
Separating Broadcast

Yashvanth Kondi Divya Ravi

 
from Cheater Identification:

e ECDSA Case



Distributed Risk: Aacker will need 
to compromise multiple nodes

reshold Signing



Distributed Risk: Aacker will need 
to compromise multiple nodes

 Signing(3,n)



Distributed Risk: Aacker will need 
to compromise multiple nodes

 Signing(3,n)



Distributed Risk: Aacker will need 
to compromise multiple nodes

 Signing(3,n)



Distributed Risk: Aacker will need 
to compromise multiple nodes

 Signing(3,n)



Distributed Risk: Aacker will need 
to compromise multiple nodes

 Signing(3,n)



 Signing(3,n)



 Signing(3,n)
Best Possible Security: Protection against 2 corruptions



 Signing(3,n)
Best Possible Security: Protection against 2 corruptions

…out of five parties

“Global” honest majority

Necessary to retrieve      in case of a fault



 Signing(3,n)
Best Possible Security: Protection against 2 corruptions

reshold signing via 
“Dishonest majority” 

MPC protocol

“Global” honest majority



 Signing(3,n)
Best Possible Security: Protection against 2 corruptions

reshold signing via 
“Dishonest majority” 

MPC protocol

“Global” honest majority



 Signing(3,n)
Best Possible Security: Protection against 2 corruptions

reshold signing via 
“Dishonest majority” 

MPC protocol

still safe!

“Global” honest majority



 Signing(3,n)
Best Possible Security: Protection against 2 corruptions

reshold signing via 
“Dishonest majority” 

MPC protocol

still safe!

But, MPC fails 
 no sig (DoS) 

“security w. abort”
→

“Global” honest majority



 Signing(3,n)
Best Possible Security: Protection against 2 corruptions

reshold signing via 
“Dishonest majority” 

MPC protocol

still safe!

But, MPC fails 
 no sig (DoS) 

“security w. abort”
→

Folklore remedy: 
Identifiable Abort

“Global” honest majority



 Signing(3,n)
Best Possible Security: Protection against 2 corruptions

still safe!

But, MPC fails 
 no sig (DoS) 

“security w. abort”
→

Folklore remedy: 
Identifiable Abort

“Global” 
honest majority



 Signing(3,n)
Best Possible Security: Protection against 2 corruptions

still safe!

But, MPC fails 
 no sig (DoS) 

“security w. abort”
→

Folklore remedy: 
Identifiable Abort

‼! CHEATER ‼! “Global” 
honest majority



 Signing(3,n)
Best Possible Security: Protection against 2 corruptions

still safe!

But, MPC fails 
 no sig (DoS) 

“security w. abort”
→

Folklore remedy: 
Identifiable Abort

‼! CHEATER ‼! “Global” 
honest majority



 Signing(3,n)
Best Possible Security: Protection against 2 corruptions

still safe!

But, MPC fails 
 no sig (DoS) 

“security w. abort”
→

Folklore remedy: 
Identifiable Abort

‼! CHEATER ‼!



 Signing(3,n)
Best Possible Security: Protection against 2 corruptions

still safe!

But, MPC fails 
 no sig (DoS) 

“security w. abort”
→

Folklore remedy: 
Identifiable Abort

‼! CHEATER ‼!



 Signing(3,n)
Best Possible Security: Protection against 2 corruptions

still safe!

But, MPC fails 
 no sig (DoS) 

“security w. abort”
→

Folklore remedy: 
Identifiable Abort



Identification Mechanisms
• Cheater could be found through out of band methods.  

• We want certifiable protocol mechanism to identify who crashed the protocol 
 each party either gets output, or identity of cheating party + cert. of cheat 

• Two ways to crash protocol: 

 
 
 
 
1. Malformed protocol message                             2. No message at all

⇒
Note: no consensus on identity



Anatomy of MPC-ECDSA w. IA

Baseline security-with-abort protocol



Anatomy of MPC-ECDSA w. IA

Baseline security-with-abort protocol

Mechanism to guarantee 
wellformedness of every sent message



Anatomy of MPC-ECDSA w. IA

Baseline security-with-abort protocol

Mechanism to guarantee 
wellformedness of every sent message

Mitigate via 
ZK proofs, 

opening input
[Canei Gennaro Goldfeder 

Makriyannis Peled 20], 
[Cohen Doerner  

K shelat 24]



Anatomy of MPC-ECDSA w. IA

Baseline security-with-abort protocol

Mechanism to guarantee 
wellformedness of every sent message

Mechanism to guarantee 
each party sends some message every round

Mitigate via 
ZK proofs, 

opening input
[Canei Gennaro Goldfeder 

Makriyannis Peled 20], 
[Cohen Doerner  

K shelat 24]



Anatomy of MPC-ECDSA w. IA

Baseline security-with-abort protocol

Mechanism to guarantee 
wellformedness of every sent message

Mechanism to guarantee 
each party sends some message every round

Mitigate via 
ZK proofs, 

opening input

Send all 
messages over 

broadcast

[Canei Gennaro Goldfeder 
Makriyannis Peled 20], 

[Cohen Doerner  
K shelat 24]



Anatomy of MPC-ECDSA w. IA

Baseline security-with-abort protocol

Mechanism to guarantee 
wellformedness of every sent message

Mechanism to guarantee 
each party sends some message every round

Mitigate via 
ZK proofs, 

opening input

Send all 
messages over 

broadcast

[Canei Gennaro Goldfeder 
Makriyannis Peled 20], 

[Cohen Doerner  
K shelat 24]

Can of worms



“Broadcast”?
• Engineering Anecdata: 

    “Do I really need to implement broadcast?” 
      “yes” 
    “Is it just for some theoretical proof nonsense?” 
      “no, it’s to catch parties that don’t send messages for example” 
    “at seems unnecessary, I can just scan the network logs” 

• In some seings: coordinator routes all messages 
 implicit single point of failure 

• Other seings: use external broadcast channel like a blockchain 
 expensive, slow, introduces external dependencies 

⇒

⇒



Broadcast Protocols
• [Cohen Lindell 14] MPC-IA implies broadcast: compute  with IA 

• PKI already available (+synchrony), broadcast is feasible [Dolev Strong 83] 
…but round complexity is an issue:  deterministic, or expected  
randomized with large constants [Katz Koo 06][Abraham Devadas Dolev 
Nayak Ren 19] 

• is is straightforward in the security with abort seing, via simple echo 
broadcast [Goldwasser Lindell 02] 

• Can we construct a simple instantiation of BC as suitable for IA? 
Goal: an ECDSA-IA protocol that is easy to deploy over p2p channels

ℱ𝖯𝖪𝖨

O(t) O(1)



BC-IA Properties

• Consistency: All honest parties that output a valid (dealer signed) message will 
be in agreement 

• If the sender is corrupt, an honest party alternatively obtains a certificate: 

- (An aempt to) violate consistency, yields a certificate of cheating  

- If the sender sends nothing, yields a certificate of non-responsiveness  

•  vs. : Definite misbehaviour vs. potential network fault—different penalties 

• Defamation-freeness: Honest party can’t be framed with  or 

Ω

ω

Ω ω

Ω ω



Anatomy of MPC-ECDSA w. IA

Baseline security-with-abort protocol

Mechanism to guarantee 
wellformedness of every sent message

Mechanism to guarantee 
each party sends some message every round



Anatomy of MPC-ECDSA w. IA

Baseline security-with-abort protocol

Mechanism to guarantee 
wellformedness of every sent message

Mechanism to guarantee 
each party sends some message every round

is work: define “Broadcast-IA” 



•  Impossible w. dishonest majority 
•  2-round honest-majority protocol

Anatomy of MPC-ECDSA w. IA

Baseline security-with-abort protocol

Mechanism to guarantee 
wellformedness of every sent message

Mechanism to guarantee 
each party sends some message every round

is work: define “Broadcast-IA” 



•  Impossible w. dishonest majority 
•  2-round honest-majority protocol

Anatomy of MPC-ECDSA w. IA

Baseline security-with-abort protocol

Mechanism to guarantee 
wellformedness of every sent message

Mechanism to guarantee 
each party sends some message every round

is work: define “Broadcast-IA” 

Simple honest-majority ECDSA



•  Impossible w. dishonest majority 
•  2-round honest-majority protocol

Anatomy of MPC-ECDSA w. IA

Baseline security-with-abort protocol

Mechanism to guarantee 
wellformedness of every sent message

Mechanism to guarantee 
each party sends some message every round

is work: define “Broadcast-IA” 

Simple honest-majority ECDSA

Light ZK proofs in  
+ verifiable complaints

𝔾



Broadcast-IA is Impossible with Dishonest Majority
[is work]



Broadcast-IA is Impossible with Dishonest Majority

P0

P1

P2

[is work]



Broadcast-IA is Impossible with Dishonest Majority

P0

P1

P2

Aack to 
frame P0

[is work]



Aack to 
frame P0

Broadcast-IA is Impossible with Dishonest Majority

P0

P1

P2

[is work]



Aack to 
frame P0

Broadcast-IA is Impossible with Dishonest Majority

P0

P1

P2

[is work]



Aack to 
frame P0

Broadcast-IA is Impossible with Dishonest Majority

P0

P1

P2

P0

P1

P2

[is work]



Aack to 
frame P0

Broadcast-IA is Impossible with Dishonest Majority

P0

P1

P2

P0

P1

P2

[is work]



Aack to 
frame P0

Broadcast-IA is Impossible with Dishonest Majority

P0

P1

P2

P0

P1

P2

[is work]



Aack to 
frame P0

Broadcast-IA is Impossible with Dishonest Majority

P0

P1

P2

P0

P1

P2

: “  offline”ω P0

OUTPUT

[is work]



Aack to 
frame P0

Broadcast-IA is Impossible with Dishonest Majority

P0

P1

P2

P0

P1

P2

: “  offline”ω P0

OUTPUT

[is work]



Aack to 
frame P0

Broadcast-IA is Impossible with Dishonest Majority

P0

P1

P2

P0

P1

P2

: “  offline”ω P0

OUTPUT

[is work]



Broadcast-IA is Impossible with Dishonest Majority

Aack to 
frame P0

P0

P1

P2

P0

P1

P2

: “  offline”ω P0

OUTPUT

[is work]



Broadcast-IA is Impossible with Dishonest Majority

Aack to 
frame P0

P0

P1

P2

: “  offline”ω P0

OUTPUT

P0

P1

P2

: “  offline”ω P0

OUTPUT

[is work]



Broadcast-IA is Impossible with Dishonest Majority
[is work]



Broadcast-IA is Impossible with Dishonest Majority
[is work]



Broadcast-IA with Honest Majority

Recall: Global honest majority
Use it proactively

[is work]



Broadcast-IA with Honest Majority

 wishes to broadcast P0 m

P0 P1 P2 P3 P4

𝗉𝗄0 𝗉𝗄1 𝗉𝗄2 𝗉𝗄3 𝗉𝗄4

[is work]



Broadcast-IA with Honest Majority

Round 1 Round 2 Output

[is work]



Broadcast-IA with Honest Majority

Round 1 Round 2 Output

P0 Pi

m

Sign , 
Send to all

m

[is work]



Broadcast-IA with Honest Majority

Round 1 Round 2 Output

P0 Pi

m

Sign , 
Send to all

m

[is work]



Broadcast-IA with Honest Majority

Round 1 Round 2 Output

P0 Pi

m

Sign , 
Send to all

m

Pi
Pj

m

⊥

if valid

else

Echo  
or signed 

m
⊥

[is work]



Broadcast-IA with Honest Majority

Round 1 Round 2 Output

P0 Pi

m

Sign , 
Send to all

m

Pi
Pj

m

⊥

if valid

else

Echo  
or signed 

m
⊥

[is work]



Broadcast-IA with Honest Majority

Round 1 Round 2 Output

P0 Pi

m

Sign , 
Send to all

m

Pi
Pj

m

⊥

if valid

else

Echo  
or signed 

m
⊥ PiEach :

1. Check for potential 
certificates of cheating:

Ω m m*

ω ⊥ ⊥ ⊥

2. If no  found, 
output 

Ω, ω
m

[is work]



Broadcast-IA with Honest Majority

Round 1 Round 2 Output

P0 Pi

m

Sign , 
Send to all

m

Pi
Pj

m

⊥

if valid

else

Echo  
or signed 

m
⊥ PiEach :

1. Check for potential 
certificates of cheating:

Ω m m*

ω ⊥ ⊥ ⊥

2. If no  found, 
output 

Ω, ω
m

[is work]



Broadcast-IA: Analysis
• Honest :  Complete, defamation-free 

- No : Will not sending conflicting  
- No : At most  corrupt parties will echo   not enough sigs 

• Corrupt :  Consistent 
- If any honest parties receive yields  
- If  withheld from all honest parties  yields  
- Send  to any honest party   commied as output 

• Notes on output : 
1. Accompanied by sig( ) from : proves  sent  to  
2.  producing sig( ) DOES NOT prove that some  also output 

P0
Ω m, m*
ω t ⊥ ⇒

P0
m, m* ⇒ Ω

m ⇒ ω
m ⇒ m

m
m P0 P0 m Pi

Pi m Pj m



[k][𝗌𝗄] [ϕ] [ϕ ⋅ k] [ϕ ⋅ 𝗌𝗄]

Signing from
[Abram Nof Orlandi Scholl Shlomovits 22]

Reveal    
and  
α = e ⋅ [ϕ] + rx ⋅ [ϕ ⋅ 𝗌𝗄]

β = [ϕ ⋅ k]

𝖮𝗎𝗍𝗉𝗎𝗍 (s = α/β, R)

Round 3

(Recall from Jack’s talk)

Round 1
Establish  R = [k] ⋅ G

Round 2

ECDSA Tuples



[k][𝗌𝗄] [ϕ] [ϕ ⋅ k] [ϕ ⋅ 𝗌𝗄]

Sampling

Round 1
Establish  R = [k] ⋅ G

Round 2

ECDSA Tuples



[k][𝗌𝗄] [ϕ] [ϕ ⋅ k] [ϕ ⋅ 𝗌𝗄]

Sampling

𝖮𝗎𝗍𝗉𝗎𝗍 (s = α/β, R)

BC-IA 1

BC-IA 2

ECDSA Tuples

Pedersen VSS: public deg-  poly  
Each  (should) hold  s.t.  

t 𝖢 ∈ 𝔾[X]
Pi f(i), h(i) ∈ ℤq

f(i)G1 + h(i)G2 = C(i)

DKG: Prise apart  and : use , discard  
 b’casts ,  and PoK 

f h f h
Pi F(i) = f(i)G1 H(i) = h(i)G2

if  didn’t get output, b’casts proof of cheat Pi

Random string:  unknown DLog G1, G2 ∈ 𝔾



[k][𝗌𝗄] [ϕ] [ϕ ⋅ k] [ϕ ⋅ 𝗌𝗄]

Sampling

𝖮𝗎𝗍𝗉𝗎𝗍 (s = α/β, R)

BC-IA 1

BC-IA 2

ECDSA Tuples

Pedersen VSS: public deg-  poly  
Each  (should) hold  s.t.  

t 𝖢 ∈ 𝔾[X]
Pi f(i), h(i) ∈ ℤq

f(i)G1 + h(i)G2 = C(i)

DKG: Prise apart  and : use , discard  
 b’casts ,  and PoK 

f h f h
Pi F(i) = f(i)G1 H(i) = h(i)G2

if  didn’t get output, b’casts proof of cheat Pi

Random string:  unknown DLog G1, G2 ∈ 𝔾

VSSDKG Local mult + rerandomize



[k][𝗌𝗄] [ϕ] [ϕ ⋅ k] [ϕ ⋅ 𝗌𝗄]

Reveal    
and  
α = e ⋅ [ϕ] + rx ⋅ [ϕ ⋅ 𝗌𝗄]

β = [ϕ ⋅ k]

𝖮𝗎𝗍𝗉𝗎𝗍 (s = α/β, R)

BC-IA 3

BC-IA 2

f(i)G1 + h(i)G2 = C(i)

DKG: Prise apart  and : use , discard  
 b’casts ,  and PoK 

f h f h
Pi F(i) = f(i)G1 H(i) = h(i)G2

if  didn’t get output, b’casts proof of cheat Pi

VSSDKG Local mult + rerandomize



[k][𝗌𝗄] [ϕ] [ϕ ⋅ k] [ϕ ⋅ 𝗌𝗄]

Reveal    
and  
α = e ⋅ [ϕ] + rx ⋅ [ϕ ⋅ 𝗌𝗄]

β = [ϕ ⋅ k]

𝖮𝗎𝗍𝗉𝗎𝗍 (s = α/β, R)

BC-IA 3

BC-IA 2

f(i)G1 + h(i)G2 = C(i)

DKG: Prise apart  and : use , discard  
 b’casts ,  and PoK 

f h f h
Pi F(i) = f(i)G1 H(i) = h(i)G2

if  didn’t get output, b’casts proof of cheat Pi

VSSDKG Local mult + rerandomize

’s publicly 
commied share

Pi



[k][𝗌𝗄] [ϕ] [ϕ ⋅ k] [ϕ ⋅ 𝗌𝗄]

Reveal    
and  
α = e ⋅ [ϕ] + rx ⋅ [ϕ ⋅ 𝗌𝗄]

β = [ϕ ⋅ k]

𝖮𝗎𝗍𝗉𝗎𝗍 (s = α/β, R)

BC-IA 3

BC-IA 2

f(i)G1 + h(i)G2 = C(i)

DKG: Prise apart  and : use , discard  
 b’casts ,  and PoK 

f h f h
Pi F(i) = f(i)G1 H(i) = h(i)G2

if  didn’t get output, b’casts proof of cheat Pi

VSSDKG Local mult + rerandomize

𝗉𝗄i, Ri’s publicly 
commied share

Pi



[k][𝗌𝗄] [ϕ] [ϕ ⋅ k] [ϕ ⋅ 𝗌𝗄]

Reveal    
and  
α = e ⋅ [ϕ] + rx ⋅ [ϕ ⋅ 𝗌𝗄]

β = [ϕ ⋅ k]

𝖮𝗎𝗍𝗉𝗎𝗍 (s = α/β, R)

BC-IA 3

BC-IA 2

f(i)G1 + h(i)G2 = C(i)

DKG: Prise apart  and : use , discard  
 b’casts ,  and PoK 

f h f h
Pi F(i) = f(i)G1 H(i) = h(i)G2

if  didn’t get output, b’casts proof of cheat Pi

VSSDKG Local mult + rerandomize

𝗉𝗄i, Ri 𝖢𝗈𝗆(ϕi)’s publicly 
commied share

Pi



[k][𝗌𝗄] [ϕ] [ϕ ⋅ k] [ϕ ⋅ 𝗌𝗄]

Reveal    
and  
α = e ⋅ [ϕ] + rx ⋅ [ϕ ⋅ 𝗌𝗄]

β = [ϕ ⋅ k]

𝖮𝗎𝗍𝗉𝗎𝗍 (s = α/β, R)

BC-IA 3

BC-IA 2

f(i)G1 + h(i)G2 = C(i)

DKG: Prise apart  and : use , discard  
 b’casts ,  and PoK 

f h f h
Pi F(i) = f(i)G1 H(i) = h(i)G2

if  didn’t get output, b’casts proof of cheat Pi

VSSDKG Local mult + rerandomize

𝗉𝗄i, Ri 𝖢𝗈𝗆(ϕi)’s publicly 
commied share

Pi  implies , αi, βi Ci
ϕ𝗌𝗄 Ci

ϕk



[k][𝗌𝗄] [ϕ] [ϕ ⋅ k] [ϕ ⋅ 𝗌𝗄]

Reveal    
and  
α = e ⋅ [ϕ] + rx ⋅ [ϕ ⋅ 𝗌𝗄]

β = [ϕ ⋅ k]

𝖮𝗎𝗍𝗉𝗎𝗍 (s = α/β, R)

BC-IA 3

BC-IA 2

f(i)G1 + h(i)G2 = C(i)

DKG: Prise apart  and : use , discard  
 b’casts ,  and PoK 

f h f h
Pi F(i) = f(i)G1 H(i) = h(i)G2

if  didn’t get output, b’casts proof of cheat Pi

VSSDKG Local mult + rerandomize

𝗉𝗄i, Ri 𝖢𝗈𝗆(ϕi)’s publicly 
commied share

Pi  implies , αi, βi Ci
ϕ𝗌𝗄 Ci

ϕk

+ NIZK proving
,

 
𝗉𝗄i, Ri, 𝖢𝗈𝗆(ϕi)

Ci
ϕk, Ci

ϕ𝗌𝗄



Efficiency
• Envisioned mode of operation: 

- Run [DKLs23] (sec w. abort) by default 
- Fall back to this protocol if too many aborts observed 

• Worst case execution path most relevant to measuring efficiency 
-  :  ~500ms compute time on standard hardware 
  Relative to dishonest majority 
  noticeably slower than (s.w.a.) OT-based ECDSA [DKLs23] 
  order of magnitude faster than Paillier-based ECDSA-IA [CGGMP20] 

• Actual worst-case performance depends on network conditions 
- Up to Network Timeout

(t, n) = (10,21)

6 ×



In Conclusion
• Cheater identification requires some form of broadcast 

- Broadcast protocols are expensive 
- Tempting to resort to heuristics, external channels 

• We define Broadcast-IA to certify cheaters: silent parties and protocol deviations 
- Prove impossible w. dishonest majority 
- 2-round  construction over p2p channels (synchrony + PKI) 

• We build VSS-IA  DKG-IA  ECDSA-IA with  
- Leverage global honest majority

t < n/2

→ → t < n/2

anks!
eprint coming soon, (pre)preprint on ykondi.net

Thanks Eysa Lee for

http://ykondi.net

