Two-Round Stateless Deterministic Two-Party Schnorr Signatures from Pseudorandom Correlation Functions

Yashvanth KondiClaudio OrlandiLawrence Roy

UNIVERSITY

Cryptographic Keys: Valuable Targets

Single point of failure

Cryptographic Keys: Valuable Targets

Single point of failure

Cryptographic Keys: Valuable Targets

Single point of failure

Threshold Signatures

Distributed signing: Distribute the risk

Threshold Signatures

Distributed signing: Distribute the risk

This Work

- resets
- <u>Conceptual insight</u>: Just as PRFs derandomize plain signing, distributed signing
- Two constructions, useful tradeoffs relative to prior work
- assumptions

• Derandomized Two-party Schnorr Signing w. resilience to state

Pseudorandom Correlation Functions natively derandomize

• Bonus (not explored in this talk): two-round signing w. standard

Schnorr Key Generation

secret kept private

- SchnorrKeyGen(\mathbb{G}, G, q) :
 - $\mathbf{sk} \leftarrow \mathbb{Z}_q$
 - $\mathsf{PK} = \mathsf{sk} \cdot G$
 - output (sk, PK)

Public Key: exposed to the outside world

Schnorr Signing

SchnorrKeyGen(\mathbb{G}, G, q) : $\mathbf{sk} \leftarrow \mathbb{Z}_q$ $\mathsf{PK} = \mathsf{sk} \cdot G$ output (sk, PK)

Distributing Schnorr Signing

Linear function of *k*, sk Easy to distribute with most natural (i.e. linear) secret sharing schemes

- SchnorrSign(sk, m) :
 - $k \leftarrow \mathbb{Z}_q$
 - $R = k \cdot G$
 - $e = H(\mathbf{R} \| m)$
 - $s = k \mathbf{sk} \cdot e$
 - $\sigma = (s, R)$
 - output σ

Any linear secret sharing

EdDSA

- <u>Edwards-curve</u> <u>Digital</u> <u>Signature</u> <u>Algorithm</u>
- Variant of Schnorr's signature instantiated with careful choice of parameters
- Widely deployed, and increasing in use

• Devised by Bernstein, Duif, Lange, Schwabe, and Yang in 2011

- (Distributed) KeyGeneration of EdDSA is identical to Schnorr
- EdDSA signing involves some non-linearity

- $e = H(\mathbf{R} \| m)$
- $s = k \mathbf{sk} \cdot e$
- $\sigma = (s, R)$ output σ

- SchnorrSign(sk, m) :
 - $k \leftarrow \mathbb{Z}_q$ $R = k \cdot G$

- (Distributed) KeyGeneration of EdDSA is identical to Schnorr
- EdDSA signing involves some non-linearity

SchnorrSign(sk, m) :

$$k \leftarrow \mathbb{Z}_q$$
$$R = k \cdot G$$
$$e = H(R||m)$$
$$s = k - sk \cdot e$$
$$\sigma = (s, R)$$
output σ

- (Distributed) KeyGeneration of EdDSA is identical to Schnorr
- EdDSA signing involves some non-linearity

SchnorrSign(sk, m) :

$$k \leftarrow \mathbb{Z}_q$$
$$R = k \cdot G$$
$$e = H(R||m)$$
$$s = k - sk \cdot e$$
$$\sigma = (s, R)$$
output σ

EdDSASign(sk, m) : $k = F(\mathbf{sk}, m)$ $R = k \cdot G$ $e = H(\mathbf{R} \| m)$ $s = k - \mathbf{sk} \cdot e$ $\sigma = (s, R)$ output σ

- (Distributed) KeyGeneration of EdDSA is identical to Schnorr
- EdDSA signing involves some non-linearity

SchnorrSign(sk, m) :

$$k \leftarrow \mathbb{Z}_q$$
$$R = k \cdot G$$
$$e = H(R||m)$$
$$s = k - sk \cdot e$$
$$\sigma = (s, R)$$
output σ

Pseudorandom Function

EdDSASign(sk, m) : Painful to distribute $k = F(\mathbf{sk}, m)$ $R = k \cdot G$ $e = H(\mathbf{R} \| m)$ $s = k - \mathbf{sk} \cdot e$ $\sigma = (s, R)$ output σ

Why does EdDSA have non-linear signing?

- Each Schnorr signature requires a fresh, one-time nonce (k, R)
- Security is extremely sensitive to the distribution of *k* [Boneh Venkatesan 96][Howgrave-Graham Smart 01][Bleichenbacher 00] [Aranha Novaes Takahashi Tibouchi Yarom 20][Albrecht Heninger 21]
- Major concern in practice: "true" randomness is a scarce resource
 - Errors in implementation
 - Poorly seeded Random Number Generators
 - eg. Sony Playstation hack, Bitcoin theft via repeated nonces

Stateful PRNG?

- Simple derandomization: keep counter, use PRF_{sd}(counter)
- Stale state hard to detect in crypto API context
- State reuse can be accidental, or maliciously triggered
- "State continuity" is non-trivial even with trusted hardware
- Ideally, signing should be stateless

Fresh state \Rightarrow fresh nonce, but Reused state \Rightarrow repeated nonce

- think of stale snapshots in VMs, power supply interrupts, etc.

Stateless Derandomization

- Just as simple:
 - During keygen: $sd \leftarrow \{0,1\}^{\kappa}$
 - To sign m: k = PRF(sd, m)
- Classic idea [M'Raïhi Naccache Pointcheval Vaudenay 98] [Wigley 97] [Barwood 97] that is employed by EdDSA
- Undetectable outside the system \Rightarrow Verification is unchanged
- Stateless derandomized *threshold* Schnorr signing?

 $k_{A} \leftarrow \mathbb{Z}_{q}$ $R_{A} = k_{A} \cdot G$ $R = R_{A} + R_{B} \leftarrow e$ e = H(R||m) $s_{A} = k_{A} - sk_{A} \cdot e$ $s = s_{A} + s_{B} \leftarrow e$

$$k_{\mathsf{B}} \leftarrow \mathbb{Z}_q$$
$$R_{\mathsf{B}} = k_{\mathsf{B}} \cdot G$$

 $\Rightarrow R = R_{A} + R_{B}$ e = H(R||m) $s_{B} = k_{B} - sk_{B} \cdot e$

$$s_{\rm B} = k_{\rm B} - {\rm sk}_{\rm B} \cdot e$$

 $s = s_A + s_B$

Like plain signing, this is the only randomized step

 $k_{\mathsf{B}} \leftarrow \mathbb{Z}_q$ $R_{\mathsf{B}} = k_{\mathsf{B}} \cdot G$

 $\mathbf{F} \mathbf{R} = \mathbf{R}_{\mathsf{A}} + \mathbf{R}_{\mathsf{B}}$ $e = H(\mathbf{R} || \mathbf{m})$ $s_{\mathsf{B}} = k_{\mathsf{B}} - \mathsf{sk}_{\mathsf{B}} \cdot e$

 $\rightarrow s = s_A + s_B$

Like plain signing, this is the only randomized step

 $k_{\mathsf{A}} \leftarrow \mathbb{Z}_q$ $R_{\mathsf{A}} = k_{\mathsf{A}} \cdot G$ $R = R_A + R_B \leftarrow$ e = H(R||m) $s_{\Delta} = k_{\Delta} - \mathbf{sk}_{A} \cdot e$ $s = s_A + s_B \leftarrow$

Like plain signing, this is the only randomized step

 $k_{\mathsf{A}} = F(\mathsf{sd}_{\mathsf{A}}, m)$ $R_{\mathsf{A}} = k_{\mathsf{A}} \cdot G$ $R = R_A + R_B +$ e = H(R||m) $s_{\Delta} = k_{\Delta} - \mathbf{sk}_{A} \cdot e$

 $s = s_A + s_B \leftarrow$

Like plain signing, this is the only randomized step

 $k_{\mathsf{A}} = F(\mathsf{sd}_{\mathsf{A}}, m)$ $R_{\mathsf{A}} = k_{\mathsf{A}} \cdot G$ $R = R_A + R_B \bigstar$ e = H(R||m) $s_{\Delta} = k_{\Delta} - \mathbf{sk}_{A} \cdot e$ $s = s_A + s_B \leftarrow$

Like plain signing, ----------Summer, $k_A = F(sd_A, m)$ this is the only $R_A = k_A \cdot G$ randomized step $R_A = k_A \cdot G$

 $R = R_{A} + R_{B} \longleftarrow$

Like plain signing, --------------------k_A = F(sd_A, m)this is the only $k_A = F(sd_A, m)$ randomized step $R_A = k_A \cdot G$

 $R = R_{A} + R_{B} \longleftarrow$

This changes $k_{A}^{*} = F^{*}(sd_{A}, m)$ $R_{A}^{*} = k_{A}^{*} \cdot G$

Like plain signing, -----Image: Signing, this is the only $k_A = F(sd_A, m)$ randomized step $R_A = k_A \cdot G$

collects

$$s_{B} = k_{B} - sk_{B} \cdot e$$

 $s_{B}^{*} = k_{B} - sk_{B} \cdot e^{*}$

2 linear combinations of $R^* = R^*_{\Delta} + R_{B} \leftarrow$ honest party's 2 secrets [Maxwell Poelstra Seurin Wuille 19]

 $R = R_{A} + R_{B} \longleftarrow$ This changes $k_{A}^{*} = F^{*}(sd_{A}, m)$ $R_{A}^{*} = k_{A}^{*} \cdot G$

Need to verify this is done correctly

 $k_{\mathsf{A}} = F(\mathsf{sd}_{\mathsf{A}}, m)$ $R_{\mathsf{A}} = k_{\mathsf{A}} \cdot G$ $R = R_A + R_B$ e = H(R||m) $s_{A} = k_{A} - \mathbf{sk}_{A} \cdot e$ $s = s_A + s_B + s_B$

Need to verify this is done correctly

 $k_{A} = F(sd_{A}, m)$ $R_{A} = k_{A} \cdot G$ $R = R_{A} + R_{B} \leftarrow$ e = H(R||m) $s_{A} = k_{A} - sk_{A} \cdot e$

 $s = s_A + s_B \leftarrow$

Need to verify this is done correctly

 $k_{\mathsf{A}} = F(\mathsf{sd}_{\mathsf{A}}, m)$ $R_{\mathsf{A}} = k_{\mathsf{A}} \cdot G$

 $R = R_{A} + R_{B}$

 $a = \mathbf{I}(\mathbf{D}||_{100})$

Threshold Setting: Take 2 sk_A sd_A sd_B Need to verify this $k_{\mathsf{A}} = F(\mathsf{sd}_{\mathsf{A}}, m)$ $R_{\mathsf{A}} = k_{\mathsf{A}} \cdot G$ is done correctly ZKP

 $R = R_A + R_B$

- This "GMW-style" approach was taken in (the only) previous works [Nick Ruffing Seurin Wuille 20] [Garillot K Mohassel Nikolaenko 21]
- The statement to be proven in ZK is non-trivial: $R_A = F(sd_A, m) \cdot G$

 π_{A} : R_{A} consistent with Com(sd_A)

 $\pi_{\rm B}$: $R_{\rm B}$ consistent with Com(sd_B) ZKP

ZKP
$$\pi_A : R_A cc$$

- This "GMW-style" approach was taken in (the only) previous works [Nick Ruffing Seurin Wuille 20] [Garillot K Mohassel Nikolaenko 21]
- The statement to be proven in ZK is non-trivial: $R_A = F(sd_A, m) \cdot G$

- [NRSW 20]: Custom arithmetic PRF + Bulletproofs —
- [GKMN 21]: Standardized PRF (eg. AES) + Garbled Circuits

onsistent with $Com(sd_A)$

ZKP π_{R} : R_{R} consistent with Com(sd_B)

PRF evaluation Exponentiation

Is there a more "native" approach?

- Proving correct evaluation of F is inherently bottlenecked by circuit complexity of PRFs
- Ideally, we would like to avoid such non-blackbox use of crypto
- Central question in this paper:

Can we design a distributed, <u>stateless</u> <u>deterministic</u> Schnorr signing scheme that makes **blackbox use** of cryptographic primitives?

Our Results

- <u>Main construction</u>: blackbox use of Pseudorandom Correlation Function (PCF) for Vector Oblivious Linear Evaluation (VOLE) in \mathbb{Z}_q
 - Simple stateless derandomization pattern
 - PCFs are increasingly general, but it's not Oblivious Transfer
- Two concrete instantiations:
 - 1. Covert security from any PRF
 - 2. Full malicious security from Paillier

Pseudorandom Correlation Functions

[Boyle Couteau Gilboa Ishai Kohl Scholl 20]

For a correlation \mathcal{Y} :

 $y_{x,A} = PCF(sd_A, x)$

unbounded

X

 $y_{x,B} = PCF(sd_B, x)$

 $(y_{x,A}, y_{x,B}) \in \mathscr{Y}$

Pseudorandom Correlation Functions

[Boyle Couteau Gilboa Ishai Kohl Scholl 20]

Complexity of \mathcal{Y} determines efficiency of PCF

 $y_{x,A} = PCF(sd_A, x)$

For a correlation \mathcal{Y} :

unbounded

 $y_{x,B} = PCF(sd_B, x)$

 $(y_{x,A}, y_{x,B}) \in \mathscr{Y}$

- simple enough for reasonably efficient PCFs - powerful enough to build what we want

 $\mathscr{Y}_{VOLF}^{\Delta} : \left((k, w = \Delta k + \beta), (\Delta, \beta) \right)$

private nonce MAC on nonce

$\mathscr{Y}_{VOLE}^{\Delta}:\left((k,w=\Delta k+\beta),(\Delta,\beta)\right)$

MAC verification key

private nonce

$R = k \cdot G$ $W = w \cdot G$

MAC on nonce

$\mathscr{Y}_{\text{VOLE}}^{\Delta}:\left((k,w=\Delta k+\beta),(\Delta,\beta)\right)$

MAC verification key

 $W \doteq \Delta \cdot R + \beta \cdot G$ Verify MAC in exponent

9

private nonce

Need to guess Δ to subvert the check

$$R = k \cdot G$$
$$W = w \cdot G$$

MAC on nonce

$\mathscr{Y}_{VOLE}^{\Delta}:\left((k,w=\Delta k+\beta),(\Delta,\beta)\right)$

MAC verification key

 $W \doteq \Delta \cdot R + \beta \cdot G$ Verify MAC in exponent

9

• First construction: adapted from SoftSpoken VOLE [Roy22] (originally used for OT Extension)

• First construction: adapted from SoftSpoken VOLE [Roy22] (originally used for OT Extension)

Fully Secure PCF for $\mathscr{Y}_{VOLF}^{\Delta}$

- Unclear how to strengthen the SoftSpoken VOLE construction
- [Orlandi Scholl Yakoubov 21]: Elegant VOLE PCF from Paillier, supports $\Delta \in \exp(\kappa)$
- Unfortunately, [OSY21] gives VOLE in the ring \mathbb{Z}_N (*N* is a biprime of factorization unknown to verifier)
- We need to "translate" VOLE in \mathbb{Z}_N to \mathbb{Z}_q This turns out to be quite non-trivial, borrowed ideas from [OSY21, Roy Singh 21]

Securely Translating $\mathscr{Y}_{VOLF}^{\Delta,N} \to \mathscr{Y}_{VOLF}^{\Delta,q}$

$k, w = \Delta k + \beta \pmod{N}$

Securely Translating $\mathscr{Y}^{\Delta,N}_{VOLF} \to \mathscr{Y}^{\Delta,q}_{VOLF}$

$k, w = \Delta k + \beta \pmod{N}$ Derive k_{lo}, k_{hi} : $k_{hi}M + k_{lo} = k$

IKNP-style "correction word"

Public M s.t. $q \mid M$

 $\mathcal{Y}^{\Delta,N}_{\text{VOLF}}$

$k, w = \Delta k + \beta \pmod{N}$

IKNP-style "correction word"

Public M s.t. $q \mid M$

 $\mathcal{Y}^{\Delta,N}_{\text{VOLF}}$

 $\Delta[??] + \beta' = w$

$k, w = \Delta k + \beta \pmod{N}$

IKNP-style "correction word"

However, deriving a *correct* correlation isn't enough; we need reset resilience as well

Public M s.t. $q \mid M$

 $\mathcal{Y}^{\Delta,N}_{\text{VOLF}}$

. . v' = w

$k, w = \Delta k + \beta \pmod{N}$

IKNP-style "correction word"

However, deriving a *correct* correlation isn't enough; we need reset resilience as well

Same $k_{lo} \pmod{q} \forall \text{ valid } k_{hi}^*$

Public M s.t. $q \mid M$

 $\mathcal{Y}^{\Delta,N}_{\text{VOLF}}$

 $\Delta k_{lo} + \beta' = w$

$k, w = \Delta k + \beta \pmod{N}$

IKNP-style "correction word"

However, deriving a *correct* correlation isn't enough; we need reset resilience as well

Same $k_{lo} \pmod{q} \forall \text{ valid } k_{hi}^*$

Public M s.t. $q \mid M$

 $\mathcal{Y}^{\Delta,N}_{\text{VOLF}}$

 $\Delta k_{lo} + \beta' = w$

Securely Translating $\mathscr{Y}_{VOLF}^{\Delta,N} \to \mathscr{Y}_{VOLF}^{\Delta,q}$

$k, w = \Delta k + \beta \pmod{N}$

IKNP-style "correction word"

However, deriving a *correct* correlation isn't enough; we need reset resilience as well

Same $k_{lo} \pmod{q} \forall \text{ valid } k_{hi}^*$

Signing Efficiency: PCF Overhead

- signing for reasonable deterrence
- - 451 bytes (including correction word+check)

<u>Bandwidth</u>: PCF < Bulletproofs << Garbled Circuits 1KB 100s of KB 0.5KB

188ms to prove and verify —

<u>Computation</u>: Garbled Circuits < PCF < Bulletproofs tens of ms 188ms 950ms

• Covert construction only adds a single G element, comparable to semi-honest

• Fully secure Paillier-based construction for 256-bit curve, this work (PCF) in comparison with [NRSW20] (Bulletproofs) and [GKMN21] (Garbled Circuits)

Instantiating \mathcal{F}_{setup}

- PCFs are defined with a trusted dealer, no standard setup protocol - This model may be enough for some applications [ANOSS22]
- Setup protocol for covert PCF is straightforward via OT
- Setup for Paillier PCF has to generate biprimes N, N - Prover knows factorization of N - Verifier can know factorization of \tilde{N}
- Each party could *potentially* choose its own modulus and prove wellformedness. We do not explore this further in this work as we focus on signing

In Conclusion

- We give a new approach to stateless deterministic 2P-Schnorr signing based on PCFs: towards blackbox use of cryptography
- Two instantiations based on PCFs for VOLE:
 - Covert security from PRF-based SoftSpoken VOLE [Roy22]
 - Malicious security from Paillier-based [OSY21, RS21] + Novel mechanism to translate VOLE from $\mathbb{Z}_N \to \mathbb{Z}_a$
 - + Interesting tradeoffs relative to existing work
 - Thanks!
 - eprint: 2023/216

