
Separating Broadcast

Yashvanth Kondi Divya Ravi

 
from Cheater Identification:

e ECDSA Case



Distributed Risk: Aacker will need 
to compromise multiple nodes

reshold Signing



Distributed Risk: Aacker will need 
to compromise multiple nodes

 Signing(3,n)



Distributed Risk: Aacker will need 
to compromise multiple nodes

 Signing(3,n)



Distributed Risk: Aacker will need 
to compromise multiple nodes

 Signing(3,n)



Distributed Risk: Aacker will need 
to compromise multiple nodes

 Signing(3,n)



Distributed Risk: Aacker will need 
to compromise multiple nodes

 Signing(3,n)



 Signing(3,n)



 Signing(3,n)
Best Possible Security: Protection against 2 corruptions



 Signing(3,n)
Best Possible Security: Protection against 2 corruptions

…out of five parties

“Global” honest majority

Necessary to retrieve      in case of a fault



 Signing(3,n)
Best Possible Security: Protection against 2 corruptions

reshold signing via 
“Dishonest majority” 

MPC protocol

“Global” honest majority



 Signing(3,n)
Best Possible Security: Protection against 2 corruptions

reshold signing via 
“Dishonest majority” 

MPC protocol

“Global” honest majority



 Signing(3,n)
Best Possible Security: Protection against 2 corruptions

reshold signing via 
“Dishonest majority” 

MPC protocol

still safe!

“Global” honest majority



 Signing(3,n)
Best Possible Security: Protection against 2 corruptions

reshold signing via 
“Dishonest majority” 

MPC protocol

still safe!

But, MPC fails 
 no sig (DoS) 

“security w. abort”
→

“Global” honest majority



 Signing(3,n)
Best Possible Security: Protection against 2 corruptions

reshold signing via 
“Dishonest majority” 

MPC protocol

still safe!

But, MPC fails 
 no sig (DoS) 

“security w. abort”
→

Folklore remedy: 
Identifiable Abort

“Global” honest majority



 Signing(3,n)
Best Possible Security: Protection against 2 corruptions

still safe!

But, MPC fails 
 no sig (DoS) 

“security w. abort”
→

Folklore remedy: 
Identifiable Abort

“Global” 
honest majority



 Signing(3,n)
Best Possible Security: Protection against 2 corruptions

still safe!

But, MPC fails 
 no sig (DoS) 

“security w. abort”
→

Folklore remedy: 
Identifiable Abort

‼! CHEATER ‼! “Global” 
honest majority



 Signing(3,n)
Best Possible Security: Protection against 2 corruptions

still safe!

But, MPC fails 
 no sig (DoS) 

“security w. abort”
→

Folklore remedy: 
Identifiable Abort

‼! CHEATER ‼! “Global” 
honest majority



 Signing(3,n)
Best Possible Security: Protection against 2 corruptions

still safe!

But, MPC fails 
 no sig (DoS) 

“security w. abort”
→

Folklore remedy: 
Identifiable Abort

‼! CHEATER ‼!



 Signing(3,n)
Best Possible Security: Protection against 2 corruptions

still safe!

But, MPC fails 
 no sig (DoS) 

“security w. abort”
→

Folklore remedy: 
Identifiable Abort

‼! CHEATER ‼!



 Signing(3,n)
Best Possible Security: Protection against 2 corruptions

still safe!

But, MPC fails 
 no sig (DoS) 

“security w. abort”
→

Folklore remedy: 
Identifiable Abort



Identification Mechanisms
• Cheater could be found through out of band methods.  

• We want certifiable protocol mechanism to identify who crashed the protocol 
 each party either gets output, or identity of cheating party + cert. of cheat 

• Two ways to crash protocol: 

 
 
 
 
1. Malformed protocol message                             2. No message at all

⇒
Note: no consensus on identity
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Can of worms



“Broadcast”?
• Engineering Anecdata: 

    “Do I really need to implement broadcast?” 
      “yes” 
    “Is it just for some theoretical proof nonsense?” 
      “no, it’s to catch parties that don’t send messages for example” 
    “at seems unnecessary, I can just scan the network logs” 

• In some seings: coordinator routes all messages 
 implicit single point of failure 

• Other seings: use external broadcast channel like a blockchain 
 expensive, slow, introduces external dependencies 

⇒

⇒



Broadcast Protocols
• [Cohen Lindell 14] MPC-IA implies broadcast: compute  with IA 

• PKI already available (+synchrony), broadcast is feasible [Dolev Strong 83] 
…but round complexity is an issue:  deterministic, or expected  
randomized with large constants [Katz Koo 06][Abraham Devadas Dolev 
Nayak Ren 19] 

• is is straightforward in the security with abort seing, via simple echo 
broadcast [Goldwasser Lindell 02] 

• Can we construct a simple instantiation of BC as suitable for IA? 
Goal: an ECDSA-IA protocol that is easy to deploy over p2p channels

ℱ𝖯𝖪𝖨

O(t) O(1)



BC-IA Properties

• Consistency: All honest parties that output a valid (dealer signed) message will 
be in agreement 

• If the sender is corrupt, an honest party alternatively obtains a certificate: 

- (An aempt to) violate consistency, yields a certificate of cheating  

- If the sender sends nothing, yields a certificate of non-responsiveness  

•  vs. : Definite misbehaviour vs. potential network fault—different penalties 

• Defamation-freeness: Honest party can’t be framed with  or 

Ω

ω

Ω ω

Ω ω
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Baseline security-with-abort protocol

Mechanism to guarantee 
wellformedness of every sent message

Mechanism to guarantee 
each party sends some message every round

is work: define “Broadcast-IA” 

Simple honest-majority ECDSA

Light ZK proofs in  
+ verifiable complaints

𝔾



Broadcast-IA is Impossible with Dishonest Majority
[is work]



Broadcast-IA is Impossible with Dishonest Majority

P0

P1

P2

[is work]



Broadcast-IA is Impossible with Dishonest Majority

P0

P1

P2

Aack to 
frame P0

[is work]



Aack to 
frame P0

Broadcast-IA is Impossible with Dishonest Majority

P0

P1

P2

[is work]



Aack to 
frame P0

Broadcast-IA is Impossible with Dishonest Majority

P0

P1

P2

[is work]



Aack to 
frame P0

Broadcast-IA is Impossible with Dishonest Majority

P0

P1

P2

P0

P1

P2

[is work]



Aack to 
frame P0

Broadcast-IA is Impossible with Dishonest Majority

P0

P1

P2

P0

P1

P2

[is work]



Aack to 
frame P0

Broadcast-IA is Impossible with Dishonest Majority

P0

P1

P2

P0

P1

P2

[is work]



Aack to 
frame P0

Broadcast-IA is Impossible with Dishonest Majority

P0

P1

P2

P0

P1

P2

: “  offline”ω P0

OUTPUT

[is work]



Aack to 
frame P0

Broadcast-IA is Impossible with Dishonest Majority

P0

P1

P2

P0

P1

P2

: “  offline”ω P0

OUTPUT

[is work]



Aack to 
frame P0

Broadcast-IA is Impossible with Dishonest Majority

P0

P1

P2

P0

P1

P2

: “  offline”ω P0

OUTPUT

[is work]



Broadcast-IA is Impossible with Dishonest Majority

Aack to 
frame P0

P0

P1

P2

P0

P1

P2

: “  offline”ω P0

OUTPUT

[is work]



Broadcast-IA is Impossible with Dishonest Majority

Aack to 
frame P0

P0

P1

P2

: “  offline”ω P0

OUTPUT

P0

P1

P2

: “  offline”ω P0

OUTPUT

[is work]



Broadcast-IA is Impossible with Dishonest Majority
[is work]



Broadcast-IA is Impossible with Dishonest Majority
[is work]
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Recall: Global honest majority
Use it proactively
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Broadcast-IA: Analysis
• Honest :  Complete, defamation-free 

- No : Will not sending conflicting  
- No : At most  corrupt parties will echo   not enough sigs 

• Corrupt :  Consistent 
- If any honest parties receive yields  
- If  withheld from all honest parties  yields  
- Send  to any honest party   commied as output 

• Notes on output : 
1. Accompanied by sig( ) from : proves  sent  to  
2.  producing sig( ) DOES NOT prove that some  also output 

P0
Ω m, m*
ω t ⊥ ⇒

P0
m, m* ⇒ Ω

m ⇒ ω
m ⇒ m

m
m P0 P0 m Pi

Pi m Pj m
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Efficiency
• Envisioned mode of operation: 

- Run [DKLs23] (sec w. abort) by default 
- Fall back to this protocol if too many aborts observed 

• Worst case execution path most relevant to measuring efficiency 
-  :  ~500ms compute time on standard hardware 
  Relative to dishonest majority 
  noticeably slower than (s.w.a.) OT-based ECDSA [DKLs23] 
  order of magnitude faster than Paillier-based ECDSA-IA [CGGMP20] 

• Actual worst-case performance depends on network conditions 
- Up to Network Timeout

(t, n) = (10,21)

6 ×



In Conclusion
• Cheater identification requires some form of broadcast 

- Broadcast protocols are expensive 
- Tempting to resort to heuristics, external channels 

• We define Broadcast-IA to certify cheaters: silent parties and protocol deviations 
- Prove impossible w. dishonest majority 
- 2-round  construction over p2p channels (synchrony + PKI) 

• We build VSS-IA  DKG-IA  ECDSA-IA with  
- Leverage global honest majority

t < n/2

→ → t < n/2

anks!
eprint coming soon, (pre)preprint on ykondi.net

Thanks Eysa Lee for

http://ykondi.net

