Two-Round

Stateless Deterministic
 Two-Party Schnorr Signatures
 from Pseudorandom Correlation Functions

Yashvanth Kondi Claudio Orlandi Lawrence Roy

AARHUS
UNIVERSITY

Cryptographic Keys: Valuable Targets

Cryptographic Keys: Valuable Targets

Cryptographic Keys: Valuable Targets

Threshold Signatures

Distributed signing: Distribute the risk

Threshold Signatures

Distributed signing: Distribute the risk

This Work

- Derandomized Two-party Schnorr Signing w. resilience to state resets
- Conceptual insight: Just as PRFs derandomize plain signing, Pseudorandom Correlation Functions natively derandomize distributed signing
- Two constructions, useful tradeoffs relative to prior work
- Bonus (not explored in this talk): two-round signing w. standard assumptions

Schnorr Key Generation

$\operatorname{SchnorrKeyGen}(\mathbb{G}, G, q):$

$$
\text { sk } \leftarrow \mathbb{Z}_{q}
$$

$$
\mathrm{PK}=\mathrm{sk} \cdot G
$$

output (sk, PK)
secret key: kept private
Public Key: exposed to the outside world

Schnorr Signing

SchnorrKeyGen (\mathbb{G}, G, q) :

$$
\begin{aligned}
& \text { sk } \leftarrow \mathbb{Z}_{q} \\
& \text { PK }=\text { sk } \cdot G \\
& \text { output (sk, PK) }
\end{aligned}
$$

SchnorrSign(sk, m) :

Verifying a signature: $s \cdot G \stackrel{?}{=} R-e \cdot \mathrm{PK}$

Distributing Schnorr Signing

EdDSA

- Edwards-curve Digital Signature $\underline{\text { Algorithm }}$
- Devised by Bernstein, Duif, Lange, Schwabe, and Yang in 2011
- Variant of Schnorr's signature instantiated with careful choice of parameters
- Widely deployed, and increasing in use

EdDSA is a little different...

- (Distributed) KeyGeneration of EdDSA is identical to Schnorr
- EdDSA signing involves some non-linearity

$$
\begin{aligned}
& \text { SchnorrSign }(\mathrm{sk}, m): \\
& \qquad \begin{array}{l}
k \leftarrow \mathbb{Z}_{q} \\
R=k \cdot G \\
e=H(R \| m) \\
s=k-s k \cdot e \\
\sigma=(s, R) \\
\text { output } \sigma
\end{array}
\end{aligned}
$$

EdDSA is a little different...

- (Distributed) KeyGeneration of EdDSA is identical to Schnorr
- EdDSA signing involves some non-linearity

SchnorrSign(sk, m) :

$$
\begin{aligned}
& k \leftarrow \mathbb{Z}_{q} \\
& R=k \cdot G \\
& e=H(R \| m) \\
& s=k-\text { sk } \cdot e \\
& \sigma=(s, R) \\
& \text { output } \sigma
\end{aligned}
$$

EdDSASign(sk, m) :

$$
\begin{aligned}
& \quad e=H(R \| m) \\
& s=k-\text { sk } \cdot e \\
& \sigma=(s, R) \\
& \text { output } \sigma
\end{aligned}
$$

EdDSA is a little different...

- (Distributed) KeyGeneration of EdDSA is identical to Schnorr
- EdDSA signing involves some non-linearity

SchnorrSign(sk, m) :

$$
\begin{aligned}
& k \leftarrow \mathbb{Z}_{q} \\
& R=k \cdot G \\
& e=H(R \| m) \\
& s=k-\text { sk } \cdot e \\
& \sigma=(s, R) \\
& \text { output } \sigma
\end{aligned}
$$

EdDSASign(sk, m) :

$$
\begin{aligned}
& k=F(\text { sk, } m) \\
& R=k \cdot G \\
& e=H(R \| m) \\
& s=k-s k \cdot e \\
& \sigma=(s, R) \\
& \text { output } \sigma
\end{aligned}
$$

EdDSA is a little different...

- (Distributed) KeyGeneration of EdDSA is identical to Schnorr
- EdDSA signing involves some non-linearity

Pseudorandom Function

SchnorrSign(sk, m) :

$$
\begin{aligned}
& k \leftarrow \mathbb{Z}_{q} \\
& R=k \cdot G \\
& e=H(R \| m) \\
& s=k-\text { sk } \cdot e \\
& \sigma=(s, R) \\
& \text { output } \sigma
\end{aligned}
$$

EdDSASign(sk, m) :

$$
\begin{aligned}
& k=F(\mathrm{sk}, m) \\
& R=k \cdot G \\
& e=H(R \| m) \\
& s=k-s k \cdot e \\
& \sigma=(s, R) \\
& \text { output } \sigma
\end{aligned}
$$

Painful to

Why does EdDSA have non-linear signing?

- Each Schnorr signature requires a fresh, one-time nonce (k, R)
- Security is extremely sensitive to the distribution of k [Boneh Venkatesan 96][Howgrave-Graham Smart 01][Bleichenbacher 00] [Aranha Novaes Takahashi Tibouchi Yarom 20][Albrecht Heninger 21]
- Major concern in practice: "true" randomness is a scarce resource
- Errors in implementation
- Poorly seeded Random Number Generators
- eg. Sony Playstation hack, Bitcoin theft via repeated nonces

Stateful PRNG?

- Simple derandomization: keep counter, use PRF $_{\text {sd }}$ (counter) Fresh state \Rightarrow fresh nonce, but Reused state \Rightarrow repeated nonce
- Stale state hard to detect in crypto API context
- State reuse can be accidental, or maliciously triggered - think of stale snapshots in VMs, power supply interrupts, etc.
- "State continuity" is non-trivial even with trusted hardware
- Ideally, signing should be stateless

Stateless Derandomization

- Just as simple:
- During keygen: sd $\leftarrow\{0,1\}^{\kappa}$
- To sign $m: k=\operatorname{PRF}(s d, m)$
- Classic idea [M’Raïhi Naccache Pointcheval Vaudenay 98] [Wigley 97]
[Barwood 97] that is employed by EdDSA
- Undetectable outside the system
\Rightarrow Verification is unchanged
- Stateless derandomized threshold Schnorr signing?

Threshold Setting: Simple Attempt

$k_{\mathrm{A}} \leftarrow \mathbb{Z}_{q}$
$R_{\mathrm{A}}=k_{\mathrm{A}} \cdot G$

$$
k_{\mathrm{B}} \leftarrow \mathbb{Z}_{q}
$$

$$
R_{\mathrm{B}}=k_{\mathrm{B}} \cdot G
$$

$R=R_{\mathrm{A}}+R_{\mathrm{B}} \longleftrightarrow R=R_{\mathrm{A}}+R_{\mathrm{B}}$
$e=H(R \| m)$

$$
e=H(R \| m)
$$

$s_{\mathrm{A}}=k_{\mathrm{A}}-\mathrm{sk} \mathrm{k}_{\mathrm{A}} \cdot \boldsymbol{e}$

$$
s_{\mathrm{B}}=k_{\mathrm{B}}-\mathrm{sk} \cdot{ }_{\mathrm{B}} \cdot \boldsymbol{e}
$$

$$
s=s_{\mathrm{A}}+s_{\mathrm{B}} \longleftrightarrow s=s_{\mathrm{A}}+s_{\mathrm{B}}
$$

Threshold Setting: Simple Attempt

Like plain signing, this is the only randomized step

$$
\begin{array}{lll}
k_{\mathrm{A}} \leftarrow \mathbb{Z}_{q} & k_{\mathrm{B}} \leftarrow \mathbb{Z}_{q} \\
R_{\mathrm{A}}=k_{\mathrm{A}} \cdot G & R_{\mathrm{B}}=k_{\mathrm{B}} \cdot G \\
R=R_{\mathrm{A}}+R_{\mathrm{B}} \longleftrightarrow & R=R_{\mathrm{A}}+R_{\mathrm{B}}
\end{array}
$$

$e=H(R \| m)$

Threshold Setting: Simple Attempt

Like plain signing, this is the only
randomized step

$$
\begin{array}{lll}
k_{\mathrm{A}} \leftarrow \mathbb{Z}_{q} & k_{\mathrm{B}} \leftarrow \mathbb{Z}_{q} \\
R_{\mathrm{A}}=k_{\mathrm{A}} \cdot G & R_{\mathrm{B}}=k_{\mathrm{B}} \cdot G \\
R=R_{\mathrm{A}}+R_{\mathrm{B}} \longleftrightarrow & R=R_{\mathrm{A}}+R_{\mathrm{B}}
\end{array}
$$

Threshold Setting: Simple Attempt

$$
\begin{array}{lll}
k_{\mathrm{A}}=F\left(\mathrm{sd}_{\mathrm{A}}, m\right) & k_{\mathrm{B}}=F\left(\mathrm{sd}_{\mathrm{B}}, m\right) \\
R_{\mathrm{A}}=k_{\mathrm{A}} \cdot G & R_{\mathrm{B}}=k_{\mathrm{B}} \cdot G \\
R=R_{\mathrm{A}}+R_{\mathrm{B}} \longleftrightarrow & R=R_{\mathrm{A}}+R_{\mathrm{B}}
\end{array}
$$

Like plain signing, this is the only randomized step

Threshold Setting: Simple Attempt

Like plain signing, this is the only
randomized step

$$
\begin{array}{lll}
k_{\mathrm{A}}=F\left(\mathrm{sd}_{\mathrm{A}}, m\right) & k_{\mathrm{B}}=F\left(\mathrm{sd}_{\mathrm{B}}, m\right) \\
R_{\mathrm{A}}=k_{\mathrm{A}} \cdot G & R_{\mathrm{B}}=k_{\mathrm{B}} \cdot G \\
R=R_{\mathrm{A}}+R_{\mathrm{B}} \longleftrightarrow & R=R_{\mathrm{A}}+R_{\mathrm{B}}
\end{array}
$$

Threshold Setting: Simple Attempt

Like plain signing, this is the only randomized step

$$
\begin{aligned}
& k_{\mathrm{A}}=F\left(\mathrm{sd}_{\mathrm{A}}, m\right) \\
& R_{\mathrm{A}}=k_{\mathrm{A}} \cdot G \\
& R=R_{\mathrm{A}}+R_{\mathrm{B}} \longleftrightarrow \begin{array}{l}
k_{\mathrm{B}}=F\left(\mathrm{sd} \mathrm{~s}_{\mathrm{B}}, r\right. \\
R_{\mathrm{B}}=k_{\mathrm{B}} \cdot G
\end{array} \\
& R=R_{\mathrm{A}}+R_{\mathrm{B}}
\end{aligned}
$$

Sign same m again
These stay the same

$$
\begin{aligned}
& k_{\mathrm{B}}=F\left(\mathrm{sd}_{\mathrm{B}}, m\right) \\
& R_{\mathrm{B}}=k_{\mathrm{B}} \cdot G
\end{aligned}
$$

Threshold Setting: Simple Attempt

Like plain signing, this is the only randomized step

\[

\]

Sign same m again

$$
\begin{aligned}
& \text { This changes } \\
& \begin{array}{|l|l}
\hline \begin{array}{l}
k_{\mathrm{A}}^{*}=F^{*}\left(\mathrm{sd}_{\mathrm{A}}, m\right) \\
R_{\mathrm{A}}^{*}=k_{\mathrm{A}}^{*} \cdot G
\end{array} & \begin{array}{l}
k_{\mathrm{B}}=F\left(\mathrm{sd}_{\mathrm{B}}, m\right) \\
R_{\mathrm{B}}=k_{\mathrm{B}} \cdot G
\end{array} \\
\hline R^{*}=R_{\mathrm{A}}^{*}+R_{\mathrm{B}} \longleftrightarrow & R^{*}=R_{\mathrm{A}}^{*}+R_{\mathrm{B}}
\end{array}
\end{aligned}
$$

These stay the same

Threshold Setting: Simple Attempt

Like plain signing, this is the only randomized step

$$
\begin{array}{l|l|}
k_{\mathrm{A}}=F\left(\mathrm{sd}_{\mathrm{A}}, m\right) \\
R_{\mathrm{A}}=k_{\mathrm{A}} \cdot G & \\
R=R_{\mathrm{A}}+R_{\mathrm{B}} \longleftrightarrow \begin{array}{l}
k_{\mathrm{B}}=F\left(\mathrm{sd}_{\mathrm{B}}, m\right) \\
R_{\mathrm{B}}=k_{\mathrm{B}} \cdot G
\end{array} \\
\hline R=R_{\mathrm{A}}+R_{\mathrm{B}}
\end{array}
$$

$$
\begin{aligned}
& s_{\mathrm{B}}=k_{\mathrm{B}}-\mathrm{sk}_{\mathrm{B}} \cdot e \\
& s_{\mathrm{B}}^{*}=k_{\mathrm{B}}-\mathrm{sk}_{\mathrm{B}} \cdot e^{*}
\end{aligned}
$$

Sign same m again
These stay the same

This changes

$k_{\mathrm{A}}^{*}=F^{*}\left(\mathrm{sd}_{\mathrm{A}}, m\right)$
$R_{\mathrm{A}}^{*}=k_{\mathrm{A}}^{*} \cdot G$

$$
\begin{aligned}
& k_{\mathrm{B}}=F\left(\mathrm{sd}_{\mathrm{B}}, m\right) \\
& R_{\mathrm{B}}=k_{\mathrm{B}} \cdot G
\end{aligned}
$$

2 linear combinations of $R^{*}=R_{\mathrm{A}}^{*}+R_{\mathrm{B}} \longleftrightarrow R^{*}=R_{\mathrm{A}}^{*}+R_{\mathrm{B}}$ honest party's 2 secrets
[Maxwell Poelstra Seurin Wuille 19]

Threshold Setting: Take 2

Need to verify this is done correctly

$$
\begin{array}{lll}
k_{\mathrm{A}}=F\left(\mathrm{sd}_{\mathrm{A}}, m\right) & k_{\mathrm{B}}=F\left(\mathrm{sd}_{\mathrm{B}}, m\right) \\
R_{\mathrm{A}}=k_{\mathrm{A}} \cdot G & R_{\mathrm{B}}=k_{\mathrm{B}} \cdot G \\
R=R_{\mathrm{A}}+R_{\mathrm{B}} \longleftrightarrow & R=R_{\mathrm{A}}+R_{\mathrm{B}}
\end{array}
$$

Threshold Setting: Take 2

Need to verify this
is done correctly

$$
\begin{array}{lll}
k_{\mathrm{A}}=F\left(\mathrm{sd}_{\mathrm{A}}, m\right) & k_{\mathrm{B}}=F\left(\mathrm{sd}_{\mathrm{B}}, m\right) \\
R_{\mathrm{A}}=k_{\mathrm{A}} \cdot G & R_{\mathrm{B}}=k_{\mathrm{B}} \cdot G \\
R=R_{\mathrm{A}}+R_{\mathrm{B}} \longleftrightarrow & R=R_{\mathrm{A}}+R_{\mathrm{B}}
\end{array}
$$

Threshold Setting: Take 2

Need to verify this
is done correctly

$$
\begin{aligned}
& \begin{array}{l:l}
k_{\mathrm{A}}=F\left(\mathrm{sd}_{\mathrm{A}}, m\right) \\
R_{\mathrm{A}}=k_{\mathrm{A}} \cdot G \\
& R_{\mathrm{A}} \longrightarrow
\end{array} \begin{array}{l}
k_{\mathrm{B}}=F\left(\mathrm{sd}_{\mathrm{B}}, m\right)
\end{array} \\
& \stackrel{R_{\mathrm{B}}}{ـ} \\
& R=R_{\mathrm{A}}+R_{\mathrm{B}} \\
& R=R_{\mathrm{A}}+R_{\mathrm{B}}
\end{aligned}
$$

Threshold Setting: Take 2

$$
\mathrm{sd}_{\mathrm{B}} \quad \mathrm{sk}_{\mathrm{B}}
$$

Need to verify this is done correctly

$\operatorname{Com}\left(\mathrm{sd}_{\mathrm{A}}\right)$ $\operatorname{Com}\left(\mathrm{sd}_{\mathrm{B}}\right)$

$$
\begin{aligned}
& k_{\mathrm{A}}=F\left(\mathrm{sd}_{\mathrm{A}}, m\right) \quad k_{\mathrm{B}}=F\left(\mathrm{sd}_{\mathrm{B}}, m\right) \\
& R_{\mathrm{A}}=k_{\mathrm{A}} \cdot G \\
& R_{\text {A }} \\
& R_{\mathrm{B}}=k_{\mathrm{B}} \cdot G \\
& \begin{array}{|l|l|}
\hline \text { ZKP } & \pi_{\mathrm{A}}: R_{\mathrm{A}} \text { consistent with } \operatorname{Com}\left(\mathrm{sd}_{\mathrm{A}}\right) \\
\hline
\end{array} \\
& \\
& R=R_{\mathrm{A}}+R_{\mathrm{B}} \\
& R=R_{\mathrm{A}}+R_{\mathrm{B}}
\end{aligned}
$$

Threshold Setting: Take 2

\[

\]

- This "GMW-style" approach was taken in (the only) previous works [Nick Ruffing Seurin Wuille 20][Garillot K Mohassel Nikolaenko 21]
- The statement to be proven in ZK is non-trivial: $R_{\mathrm{A}}=F\left(\mathrm{sd}_{\mathrm{A}}, m\right) \cdot G$

Threshold Setting: Take 2

\[

\]

- This "GMW-style" approach was taken in (the only) previous works [Nick Ruffing Seurin Wuille 20][Garillot K Mohassel Nikolaenko 21]
- The statement to be proven in ZK is non-trivial: $R_{\mathrm{A}}=F\left(\mathrm{sd}_{\mathrm{A}}, m\right) \cdot G$
PRF evaluation Exponentiation
- [NRSW 20]: Custom arithmetic PRF + Bulletproofs
- [GKMN 21]: Standardized PRF (eg. AES) + Garbled Circuits

Is there a more "native" approach?

- Proving correct evaluation of F is inherently bottlenecked by circuit complexity of PRFs
- Ideally, we would like to avoid such non-blackbox use of crypto
- Central question in this paper:

Can we design a distributed, stateless deterministic Schnorr signing scheme that makes blackbox use of cryptographic primitives?

This work: a qualified "yes"

Our Results

- Main construction: blackbox use of Pseudorandom Correlation Function (PCF) for Vector Oblivious Linear Evaluation (VOLE) in \mathbb{Z}_{q}
- Simple stateless derandomization pattern
- PCFs are increasingly general, but it's not Oblivious Transfer
- Two concrete instantiations:

1. Covert security from any PRF
2. Full malicious security from Paillier

Pseudorandom Correlation Functions

[Boyle Couteau Gilboa Ishai Kohl Scholl 20]
For a correlation \mathscr{Y} :

unbounded

$$
\begin{aligned}
& y_{x, \mathrm{~A}}=\operatorname{PCF}\left(\mathrm{sd}_{\mathrm{A}}, x\right) \\
& \\
& \left(y_{x, \mathrm{~A}}, y_{x, \mathrm{~B}}\right) \in \mathscr{y}
\end{aligned}
$$

Pseudorandom Correlation Functions

[Boyle Couteau Gilboa Ishai Kohl Scholl 20]

Complexity of \mathscr{Y} determines efficiency of PCF

For a correlation \mathscr{Y} :

unbounded

$$
\begin{array}{lc}
y_{x, \mathrm{~A}}=\operatorname{PCF}\left(\mathrm{sd}_{\mathrm{A}}, x\right) & x \\
\left(y_{x, \mathrm{~A}}, y_{x, \mathrm{~B}}\right) \in \mathscr{y} & y_{x, \mathrm{~B}}=\operatorname{PCF}\left(\mathrm{sd}_{\mathrm{B}}, x\right) \\
\end{array}
$$

"Good enough" Correlation for Schnorr

- simple enough for reasonably efficient PCFs
- powerful enough to build what we want

$$
\mathscr{Y}_{\mathrm{VOLE}}^{\Delta}:((k, w=\Delta k+\beta),(\Delta, \beta))
$$

"Good enough" Correlation for Schnorr

$$
\mathscr{Y}_{\text {VOLE }}^{\Delta}:((k, w=\Delta k+\beta),(\Delta, \beta))
$$

MAC verification key

"Good enough" Correlation for Schnorr

$$
\begin{aligned}
& \text { private nonce } \quad \text { MAC on nonce } \\
& \mathscr{Y}_{\text {VOLE }}^{\Delta}:((k, w=\Delta k+\beta),(\Delta, \beta))
\end{aligned}
$$

MAC verification key

$$
\xrightarrow[W=w \cdot G]{\xrightarrow{R}=k \cdot G}
$$

Verify MAC in exponent

"Good enough" Correlation for Schnorr

private nonce MAC on nonce

$$
\mathscr{Y}_{\mathrm{VOLE}}^{\Delta}:((k, w=\Delta k+\beta),(\Delta, \beta))
$$

MAC verification key
Need to

guess Δ
subvert to

$W \stackrel{?}{=} \Delta \cdot R+\beta \cdot G$
Verify MAC in exponent

PCF for $\mathscr{Y}_{\text {vole }}^{\Delta}$

- First construction: adapted from SoftSpoken VOLE [Roy22] (originally used for OT Extension)

$\operatorname{PCF}(x):$

$$
k=\Sigma_{i} \operatorname{PRF}_{k_{i}}(x) \quad \beta=\Sigma_{i}(i-\Delta) \cdot \operatorname{PRF}_{k_{i}}(x)
$$

$$
w=\Sigma_{i} i \cdot \operatorname{PRF}_{k_{i}}(x)
$$

PCF for $\mathscr{Y}_{\text {vole }}^{\Delta}$

- First construction: adapted from SoftSpoken VOLE [Roy22] (originally used for OT Extension)

$\operatorname{PCF}(x):$

$$
k=\Sigma_{i} \operatorname{PRF}_{k_{i}}(x) \quad \beta=\Sigma_{i}(i-\Delta) \cdot \operatorname{PRF}_{k_{i}}(x)
$$

$$
w=\Sigma_{i} i \cdot \operatorname{PRF}_{k_{i}}(x)
$$

$$
\Delta \in \operatorname{poly}(\kappa) \Rightarrow \text { only covert security }
$$

$$
\text { (eg. } 2^{-10} \text { soundness) }
$$

Fully Secure PCF for $\mathscr{Y}_{\text {Vole }}^{\Delta}$

- Unclear how to strengthen the SoftSpoken VOLE construction
- [Orlandi Scholl Yakoubov 21]: Elegant VOLE PCF from Paillier, supports $\Delta \in \exp (\kappa)$
- Unfortunately, [OSY21] gives VOLE in the ring \mathbb{Z}_{N} (N is a biprime of factorization unknown to verifier)
- We need to "translate" VOLE in \mathbb{Z}_{N} to \mathbb{Z}_{q} This turns out to be quite non-trivial, borrowed ideas from [OSY21, Roy Singh 21]

Securely Translating $\mathscr{Y}_{\text {VOLE }}^{\triangle, N} \rightarrow \mathscr{Y}_{\text {VOLE }}^{\triangle, q}$

$k, w=\Delta k+\beta(\bmod N)$

Securely Translating $\mathscr{Y}_{\text {VOLE }}^{\Delta, N} \rightarrow \mathscr{Y}_{\text {VOLE }}^{\Delta, q}$

Public M s.t. $q \mid M$

$k, w=\Delta k+\beta(\bmod N)$
Δ, β
Derive $k_{l o}, k_{h i}: k_{h i} M+k_{l o}=k$
IKNP-style "correction word"

$$
\beta^{\prime}=\beta+\Delta\left(M k_{h i}\right)
$$

$$
\left(\left(k_{l o}, w\right),\left(\Delta, \beta^{\prime}\right)\right) \in \mathscr{Y}_{\mathrm{VOLE}}^{\Delta, q}
$$

Securely Translating $\mathscr{Y}_{\text {VOLE }}^{\Delta, N} \rightarrow \mathscr{Y}_{\text {VOLE }}^{\Delta, q}$

Δ, β

IKNP-style "correction word"

Securely Translating $\mathscr{Y}_{\text {VOLE }}^{\Delta, N} \rightarrow \mathscr{Y}_{\text {VOLE }}^{\Delta, q}$

IKNP-style "correction word"
However, deriving a correct correlation isn't enough; we need reset resilience as well

$\beta^{\prime}=\beta+\Delta\left(M k_{h i}^{*}\right)$

$$
\Delta \sqrt[?]{?}+\beta^{\prime}=w
$$

Securely Translating $\mathscr{Y}_{\text {VOLE }}^{\triangle, N} \rightarrow \mathscr{Y}_{\text {VOLE }}^{\triangle, q}$

$k, w=\Delta k+\beta(\bmod N)$

Δ, β

IKNP-style "correction word"
However, deriving a correct correlation isn't enough; we need reset resilience as well

$\Delta k_{l o}+\beta^{\prime}=w$

$$
\beta^{\prime}=\beta+\Delta\left(M k_{h i}^{*}\right)
$$

Same $k_{l o}(\bmod q) \forall \operatorname{valid} k_{h i}^{*}$

Securely Translating $\mathscr{Y}_{\text {VOLE }}^{\triangle, N} \rightarrow \mathscr{Y}_{\text {VOLE }}^{\triangle, q}$

$k, w=\Delta k+\beta(\bmod N)$

Δ, β

IKNP-style "correction word"
However, deriving a correct correlation isn't enough; we need reset resilience as well

Same $k_{l o}(\bmod q) \forall$ valid $k_{h i}^{*}$

$$
\beta^{\prime}=\beta+\Delta\left(M k_{h i}^{*}\right)
$$

Securely Translating $\mathscr{Y}_{\text {VOLE }}^{\triangle, N} \rightarrow \mathscr{Y}_{\text {VOLE }}^{\Delta, q}$

$k, w=\Delta k+\beta(\bmod N)$

Δ, β

Check modulo auxiliary biprime Similar to [DF02]
IKNP-style "correction word"
However, deriving a correct correlation isn't enough; we need reset resilience as well

Same $k_{l o}(\bmod q) \forall$ valid $k_{h i}^{*}$

$$
\Delta k_{l o}+\beta^{\prime}=w
$$

$$
g^{\beta^{\prime}}\left(g^{k_{i o}}\right)^{\Delta} \stackrel{?}{=} g^{w}(\bmod \tilde{N})
$$

small

$$
\beta^{\prime}=\beta+\Delta\left(M k_{h i}^{*}\right)
$$

Sound assuming Strong RSA

Signing Efficiency: PCF Overhead

- Covert construction only adds a single \mathbb{G} element, comparable to semi-honest signing for reasonable deterrence
- Fully secure Paillier-based construction for 256-bit curve, this work (PCF) in comparison with [NRSW20] (Bulletproofs) and [GKMN21] (Garbled Circuits)
- 451 bytes (including correction word+check)

Bandwidth: PCF < Bulletproofs << Garbled Circuits $0.5 \mathrm{~KB} \quad 1 \mathrm{~KB} \quad 100$ s of KB

- 188 ms to prove and verify

Computation: Garbled Circuits < PCF < Bulletproofs
tens of ms 188ms 950ms

Instantiating $\mathscr{F}_{\text {setup }}$

- PCFs are defined with a trusted dealer, no standard setup protocol - This model may be enough for some applications [ANOSS22]
- Setup protocol for covert PCF is straightforward via OT
- Setup for Paillier PCF has to generate biprimes N, \tilde{N}
- Prover knows factorization of N
- Verifier can know factorization of \tilde{N}
- Each party could potentially choose its own modulus and prove wellformedness.
We do not explore this further in this work as we focus on signing

In Conclusion

- We give a new approach to stateless deterministic 2P-Schnorr signing based on PCFs: towards blackbox use of cryptography
- Two instantiations based on PCFs for VOLE:
- Covert security from PRF-based SoftSpoken VOLE [Roy22]
- Malicious security from Paillier-based [OSY21, RS21]
+ Novel mechanism to translate VOLE from $\mathbb{Z}_{N} \rightarrow \mathbb{Z}_{q}$
+ Interesting tradeoffs relative to existing work

Thanks!

