use in your higher level protocol

• Safe to compose in any environment

P V

FR

𝗓𝗄

b = R(x, w)

x, w

b

What’s Needed for UC Security?

• In a nutshell, simulation and extraction must be blackbox and
straight-line

- “Knowledge” of a witness may come from a larger protocol
context / environment; rewinding the environment or looking
at its code is not conducive to proving composition

• Relevant to this talk: and that are straight-line and make
oracle use of the adversary

𝖲𝗂𝗆 𝖤𝗑𝗍

Structure of this talk
Why UC?

What existing works
already achieve

What makes achieving
UC difficult

Quick recap: NIZK

A (too) simple
approach

Relaxing to
ROM

Solution
template

Core tool: Succinct Extractable
Concrete Commitments

Final remarks

1

2

3

4

Structure of this talk
Why UC?

What existing works
already achieve

What makes achieving
UC difficult

Quick recap: NIZK

A (too) simple
approach

Relaxing to
ROM

Solution
template

Core tool: Succinct Extractable
Concrete Commitments

Final remarks

1

2

3

4

Starting Point: SE-SNARK

• The strongest non-malleability notion known to be satisfied by
SNARKs so far is Simulation Extractability (SE)

• This work is about “lifting” to full UC security

• The difference between SE and UC is subtle; lies in blackbox
extraction

• In particular, SE-SNARK extractor depends on the code of the
adversary—for each adversary , there exists an extractor 𝒜 𝖤𝗑𝗍𝒜

Simulation Extractability

𝒜 𝖲𝗂𝗆(𝗍𝖽, ⋅)

Simulation Extractability

𝒜 𝖲𝗂𝗆(𝗍𝖽, ⋅)xi

Simulation Extractability

𝒜 𝖲𝗂𝗆(𝗍𝖽, ⋅)xi

Simulation Extractability

𝒜 𝖲𝗂𝗆(𝗍𝖽, ⋅)xi

Simulation Extractability

𝒜 𝖲𝗂𝗆(𝗍𝖽, ⋅)

π̃i

xi

Simulation Extractability

𝒜 𝖲𝗂𝗆(𝗍𝖽, ⋅)

π̃i

xi

𝖮𝗎𝗍𝗉𝗎𝗍 ̂x, ̂π

Simulation Extractability

𝒜 𝖲𝗂𝗆(𝗍𝖽, ⋅)

π̃i

xi

𝖮𝗎𝗍𝗉𝗎𝗍 ̂x, ̂π
• wins if but fails to output a witness𝒜 V(̂x, ̂π) = 1 𝖤𝗑𝗍𝒜(𝗍𝖽, π)

Non-blackbox Extraction

• SE-SNARK constructions are proven secure with non-falsifiable
“knowledge assumptions”

• Roughly, a knowledge assumption purports the existence of an
extractor, which can inspect the code of an adversary to deduce useful
information

• Eg. Knowledge of Exponent (KEA): 
For any s.t. where , there exists s.t.

 where
𝒜 (X, Y) ← 𝒜(g, ga) X = Ya 𝖤𝗑𝗍𝒜

y ← 𝖤𝗑𝗍𝒜(g, ga) gy = Y

Structure of this talk
Why UC?

What existing works
already achieve

What makes achieving
UC difficult

Quick recap: NIZK

A (too) simple
approach

Relaxing to
ROM

Solution
template

Core tool: Succinct Extractable
Concrete Commitments

Final remarks

1

2

3

4

Structure of this talk
Why UC?

What existing works
already achieve

What makes achieving
UC difficult

Quick recap: NIZK

A (too) simple
approach

Relaxing to
ROM

Solution
template

Core tool: Succinct Extractable
Concrete Commitments

Final remarks

1

2

3

4

Non-blackbox Extraction to UC

• The existence of means that an environment that
produces a SNARK must fundamentally know a witness

• However can not be invoked

• Lifting this SNARK to a UC NIZK is then a matter of forcing the
environment to use this knowledge within the protocol context

𝖤𝗑𝗍𝒵 𝒵

𝖤𝗑𝗍𝒵

Simple Approach: Encrypt-then-prove

P(x, w) V(x)
π
τ

Simple Approach: Encrypt-then-prove

P(x, w) V(x)
π
 , τ 𝗉𝗄

Simple Approach: Encrypt-then-prove

P(x, w) V(x)
π
 , τ 𝗉𝗄

𝖼𝗍 = 𝖤𝗇𝖼𝗉𝗄(w)

Simple Approach: Encrypt-then-prove

P(x, w) V(x)
π

 , τ 𝗉𝗄

𝖼𝗍 = 𝖤𝗇𝖼𝗉𝗄(w)

: “ encrypts a witness to ”𝖼𝗍 x

Simple Approach: Encrypt-then-prove

P(x, w) , τ 𝗉𝗄

𝖼𝗍 = 𝖤𝗇𝖼𝗉𝗄(w)

: “ encrypts a witness to ”𝖼𝗍 x

𝖤𝗑𝗍(𝗌𝗄, x)

π

Simple Approach: Encrypt-then-prove

P(x, w) , τ 𝗉𝗄

𝖼𝗍 = 𝖤𝗇𝖼𝗉𝗄(w)

: “ encrypts a witness to ”𝖼𝗍 x

𝖤𝗑𝗍(𝗌𝗄, x)

π

Simple Approach: Encrypt-then-prove

P(x, w) , τ 𝗉𝗄

𝖼𝗍 = 𝖤𝗇𝖼𝗉𝗄(w)

: “ encrypts a witness to ”𝖼𝗍 x

𝖤𝗑𝗍(𝗌𝗄, x)

w = 𝖣𝖾𝖼(𝗌𝗄, 𝖼𝗍)

π

Simple Approach: Encrypt-then-prove

P(x, w) , τ 𝗉𝗄

𝖼𝗍 = 𝖤𝗇𝖼𝗉𝗄(w)

: “ encrypts a witness to ”𝖼𝗍 x

• Validity of follows from correctness of
encryption+SNARK soundness

w

𝖤𝗑𝗍(𝗌𝗄, x)

w = 𝖣𝖾𝖼(𝗌𝗄, 𝖼𝗍)

π

Oκ(1)

O(|w |)Circuit succinct

Simple Approach: Encrypt-then-prove

P(x, w) , τ 𝗉𝗄

𝖼𝗍 = 𝖤𝗇𝖼𝗉𝗄(w)

: “ encrypts a witness to ”𝖼𝗍 x

• Validity of follows from correctness of
encryption+SNARK soundness

w

𝖤𝗑𝗍(𝗌𝗄, x)

w = 𝖣𝖾𝖼(𝗌𝗄, 𝖼𝗍)

π

Simple Approach: Encrypt-then-prove

• Approach taken by [DDOPS01] for simulation-sound NIZK, and later
C C [KZMQCPRsS15] to obtain circuit-succinct UC SNARK

• However encrypting the witness inherently limits this approach to
 sized proofs

• [KZMQCPRsS15]: “no known UC-secure zero-knowledge proof
construction that is circuit and witness-succinct, even under non-
standard assumptions”

•

Ø Ø

θ(|w |)

What Assumptions are Reasonable?
• The extractor clearly needs a trapdoor unavailable to the real verifier

• A Common Reference String trapdoor alone is insufficient [CGKS22]

P(x, w)
π

Trusted setup τ 𝖤𝗑𝗍(𝗍𝖽, x)

What Assumptions are Reasonable?
• The extractor clearly needs a trapdoor unavailable to the real verifier

• A Common Reference String trapdoor alone is insufficient [CGKS22]

P(x, w)
π

Trusted setup τ 𝖤𝗑𝗍(𝗍𝖽, x)

What Assumptions are Reasonable?
• The extractor clearly needs a trapdoor unavailable to the real verifier

• A Common Reference String trapdoor alone is insufficient [CGKS22]

P(x, w)
π

Trusted setup τ 𝖤𝗑𝗍(𝗍𝖽, x)

𝖮𝗎𝗍𝗉𝗎𝗍 w

Oκ(1)

Compressed representation of w

What Assumptions are Reasonable?
• The extractor clearly needs a trapdoor unavailable to the real verifier

• A Common Reference String trapdoor alone is insufficient [CGKS22]

P(x, w)
π

Trusted setup τ 𝖤𝗑𝗍(𝗍𝖽, x)

𝖮𝗎𝗍𝗉𝗎𝗍 w

What Assumptions are Reasonable?
• The extractor clearly needs a trapdoor unavailable to the real verifier

• A Common Reference String trapdoor alone is insufficient [CGKS22]

• We need to relax the problem, i.e. grant the extractor further powers/
trapdoors (that are still permissible in the UC setting)

• Random Oracle Model is a good fit; easy to model in UC, and
practitioners have experience with heuristic instantiations

Structure of this talk
Why UC?

What existing works
already achieve

What makes achieving
UC difficult

Quick recap: NIZK

A (too) simple
approach

Relaxing to
ROM

Solution
template

Core tool: Succinct Extractable
Concrete Commitments

Final remarks

1

2

3

4

Structure of this talk
Why UC?

What existing works
already achieve

What makes achieving
UC difficult

Quick recap: NIZK

A (too) simple
approach

Relaxing to
ROM

Solution
template

Core tool: Succinct Extractable
Concrete Commitments

Final remarks

1

2

3

4

NIZK in the ROM
• and additionally make use of a common random oracle P V H

PH(x, w) VH(x)
π
τ

NIZK in the ROM
• and additionally make use of a common random oracle P V H

PH(x, w)
π
τ 𝖤𝗑𝗍(𝗍𝖽, ⃗Q , x)

NIZK in the ROM
• and additionally make use of a common random oracle P V H

PH(x, w)
π
τ 𝖤𝗑𝗍(𝗍𝖽, ⃗Q , x)

𝖮𝗎𝗍𝗉𝗎𝗍 w

NIZK in the ROM
• and additionally make use of a common random oracle P V H

PH(x, w)
π
τ 𝖤𝗑𝗍(𝗍𝖽, ⃗Q , x)

𝖮𝗎𝗍𝗉𝗎𝗍 w

NIZK in the ROM
• and additionally make use of a common random oracle P V H

PH(x, w)
π
τ 𝖤𝗑𝗍(𝗍𝖽, ⃗Q , x)

𝖮𝗎𝗍𝗉𝗎𝗍 w

 is the list of queries made to ⃗Q P H

Oκ(1)

O(|w |)

Improving the Simple Approach

PH(x, w) , τ 𝗉𝗄

𝖼𝗍 = 𝖤𝗇𝖼𝗉𝗄(w)

: “ encrypts a witness to ”𝖼𝗍 xπ
VH(x)

Oκ(1)

Improving the Simple Approach

 , τ 𝗉𝗄

𝖼𝗍 = 𝖤𝗇𝖼𝗉𝗄(w)

: “ encrypts a witness to ”𝖼𝗍 xπ commits to

𝖢𝗈𝗆𝗆𝗂𝗍
Oκ(1)

PH(x, w) VH(x)

Oκ(1)

Improving the Simple Approach

 , τ 𝗉𝗄

𝖼𝗍 = 𝖤𝗇𝖼𝗉𝗄(w)

: “ encrypts a witness to ”𝖼𝗍 xπ commits to

𝖢𝗈𝗆𝗆𝗂𝗍
Oκ(1)

PH(x, w) 𝖤𝗑𝗍(𝗍𝖽, ⃗Q , x)

Now how to extract?

Extracting from the Commitment
• Extractable commitments are straightforward in the ROM:

- to commit to with randomness

- Given , : search for such that

• But now “ commits to a witness to ” is not a well-formed NP
statement, as does not have a circuit description

• Challenge: construct a commitment scheme that is succinct,
extractable, and has a meaningful circuit representation

𝖼𝗍 = H(m, r) m r

𝖼𝗍 ⃗Q (m, r) ∈ ⃗Q H(m, r) = 𝖼𝗍

𝖼𝗍 x
H

Structure of this talk
Why UC?

What existing works
already achieve

What makes achieving
UC difficult

Quick recap: NIZK

A (too) simple
approach

Relaxing to
ROM

Solution
template

Core tool: Succinct Extractable
Concrete Commitments

Final remarks

1

2

3

4

Structure of this talk
Why UC?

What existing works
already achieve

What makes achieving
UC difficult

Quick recap: NIZK

A (too) simple
approach

Relaxing to
ROM

Solution
template

Core tool: Succinct Extractable
Concrete Commitments

Final remarks

1

2

3

4

Succinct Extractable Concrete Commitments

• Structure of our commitment:

- is a string output by a standard model commitment algorithm

- is a straight-line extractable proof of knowledge of opening of . 
i.e. algorithm outputs , where

 when is valid

• Ticks both boxes: “ commits to a witness to via ” is a well-
formed NP statement, and produces such a witness

𝖼𝗍 = (C, πC)

C 𝖢𝗈𝗆

πC C
𝖢𝗈𝗆-𝖤𝗑𝗍(𝗍𝖽, ⃗Q , 𝖼𝗍) (m, r)

𝖢𝗈𝗆(m; r) = C πC

C x 𝖢𝗈𝗆
𝖢𝗈𝗆-𝖤𝗑𝗍(𝗍𝖽, ⃗Q , 𝖼𝗍)

• encodes as the coefficients of a polynomial , where
 is a parameter of the scheme, and the degree of is

determined by the instance

P w fw ∈ 𝔽q[X]
q ∈ ω(𝗉𝗈𝗅𝗒(κ)) fw

P

Constructing 𝖼𝗍 = (C, πC)

• encodes as the coefficients of a polynomial , where
 is a parameter of the scheme, and the degree of is

determined by the instance

P w fw ∈ 𝔽q[X]
q ∈ ω(𝗉𝗈𝗅𝗒(κ)) fw

P fw(1) fw(n)fw(i)fw(2)

Constructing 𝖼𝗍 = (C, πC)

• encodes as the coefficients of a polynomial , where
 is a parameter of the scheme, and the degree of is

determined by the instance

P w fw ∈ 𝔽q[X]
q ∈ ω(𝗉𝗈𝗅𝗒(κ)) fw

P fw(1) fw(n)fw(i)fw(2)
p1 p2 pi pn

Constructing 𝖼𝗍 = (C, πC)

Constructing 𝖼𝗍 = (C, πC)
• encodes as the coefficients of a polynomial , where

 is a parameter of the scheme, and the degree of is
determined by the instance

P w fw ∈ 𝔽q[X]
q ∈ ω(𝗉𝗈𝗅𝗒(κ)) fw

P fw(1) fw(n)fw(i)fw(2)
p1 p2 pi pn

 is a sized proof that is consistent with pi Oκ(1) fw(i) C

Constructing 𝖼𝗍 = (C, πC)
• encodes as the coefficients of a polynomial , where

 is a parameter of the scheme, and the degree of is
determined by the instance

P w fw ∈ 𝔽q[X]
q ∈ ω(𝗉𝗈𝗅𝗒(κ)) fw

P fw(1) fw(n)fw(i)fw(2)
p1 p2 pi pn

V

 is a sized proof that is consistent with pi Oκ(1) fw(i) C

Constructing 𝖼𝗍 = (C, πC)
• encodes as the coefficients of a polynomial , where

 is a parameter of the scheme, and the degree of is
determined by the instance

P w fw ∈ 𝔽q[X]
q ∈ ω(𝗉𝗈𝗅𝗒(κ)) fw

P fw(1) fw(n)fw(i)fw(2)
p1 p2 pi pn

V

 is a sized proof that is consistent with pi Oκ(1) fw(i) C

Constructing 𝖼𝗍 = (C, πC)
• encodes as the coefficients of a polynomial , where

 is a parameter of the scheme, and the degree of is
determined by the instance

P w fw ∈ 𝔽q[X]
q ∈ ω(𝗉𝗈𝗅𝗒(κ)) fw

P fw(1) fw(n)fw(i)fw(2)
p1 p2 pi pn

V

 is a sized proof that is consistent with pi Oκ(1) fw(i) C

 pointsr = Oκ(1)

Constructing 𝖼𝗍 = (C, πC)
• encodes as the coefficients of a polynomial , where

 is a parameter of the scheme, and the degree of is
determined by the instance

P w fw ∈ 𝔽q[X]
q ∈ ω(𝗉𝗈𝗅𝗒(κ)) fw

P fw(1) fw(n)fw(i)fw(2)
p1 p2 pi pn

V

 is a sized proof that is consistent with pi Oκ(1) fw(i) C

 pointsr = Oκ(1)

Constructing 𝖼𝗍 = (C, πC)
• encodes as the coefficients of a polynomial , where

 is a parameter of the scheme, and the degree of is
determined by the instance

P w fw ∈ 𝔽q[X]
q ∈ ω(𝗉𝗈𝗅𝗒(κ)) fw

P fw(1) fw(n)fw(i)fw(2)
p1 p2 pi pn

V

 is a sized proof that is consistent with pi Oκ(1) fw(i) C

Eg. When and , except with there are at least correct evaluations of r = κ n > 2d 𝖯𝗋 < 2κ d fw

Compression via [Fischlin 05]
• [Fischlin 05] gives a method for compiling interactive 3 round

protocols to straight-line extractable proofs in the ROM

• Achieves more interesting compression properties than simple cut-
and-choose, which turns out to be very useful in this setting

PH VH
pi

fw(i) Validate (C, fw(i), pi)
AND

 H(fw(i), pi)
?= 0

Compression via [Fischlin 05]

P fw(1) fw(n)fw(i)fw(2)
p1 p2 pi pn

H

Compression via [Fischlin 05]

P fw(1) fw(n)fw(i)fw(2)
p1 p2 pi pn

H

Compression via [Fischlin 05]

P fw(1) fw(n)fw(i)fw(2)
p1 p2 pi pn

H

Compression via [Fischlin 05]

P fw(1) fw(n)fw(i)fw(2)
p1 p2 pi pn

H

Compression via [Fischlin 05]

P fw(1) fw(n)fw(i)fw(2)
p1 p2 pi pn

H

Compression via [Fischlin 05]

P fw(1) fw(n)fw(i)fw(2)
p1 p2 pi pn

H

Compression via [Fischlin 05]

P fw(1) fw(n)fw(i)fw(2)
p1 p2 pi pn

H

Compression via [Fischlin 05]

P fw(1) fw(n)fw(i)fw(2)
p1 p2 pi pn

H

Compression via [Fischlin 05]

P fw(1) fw(n)fw(i)fw(2)
p1 p2 pi pn

H

Compression via [Fischlin 05]

P fw(1) fw(n)fw(i)fw(2)
p1 p2 pi pn

H
Repeat until successes foundr

Compression via [Fischlin 05]

P fw(1) fw(n)fw(i)fw(2)
p1 p2 pi pn

H
Repeat until successes foundr

Compression via [Fischlin 05]

P fw(1) fw(n)fw(i)fw(2)
p1 p2 pi pn

Output length of :
 bits

H
log κ + log d

H
Repeat until successes foundr

Compression via [Fischlin 05]

P fw(1) fw(n)fw(i)fw(2)
p1 p2 pi pn

Extraction: Except with ,
 is forced to query more than

valid points on to

𝖯𝗋 < 2−κ

P d
fw H

Output length of :
 bits

H
log κ + log d

H
Repeat until successes foundr

Compression via [Fischlin 05]

P fw(1) fw(n)fw(i)fw(2)
p1 p2 pi pn

Extraction: Except with ,
 is forced to query more than

valid points on to

𝖯𝗋 < 2−κ

P d
fw H

Output length of :
 bits

H
log κ + log d

Succinctness: outputs
tuples

P r ∈ Oκ(1)
(pi, fw(i))

Putting it Together

τ

𝖼𝗍 = (C, πC)

: “ , and ”C = 𝖢𝗈𝗆(w) R(x, w) = 1π
PH(x, w) 𝖤𝗑𝗍(𝗍𝖽, ⃗Q , x)

Output 𝖢𝗈𝗆-𝖤𝗑𝗍(𝗍𝖽, ⃗Q , 𝖼𝗍)

Oκ(1)

Putting it Together

τ

𝖼𝗍 = (C, πC)

: “ , and ”C = 𝖢𝗈𝗆(w) R(x, w) = 1π
PH(x, w) 𝖤𝗑𝗍(𝗍𝖽, ⃗Q , x)

Output 𝖢𝗈𝗆-𝖤𝗑𝗍(𝗍𝖽, ⃗Q , 𝖼𝗍)

Oκ(1)

Oκ(1)

Putting it Together

τ

𝖼𝗍 = (C, πC)

: “ , and ”C = 𝖢𝗈𝗆(w) R(x, w) = 1π
PH(x, w) 𝖤𝗑𝗍(𝗍𝖽, ⃗Q , x)

Output 𝖢𝗈𝗆-𝖤𝗑𝗍(𝗍𝖽, ⃗Q , 𝖼𝗍)

Oκ(1) Oκ(1)

Oκ(1)

Putting it Together

τ

𝖼𝗍 = (C, πC)

: “ , and ”C = 𝖢𝗈𝗆(w) R(x, w) = 1π
PH(x, w) 𝖤𝗑𝗍(𝗍𝖽, ⃗Q , x)

Output 𝖢𝗈𝗆-𝖤𝗑𝗍(𝗍𝖽, ⃗Q , 𝖼𝗍)

Structure of this talk
Why UC?

What existing works
already achieve

What makes achieving
UC difficult

Quick recap: NIZK

A (too) simple
approach

Relaxing to
ROM

Solution
template

Core tool: Succinct Extractable
Concrete Commitments

Final remarks

1

2

3

4

Structure of this talk
Why UC?

What existing works
already achieve

What makes achieving
UC difficult

Quick recap: NIZK

A (too) simple
approach

Relaxing to
ROM

Solution
template

Core tool: Succinct Extractable
Concrete Commitments

Final remarks

1

2

3

4

Missing Technicalities

• The final theorem still depends on the non-blackbox extractor (and
consequently inherits any knowledge assumptions), albeit in a “UC
compatible” way; the NB extractor is only invoked to argue
indistinguishability of hybrid experiments

• Zero-knowledge/Simulation requires inflating the degree of

• Applying Fischlin’s technique is quite subtle; we need some non-
standard uniqueness properties from the proofs (satisfied by
[KZG10])

fw

pi

In Summary
• We give a compiler (in the ROM) to lift any Simulation Extractable

NIZK to a UC NIZK, while preserving the same asymptotic level of
succinctness (ignoring security parameter terms)

• Plugging in existing sized proofs, we obtain the first sized
UC NIZK

• Our core technical ingredient is to construct a succinct extractable
commitment scheme in the ROM via Fischlin’s compression method

Oκ(1) Oκ(1)

Questions?

