
Two-Round
Stateless Deterministic

Two-Party Schnorr Signatures
from Pseudorandom Correlation Functions

Yashvanth Kondi Lawrence RoyClaudio Orlandi

v10

Cryptographic Keys: Valuable Targets

Single point of failure

Single point of failure

Cryptographic Keys: Valuable Targets

Single point of failure

PAY
h4CK3r

Cryptographic Keys: Valuable Targets

Threshold Signatures

Distributed signing: Distribute the risk

Threshold Signatures

Distributed signing: Distribute the risk

This Work
• Derandomized Two-party Schnorr Signing w. resilience to state

resets

• Conceptual insight: Just as PRFs derandomize plain signing,
Pseudorandom Correlation Functions natively derandomize
distributed signing

• Two constructions, useful tradeoffs relative to prior work

• Bonus (not explored in this talk): two-round signing w. standard
assumptions

Schnorr Key Generation

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

Public Key: exposed to the outside world
secret key: kept private

NONCE
One-time use

value

Verifying a signature: s ⋅ G ?= R−e ⋅ 𝖯𝖪

Schnorr Signing

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

(𝗆𝗈𝖽 q)

Linear function of k, sk
Easy to distribute with most

natural (i.e. linear) secret
sharing schemes

Distributing Schnorr Signing

Any linear secret sharing

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

EdDSA

• Edwards-curve Digital Signature Algorithm

• Devised by Bernstein, Duif, Lange, Schwabe, and Yang in 2011

• Variant of Schnorr’s signature instantiated with careful
choice of parameters

• Widely deployed, and increasing in use

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

• (Distributed) KeyGeneration of EdDSA is identical to Schnorr

• EdDSA signing involves some non-linearity

EdDSA is a little different…

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

EdDSASign(𝗌𝗄, m) :
k = F(𝗌𝗄, m)
R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

• (Distributed) KeyGeneration of EdDSA is identical to Schnorr

• EdDSA signing involves some non-linearity

EdDSA is a little different…

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

EdDSASign(𝗌𝗄, m) :
k = F(𝗌𝗄, m)
R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

• (Distributed) KeyGeneration of EdDSA is identical to Schnorr

• EdDSA signing involves some non-linearity

EdDSA is a little different…

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

EdDSASign(𝗌𝗄, m) :
k = F(𝗌𝗄, m)
R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

• (Distributed) KeyGeneration of EdDSA is identical to Schnorr

• EdDSA signing involves some non-linearity
Pseudorandom
Function

EdDSA is a little different…

Painful to
distribute

Why does EdDSA have non-linear signing?

• Each Schnorr signature requires a fresh, one-time nonce ()

• Security is extremely sensitive to the distribution of
[Boneh Venkatesan 96][Howgrave-Graham Smart 01][Bleichenbacher 00]
[Aranha Novaes Takahashi Tibouchi Yarom 20][Albrecht Heninger 21]

• Major concern in practice: “true” randomness is a scarce resource
- Errors in implementation
- Poorly seeded Random Number Generators
- eg. Sony Playstation hack, Bitcoin theft via repeated nonces

-

k, R

k

Stateful PRNG?
• Simple derandomization: keep counter, use counter)

Fresh state fresh nonce, but Reused state repeated nonce

• Stale state hard to detect in crypto API context

• State reuse can be accidental, or maliciously triggered
- think of stale snapshots in VMs, power supply interrupts, etc.

• “State continuity” is non-trivial even with trusted hardware

• Ideally, signing should be stateless

𝖯𝖱𝖥𝗌𝖽(
⇒ ⇒

• Just as simple:

- During keygen:

- To sign :

• Classic idea [M’Raïhi Naccache Pointcheval Vaudenay 98] [Wigley 97]
[Barwood 97] that is employed by EdDSA

• Undetectable outside the system
 Verification is unchanged

• Stateless derandomized threshold Schnorr signing?

𝗌𝖽 ← {0,1}κ

m k = 𝖯𝖱𝖥(𝗌𝖽, m)

⇒

Stateless Derandomization

Threshold Setting: Simple Attempt

k𝖠

𝗌𝗄𝖠

← ℤq ← ℤq

R𝖠R𝖡

s𝖠 = k𝖠 − 𝗌𝗄𝖠 ⋅ e s𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e

s𝖡

R = R𝖠 + R𝖡 R = R𝖠 + R𝖡

e = H(R∥m) e = H(R∥m)

s = s𝖠 + s𝖡 s = s𝖠 + s𝖡

R𝖠 = k𝖠 ⋅ G R𝖡 = k𝖡 ⋅ G
k𝖡

𝗌𝗄𝖡

k𝖠

𝗌𝗄𝖠

← ℤq ← ℤq

R𝖠R𝖡

s𝖠 = k𝖠 − 𝗌𝗄𝖠 ⋅ e s𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e

s𝖡

R = R𝖠 + R𝖡 R = R𝖠 + R𝖡

e = H(R∥m) e = H(R∥m)

s = s𝖠 + s𝖡 s = s𝖠 + s𝖡

R𝖠 = k𝖠 ⋅ G R𝖡 = k𝖡 ⋅ G
k𝖡

𝗌𝗄𝖡

Threshold Setting: Simple Attempt

Like plain signing,
this is the only

randomized step

k𝖠

𝗌𝗄𝖠

← ℤq ← ℤq

R𝖠R𝖡

s𝖠 = k𝖠 − 𝗌𝗄𝖠 ⋅ e s𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e

s𝖡

R = R𝖠 + R𝖡 R = R𝖠 + R𝖡

e = H(R∥m) e = H(R∥m)

s = s𝖠 + s𝖡 s = s𝖠 + s𝖡

R𝖠 = k𝖠 ⋅ G R𝖡 = k𝖡 ⋅ G
k𝖡

𝗌𝖽𝖠 𝗌𝖽𝖡 𝗌𝗄𝖡

Threshold Setting: Simple Attempt

Like plain signing,
this is the only

randomized step

R𝖠R𝖡

s𝖠 = k𝖠 − 𝗌𝗄𝖠 ⋅ e s𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e

s𝖡

R = R𝖠 + R𝖡 R = R𝖠 + R𝖡

e = H(R∥m) e = H(R∥m)

s = s𝖠 + s𝖡 s = s𝖠 + s𝖡

s𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e

𝗌𝗄𝖠

k𝖠 k𝖡= F(𝗌𝖽𝖠, m) = F(𝗌𝖽𝖡, m)
R𝖠 = k𝖠 ⋅ G R𝖡 = k𝖡 ⋅ G

𝗌𝖽𝖠 𝗌𝖽𝖡 𝗌𝗄𝖡

Threshold Setting: Simple Attempt

Like plain signing,
this is the only

randomized step

R𝖠R𝖡

s𝖠 = k𝖠 − 𝗌𝗄𝖠 ⋅ e s𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e

s𝖡

R = R𝖠 + R𝖡 R = R𝖠 + R𝖡

e = H(R∥m) e = H(R∥m)

s = s𝖠 + s𝖡 s = s𝖠 + s𝖡

s𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e

𝗌𝗄𝖠

k𝖠 k𝖡= F(𝗌𝖽𝖠, m) = F(𝗌𝖽𝖡, m)
R𝖠 = k𝖠 ⋅ G R𝖡 = k𝖡 ⋅ G

𝗌𝖽𝖠 𝗌𝖽𝖡 𝗌𝗄𝖡

Threshold Setting: Simple Attempt

Like plain signing,
this is the only

randomized step

R𝖠R𝖡R = R𝖠 + R𝖡 R = R𝖠 + R𝖡

𝗌𝗄𝖠

k𝖠 k𝖡= F(𝗌𝖽𝖠, m) = F(𝗌𝖽𝖡, m)
R𝖠 = k𝖠 ⋅ G R𝖡 = k𝖡 ⋅ G

𝗌𝖽𝖠 𝗌𝖽𝖡 𝗌𝗄𝖡

Threshold Setting: Simple Attempt

Like plain signing,
this is the only

randomized step

k𝖡 = F(𝗌𝖽𝖡, m)
R𝖡 = k𝖡 ⋅ G

Sign same againm These stay the same

R𝖠R𝖡R = R𝖠 + R𝖡 R = R𝖠 + R𝖡

𝗌𝗄𝖠

k𝖠 k𝖡= F(𝗌𝖽𝖠, m) = F(𝗌𝖽𝖡, m)
R𝖠 = k𝖠 ⋅ G R𝖡 = k𝖡 ⋅ G

𝗌𝖽𝖠 𝗌𝖽𝖡 𝗌𝗄𝖡

Threshold Setting: Simple Attempt

Like plain signing,
this is the only

randomized step

R𝖡R* = R*𝖠 + R𝖡

k𝖡= F*(𝗌𝖽𝖠, m) = F(𝗌𝖽𝖡, m)
R*𝖠 = k*𝖠 ⋅ G R𝖡 = k𝖡 ⋅ G
k*𝖠

Sign same againm

R* = R*𝖠 + R𝖡

These stay the same
This changes

R𝖠R𝖡R = R𝖠 + R𝖡 R = R𝖠 + R𝖡

𝗌𝗄𝖠

k𝖠 k𝖡= F(𝗌𝖽𝖠, m) = F(𝗌𝖽𝖡, m)
R𝖠 = k𝖠 ⋅ G R𝖡 = k𝖡 ⋅ G

𝗌𝖽𝖠 𝗌𝖽𝖡 𝗌𝗄𝖡

Threshold Setting: Simple Attempt

Like plain signing,
this is the only

randomized step

R𝖡R* = R*𝖠 + R𝖡

k𝖡= F*(𝗌𝖽𝖠, m) = F(𝗌𝖽𝖡, m)
R*𝖠 = k*𝖠 ⋅ G R𝖡 = k𝖡 ⋅ G
k*𝖠

Sign same againm

R* = R*𝖠 + R𝖡

These stay the same
This changes

s𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e

collects

s*𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e*

2 linear combinations of
honest party’s 2 secrets
[Maxwell Poelstra Seurin Wuille 19]

k𝖠

𝗌𝗄𝖠

R𝖠R𝖡

s𝖠 = k𝖠 − 𝗌𝗄𝖠 ⋅ e s𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e

s𝖡

R = R𝖠 + R𝖡 R = R𝖠 + R𝖡

e = H(R∥m) e = H(R∥m)

s = s𝖠 + s𝖡 s = s𝖠 + s𝖡

R𝖠 = k𝖠 ⋅ G R𝖡 = k𝖡 ⋅ G
k𝖡

𝗌𝗄𝖡𝗌𝖽𝖠 𝗌𝖽𝖡

= F(𝗌𝖽𝖠, m) = F(𝗌𝖽𝖡, m)Need to verify this
is done correctly

Threshold Setting: Take 2

𝗌𝗄𝖠

R𝖠R𝖡

s𝖠 = k𝖠 − 𝗌𝗄𝖠 ⋅ e s𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e

s𝖡

R = R𝖠 + R𝖡 R = R𝖠 + R𝖡

e = H(R∥m) e = H(R∥m)

s = s𝖠 + s𝖡 s = s𝖠 + s𝖡

R𝖠 = k𝖠 ⋅ G R𝖡 = k𝖡 ⋅ G

𝗌𝗄𝖡𝗌𝖽𝖠 𝗌𝖽𝖡

𝖢𝗈𝗆(𝗌𝖽𝖡)
𝖢𝗈𝗆(𝗌𝖽𝖠)

k𝖠 k𝖡= F(𝗌𝖽𝖠, m) = F(𝗌𝖽𝖡, m)Need to verify this
is done correctly

Threshold Setting: Take 2

𝗌𝗄𝖠

R𝖠R𝖡R = R𝖠 + R𝖡 R = R𝖠 + R𝖡

e = H(R∥m) e = H(R∥m)

R𝖠 = k𝖠 ⋅ G R𝖡 = k𝖡 ⋅ G

𝗌𝗄𝖡𝗌𝖽𝖠 𝗌𝖽𝖡

𝖢𝗈𝗆(𝗌𝖽𝖡)
𝖢𝗈𝗆(𝗌𝖽𝖠)

k𝖠 k𝖡= F(𝗌𝖽𝖠, m) = F(𝗌𝖽𝖡, m)

R𝖠

R𝖡

Need to verify this
is done correctly

Threshold Setting: Take 2

𝗌𝗄𝖠

R𝖠R𝖡R = R𝖠 + R𝖡 R = R𝖠 + R𝖡

e = H(R∥m) e = H(R∥m)

R𝖠 = k𝖠 ⋅ G R𝖡 = k𝖡 ⋅ G

𝗌𝗄𝖡𝗌𝖽𝖠 𝗌𝖽𝖡

𝖢𝗈𝗆(𝗌𝖽𝖡)
𝖢𝗈𝗆(𝗌𝖽𝖠)

k𝖠 k𝖡= F(𝗌𝖽𝖠, m) = F(𝗌𝖽𝖡, m)

R𝖠

π𝖠 : R𝖠 consistent with 𝖢𝗈𝗆(𝗌𝖽𝖠)

R𝖡

π𝖡 : R𝖡 consistent with 𝖢𝗈𝗆(𝗌𝖽𝖡)

ZKP

ZKP

Need to verify this
is done correctly

Threshold Setting: Take 2

π𝖠 : R𝖠 consistent with 𝖢𝗈𝗆(𝗌𝖽𝖠)

π𝖡 : R𝖡 consistent with 𝖢𝗈𝗆(𝗌𝖽𝖡)

ZKP

ZKP

• This “GMW-style” approach was taken in (the only) previous works
[Nick Ruffing Seurin Wuille 20][Garillot K Mohassel Nikolaenko 21]

• The statement to be proven in ZK is non-trivial: R𝖠 = F(𝗌𝖽𝖠, m) ⋅ G

Threshold Setting: Take 2

π𝖠 : R𝖠 consistent with 𝖢𝗈𝗆(𝗌𝖽𝖠)

π𝖡 : R𝖡 consistent with 𝖢𝗈𝗆(𝗌𝖽𝖡)

ZKP

ZKP

• This “GMW-style” approach was taken in (the only) previous works
[Nick Ruffing Seurin Wuille 20][Garillot K Mohassel Nikolaenko 21]

• The statement to be proven in ZK is non-trivial: R𝖠 = F(𝗌𝖽𝖠, m) ⋅ G
PRF evaluation Exponentiation

- [NRSW 20]: Custom arithmetic PRF + Bulletproofs

- [GKMN 21]: Standardized PRF (eg. AES) + Garbled Circuits

Threshold Setting: Take 2

Is there a more “native” approach?

• Proving correct evaluation of is inherently bottlenecked by
circuit complexity of PRFs

• Ideally, we would like to avoid such non-blackbox use of crypto

• Central question in this paper:

F

Can we design a distributed, stateless deterministic Schnorr signing
scheme that makes blackbox use of cryptographic primitives?

This work: a qualified “yes”

Our Results
• Main construction: blackbox use of Pseudorandom Correlation

Function () for Vector Oblivious Linear Evaluation (VOLE) in

- Simple stateless derandomization pattern

- s are increasingly general, but it’s not Oblivious Transfer

• Two concrete instantiations:

1. Covert security from any PRF

2. Full malicious security from Paillier

𝖯𝖢𝖥 ℤq

𝖯𝖢𝖥

Pseudorandom Correlation Functions
[Boyle Couteau Gilboa Ishai Kohl Scholl 20]

ℱ𝒴
𝗌𝖾𝗍𝗎𝗉𝗌𝖽𝖠 𝗌𝖽𝖡

one-time

unbounded

xyx,𝖠 = 𝖯𝖢𝖥(𝗌𝖽𝖠, x) yx,𝖡 = 𝖯𝖢𝖥(𝗌𝖽𝖡, x)

(yx,𝖠, yx,𝖡) ∈ 𝒴

For a correlation :𝒴

Pseudorandom Correlation Functions
[Boyle Couteau Gilboa Ishai Kohl Scholl 20]

ℱ𝒴
𝗌𝖾𝗍𝗎𝗉𝗌𝖽𝖠 𝗌𝖽𝖡

one-time

unbounded

xyx,𝖠 = 𝖯𝖢𝖥(𝗌𝖽𝖠, x) yx,𝖡 = 𝖯𝖢𝖥(𝗌𝖽𝖡, x)

(yx,𝖠, yx,𝖡) ∈ 𝒴

For a correlation :𝒴Complexity of
determines

efficiency of

𝒴

𝖯𝖢𝖥

“Good enough” Correlation for Schnorr

𝒴Δ
𝖵𝖮𝖫𝖤 : ((k, w = Δk + β), (Δ, β))

- simple enough for reasonably efficient s
- powerful enough to build what we want

𝖯𝖢𝖥

𝒴Δ
𝖵𝖮𝖫𝖤 : ((k, w = Δk + β), (Δ, β))

private nonce MAC on nonce

MAC verification key

“Good enough” Correlation for Schnorr

𝒴Δ
𝖵𝖮𝖫𝖤 : ((k, w = Δk + β), (Δ, β))

private nonce MAC on nonce

MAC verification key
R = k ⋅ G

W = w ⋅ G
W ?= Δ ⋅ R + β ⋅ G
Verify MAC in exponent

“Good enough” Correlation for Schnorr

𝒴Δ
𝖵𝖮𝖫𝖤 : ((k, w = Δk + β), (Δ, β))

private nonce MAC on nonce

MAC verification key
R = k ⋅ G

W = w ⋅ G
W ?= Δ ⋅ R + β ⋅ G
Verify MAC in exponent

Need to
guess to
subvert the

check

Δ

“Good enough” Correlation for Schnorr

 for 𝖯𝖢𝖥 𝒴Δ
𝖵𝖮𝖫𝖤

• First construction: adapted from SoftSpoken VOLE [Roy22]
(originally used for OT Extension)

ℱ𝒴
𝗌𝖾𝗍𝗎𝗉𝗌𝖽𝖠 : 𝗌𝖽𝖡 :

{k1, ⋯, kη} 𝗌𝖽𝖠∖{kΔ}

𝖯𝖢𝖥(x) :
k = Σi 𝖯𝖱𝖥ki(x)

w = Σi i ⋅ 𝖯𝖱𝖥ki(x)
β = Σi (i−Δ) ⋅ 𝖯𝖱𝖥ki(x)

 for 𝖯𝖢𝖥 𝒴Δ
𝖵𝖮𝖫𝖤

• First construction: adapted from SoftSpoken VOLE [Roy22]
(originally used for OT Extension)

ℱ𝒴
𝗌𝖾𝗍𝗎𝗉𝗌𝖽𝖠 : 𝗌𝖽𝖡 :

{k1, ⋯, kη} 𝗌𝖽𝖠∖{kΔ}

𝖯𝖢𝖥(x) :
k = Σi 𝖯𝖱𝖥ki(x)

w = Σi i ⋅ 𝖯𝖱𝖥ki(x)
β = Σi (i−Δ) ⋅ 𝖯𝖱𝖥ki(x)

 only covert security
(eg. soundness)

Δ ∈ 𝗉𝗈𝗅𝗒(κ) ⇒
2−10

• Unclear how to strengthen the SoftSpoken VOLE construction

• [Orlandi Scholl Yakoubov 21]: Elegant VOLE from Paillier,
supports

• Unfortunately, [OSY21] gives VOLE in the ring
(is a biprime of factorization unknown to verifier)

• We need to “translate” VOLE in to
This turns out to be quite non-trivial, borrowed ideas from
[OSY21, Roy Singh 21]

𝖯𝖢𝖥
Δ ∈ 𝖾𝗑𝗉(κ)

ℤN
N

ℤN ℤq

Fully Secure for 𝖯𝖢𝖥 𝒴Δ
𝖵𝖮𝖫𝖤

Securely Translating 𝒴Δ,N
𝖵𝖮𝖫𝖤 → 𝒴Δ,q

𝖵𝖮𝖫𝖤

k, w = Δk + β (mod N) Δ, β

𝒴Δ,N
𝖵𝖮𝖫𝖤

k, w = Δk + β (mod N) Δ, β
Derive : klo, khi khiM + klo = k

khi β′ = β + Δ(Mkhi)
((klo, w), (Δ, β′)) ∈ 𝒴Δ,q

𝖵𝖮𝖫𝖤

Public s.t. M q |M

𝒴Δ,N
𝖵𝖮𝖫𝖤

IKNP-style “correction word”

Securely Translating 𝒴Δ,N
𝖵𝖮𝖫𝖤 → 𝒴Δ,q

𝖵𝖮𝖫𝖤

k, w = Δk + β (mod N) Δ, β

β′ = β + Δ(Mk*hi)

Public s.t. M q |M

𝒴Δ,N
𝖵𝖮𝖫𝖤

k*hi

IKNP-style “correction word”

Δ?? + β′ = w

Securely Translating 𝒴Δ,N
𝖵𝖮𝖫𝖤 → 𝒴Δ,q

𝖵𝖮𝖫𝖤

k, w = Δk + β (mod N) Δ, β

β′ = β + Δ(Mk*hi)

Public s.t. M q |M

𝒴Δ,N
𝖵𝖮𝖫𝖤

k*hi

IKNP-style “correction word”

However, deriving a correct
correlation isn’t enough; we
need reset resilience as well Δ?? + β′ = w

Securely Translating 𝒴Δ,N
𝖵𝖮𝖫𝖤 → 𝒴Δ,q

𝖵𝖮𝖫𝖤

k, w = Δk + β (mod N) Δ, β

β′ = β + Δ(Mk*hi)

Public s.t. M q |M

𝒴Δ,N
𝖵𝖮𝖫𝖤

k*hi

IKNP-style “correction word”

However, deriving a correct
correlation isn’t enough; we
need reset resilience as well Δklo + β′ = w

Securely Translating 𝒴Δ,N
𝖵𝖮𝖫𝖤 → 𝒴Δ,q

𝖵𝖮𝖫𝖤

Same valid klo (mod q) ∀ k*hi

small

k, w = Δk + β (mod N) Δ, β

β′ = β + Δ(Mk*hi)

Public s.t. M q |M

𝒴Δ,N
𝖵𝖮𝖫𝖤

k*hi

IKNP-style “correction word”

However, deriving a correct
correlation isn’t enough; we
need reset resilience as well Δklo + β′ = w

Securely Translating 𝒴Δ,N
𝖵𝖮𝖫𝖤 → 𝒴Δ,q

𝖵𝖮𝖫𝖤

Same valid klo (mod q) ∀ k*hi

small

k, w = Δk + β (mod N) Δ, β

β′ = β + Δ(Mk*hi)

Public s.t. M q |M

𝒴Δ,N
𝖵𝖮𝖫𝖤

k*hi

IKNP-style “correction word”

However, deriving a correct
correlation isn’t enough; we
need reset resilience as well Δklo + β′ = w

Check modulo auxiliary biprime
gklo, gw (mod Ñ)

gβ′ (gklo)Δ ?= gw (mod Ñ)

Securely Translating 𝒴Δ,N
𝖵𝖮𝖫𝖤 → 𝒴Δ,q

𝖵𝖮𝖫𝖤

Sound assuming Strong RSASame valid klo (mod q) ∀ k*hi

Similar to [DF02]

Signing Efficiency: PCF Overhead

• Covert construction only adds a single element, comparable to semi-honest
signing for reasonable deterrence

• Fully secure Paillier-based construction for 256-bit curve, this work () in
comparison with [NRSW20] (Bulletproofs) and [GKMN21] (Garbled Circuits)

- 451 bytes (including correction word+check)

 Bandwidth: < Bulletproofs << Garbled Circuits

- 188ms to prove and verify

 Computation: Garbled Circuits < < Bulletproofs

𝔾

𝖯𝖢𝖥

𝖯𝖢𝖥

𝖯𝖢𝖥

1KB 100s of KB

tens of ms 188ms 950ms

0.5KB

Instantiating ℱ𝗌𝖾𝗍𝗎𝗉

• s are defined with a trusted dealer, no standard setup protocol
- This model may be enough for some applications [ANOSS22]

• Setup protocol for covert is straightforward via OT

• Setup for Paillier has to generate biprimes
- Prover knows factorization of
- Verifier can know factorization of

• Each party could potentially choose its own modulus and prove well-
formedness.
We do not explore this further in this work as we focus on signing

𝖯𝖢𝖥

𝖯𝖢𝖥

𝖯𝖢𝖥 N, Ñ
N

Ñ

In Conclusion
• We give a new approach to stateless deterministic 2P-Schnorr

signing based on s: towards blackbox use of cryptography

• Two instantiations based on s for VOLE:

- Covert security from PRF-based SoftSpoken VOLE [Roy22]

- Malicious security from Paillier-based [OSY21, RS21]
+ Novel mechanism to translate VOLE from
+ Interesting tradeoffs relative to existing work

𝖯𝖢𝖥

𝖯𝖢𝖥

ℤN → ℤq

Thanks!
eprint: 2023/216

Thanks Eysa
Lee for

https://eprint.iacr.org/2023/216

