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System under active attack! 
At least one node has been 
compromised. 
Unclear which one(s).
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MPC failed to deliver output. 
Node P1 deviated from the 
protocol.
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Identifiability in the Context of Re-staking

• Re-staking TLDR: 
- Operators buy into the protocol (service/AVS) with “re-staked” assets 
- In case of malicious behaviour, this stake can be “slashed” 
- Economic security: protocol deviations are disincentivized 

• Identifiable Abort is a natural fit for this setting 
- Cheating parties can be identified and slashed 
- DoS resistant MPC via economic incentives 

• Hope: complexity of IA closer to Sec w. Abort than Guaranteed Output Delivery



Identification Mechanisms
• Cheater could be found through out of band methods.  

• We want certifiable protocol mechanism to identify who crashed the protocol 
 each party either gets output, or identity of cheating party + cert. of cheat 

• Two ways to crash protocol: 

 
 
 
 
1. Malformed protocol message                             2. No message at all

⇒
Note: no consensus on identity
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“Broadcast”?
• Engineering Anecdata: 

    “Do I really need to implement broadcast?” 
      “yes” 
    “Is it just for some theoretical proof nonsense?” 
      “no, it’s to catch parties that don’t send messages for example” 
    “That seems unnecessary, I can just <insert heuristic>” 

• In some settings: coordinator routes all messages 
 implicit single point of failure 

• Other settings: use external broadcast channel like a blockchain 
 expensive, slow, introduces external dependencies 

⇒

⇒



Broadcast Protocols
• [Cohen Lindell 14] MPC-IA implies broadcast: compute  with IA 

• PKI already available (+synchrony), broadcast is feasible [Dolev Strong 83] 
…but round complexity is an issue:  deterministic, or expected  
randomized with large constants 
[Katz Koo 06][Abraham Devadas Dolev Nayak Ren 19] 

• This is straightforward in the security with abort setting, via simple echo 
broadcast [Goldwasser Lindell 02] 

• Can we construct a simple instantiation of BC as suitable for IA? 
Goal: an MPC-IA protocols that are easy to deploy over p2p channels

ℱ𝖯𝖪𝖨

O(t) O(1)



BC-IA Properties

• Consistency: All honest parties that output a valid (dealer signed) message will 
be in agreement 

• If the sender is corrupt, an honest party alternatively obtains a certificate: 

- (An attempt to) violate consistency, yields a certificate of cheating  

- If the sender sends nothing, yields a certificate of non-responsiveness  

•  vs. : Definite misbehaviour vs. potential network fault—different penalties 

• Defamation-freeness: Honest party can’t be framed with  or 

Ω

ω

Ω ω

Ω ω
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•  Impossible w. dishonest majority 
•  2-round honest-majority protocol

Anatomy of MPC-IA

Baseline security-with-abort protocol

Mechanism to guarantee 
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Mechanism to guarantee 
each party sends some message every round

This work: define “Broadcast-IA” 
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Broadcast-IA: Analysis
• Honest :  Complete, defamation-free 

- No : Will not sending conflicting  
- No : At most  corrupt parties will echo   not enough sigs 

• Corrupt :  Consistent 
- If any honest parties receive yields  
- If  withheld from all honest parties  yields  
- Send  to any honest party   committed as output 

• Notes on output : 
1. Accompanied by sig( ) from : proves  sent  to  
2.  producing sig( ) DOES NOT prove that some  also output 

P0
Ω m, m*
ω t ⊥ ⇒

P0
m, m* ⇒ Ω

m ⇒ ω
m ⇒ m

m
m P0 P0 m Pi

Pi m Pj m



Synchrony
• Protocol assumes a well-defined network time-out (i.e. synchrony) 

• Inherent: Identifiable Abort not well-defined in p2p asynchronous setting 
- Honest parties w. bad network indistinguishable from corrupt 

• Important to reason about what happens when network goes bad: 
- Honest parties may be certified non-responsive ( ) 
   Very bad idea to take drastic action based on non-responsiveness alone 
- Liveness may be violated 
- Cheat ( ) remains attributable to corrupt parties only 
   Higher level protocols can still maintain safety/privacy of secrets

ω
⇒

Ω
⇒
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If  is a protocol that achieves 
IA* using Ideal Broadcast, then 

 achieves IA using BC-IA

Π𝖡𝖢
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Sample Instantiation: Threshold ECDSA

Baseline security-with-abort protocol

Mechanism to guarantee 
wellformedness of every sent message

Mechanism to guarantee 
each party sends some message every round

[This work] 
2-round honest majority BC-IA

inherent

3-BC-round honest-majority 
ECDSA signing à la [DKLs23]

Light ZK proofs in  
+ verifiable complaints

𝔾

This work: Instantiate ECDSA-IA



ECDSA-IA: Efficiency
• Envisioned mode of operation: 

- Run [DKLs23] (sec w. abort) by default 
- Fall back to this protocol if too many aborts observed 

• Worst case execution path most relevant to measuring efficiency 
-  :  ~500ms compute time on standard hardware 
  Relative to dishonest majority 
  noticeably slower than (s.w.a.) OT-based ECDSA [DKLs23] 
  order of magnitude faster than Paillier-based ECDSA-IA [CGGMP20] 

• Actual worst-case performance depends on network conditions 
- Up to Network Timeout

(t, n) = (10,21)

6 ×



In Conclusion
• Sometimes—e.g. re-staking setting—Identifiable Abort can offer more meaningful 

security than Guaranteed Output 
- IA requires some form of broadcast (tricky to instantiate) 

• We define Broadcast-IA to certify cheaters: silent parties and protocol deviations 
- Prove impossible w. dishonest majority 
- 2-round  construction over p2p channels (synchrony + PKI) 

• Use this tool to instantiate Threshold ECDSA-IA over p2p channels 
- Simpler, more efficient than Guaranteed Output 
- Ongoing research: General Secure Function Evaluation with IA

t < n/2

Thanks!
eprint coming soon, (pre)preprint on ykondi.net

Thanks Eysa Lee for

http://ykondi.net

