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Identification Mechanisms

o Cheater could be found through out of band methods.

o We want certifiable protocol mechanism to identity who crashed the protocol
= each party either gets output, or identity of cheating party + cert. of cheat

Note: no consensus on identity

o Two ways to crash protocol:

1. Malformed protocol message 2. No message at all
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“Broadcast”?

o Engineering Anecdata:
"Do I really need to implement broadcast?”

¢ )

yes
“Is it just for some theoretical proof nonsense?”

“no, it’s to catch parties that don’t send messages for example”
“That seems unnecessary, I can just scan the network logs”

o In some settings: coordinator routes all messages
= implicit single point of failure

o Other settings: use external broadcast channel like a blockchain
= expensive, slow, introduces external dependencies



Broadcast Protocols

|Cohen Lindell 14] MPC-IA implies broadcast: compute & p; with IA

PKI already available (+synchrony), broadcast is feasible [Dolev Strong 83]
...but round complexity is an issue: O(¢) deterministic, or expected O(1)

randomized with large constants [Katz Koo 06][Abraham Devadas Dolev
Nayak Ren 19]

This is straightforward in the security with abort setting, via simple echo
broadcast [Goldwasser Lindell 02]

Can we construct a simple instantiation of BC as suitable for IA?
Goal: an ECDSA-IA protocol that is easy to deploy over p2p channels




BC-IA Properties

Consistency: All honest parties that output a valid (dealer signed) message will
be in agreement

If the sender is corrupt, an honest party alternatively obtains a certificate:
- (An attempt to) violate consistency, yields a certificate of cheating €2

- If the sender sends nothing, yields a certificate of non-responsiveness @
Q2 vs. w: Definite misbehaviour vs. potential network fault—different penalties

Defamation-freeness: Honest party can't be framed with € or w
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Anatomy of MPC-ECDSA w. [IA

Mechanism to guarantee
wellformedness of every sent message

Baseline security-with-abort protocol

Mechanism to guarantee
each party sends some message every round

Light ZK proofs in (3
+ verifiable complaints

Simple honest-majority ECDSA

This work: define “Broadcast-IA”

Impossible w. dishonest majority
2-round honest-majority protocol
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Recall: Global honest majority

Use it proactively
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Broadcast-IA: Analysis

Honest P,: Complete, defamation-free
- No Q: Will not sending conflicting m, m*
- No w: At most ¢ corrupt parties will echo L = not enough sigs

Corrupt P,: Consistent

- If any honest parties receive m, m* = yields €2

- If m withheld from all honest parties = yields w

- Send m to any honest party = m committed as output

Notes on output m:
1. Accompanied by sig(m) from P,: proves P, sent m to P;
2. P; producing sig(m) DOES NOT prove that some P; also output m




Signing from ECDSA Tuples

(Recall from Jack’s talk) [Abram Nof Orlandi Scholl Shlomovits 22}
[Sk] (k] (@] 1o - k] 1o - sk]
Round1 |
Establish R=[L]- G
Round2z
Round 3 Reveal a =e - [¢p]+r,. - [ - sk]

and f = [¢ - K]

Output (s = a/pf, R)



Sampling ECDSA Tuples

Round 1

Round 2

[sk] [&] [@] 1@ - k] 1¢p - sk]
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Efficiency

o Envisioned mode of operation:

- Run [DKLs23] (sec w. abort) by default
- Fall back to this protocol if too many aborts observed

o Worst case execution path most relevant to measuring efficiency

- (t,n) = (10,21) : ~500ms compute time on standard hardware
Relative to dishonest majority

noticeably slower than (s.w.a.) OT-based ECDSA [DKLs23]
order of magnitude faster than Paillier-based ECDSA-IA [CGGMP20]

o Actual worst-case performance depends on network conditions
- Up to 6 X Network Timeout



In Conclusion

Cheater identification requires some form of broadcast
- Broadcast protocols are expensive
- Tempting to resort to heuristics, external channels

We define Broadcast-IA to certity cheaters: silent parties and protocol deviations
- Prove impossible w. dishonest majority
- 2-round 7 < n/2 construction over p2p channels (synchrony + PKI)

We build VSS-IA — DKG-IA — ECDSA-IA with ¢ < n/2
- Leverage global honest majority

Thanks!

eprint coming soon, (pre)preprint on ykondi.net

Thanks Eysa Lee for
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