Separating Broadcast
from Cheater Identification:

The ECDSA Case

Yashvanth Kondi Divya Ravi

W UNIVERSITY

S'LENCE
P ABORATORIES = OF AMSTERDAM




Threshold Signing >

N N\
Distributed Risk: Attacker will need ' E /
7

to compromise multiple nodes



(3,n) Signing

N\
Distributed Risk: Attacker will need ' E /
o

v

'. '.

to compromise multiple nodes



(3,n) Signing

Distributed Risk: Attacker will need ' . '.

to compromise multiple nodes

v

'. '.




(3,n) Slgnmg e
E ' El
Distributed Risk: Attacker will need ' . '.

to compromise multiple nodes




(3,n) Slgnmg e
ll g B
Distributed Risk: Attacker will need ' . '.

to compromise multiple nodes




(3,n) Signing

aud
N\

Distributed Risk: Attacker will need
to compromise multiple nodes




(3,n) Signing




(3,n) Signing

Best Possible Security: Protection against 2 corruptions




(3,n) Signing

Best Possible Security: Protection against 2 corruptions

...out of five parties

“Global” honest majority

Necessary to retrieve &\ in case of a fault



(3,n) Signing

Best Possible Security: Protection against 2 corruptions

/ Threshold signing via

"Dishonest majority”
MPC protocol




(3,n) Signing

Best Possible Security: Protection against 2 corruptions

Threshold signing via

"Dishonest majority”
MPC protocol




(3,n) Signing

Best Possible Security: Protection against 2 corruptions

@ystill safe!

Threshold signing via

"Dishonest majority”
MPC protocol




(3,n) Signing

Best Possible Security: Protection against 2 corruptions

@ystill safe!

But, MPC tails
— no sig (DoS)

“security w. abort”

Threshold signing via

"Dishonest majority”
MPC protocol




(3,n) Signing

Best Possible Security: Protection against 2 corruptions

%till safe!

But, MPC {ails
— no sig (DoS)

“security w. abort”

Folklore remedy:

Identifiable Abort Threshold signing via

"Dishonest majority”
MPC protocol




(3,n) Signing

Best Possible Security: Protection against 2 corruptions

%till safe!

But, MPC tails
— no sig (DoS)

“security w. abort”

Folklore remedy:
Identifiable Abort




(3,n) Signing

Q%till safe!

But, MPC tails
— no sig (DoS)

“security w. abort”

Folklore remedy:
Identifiable Abort




(3,n) Signing

@ystill safe!

But, MPC tails
— no sig (DoS)

“security w. abort”

Folklore remedy: honest majority

Identifiable Abort



(3,n) Signing

Best Possible Security: Protection against 2 corruptions

@ystill safe!

But, MPC tails
— no sig (DoS)

“security w. abort”

Folklore remedy:
Identifiable Abort




(3,n) Signing

Best Possible Security: Protection against 2 corruptions

Q%till safe!

But, MPC tails
— no sig (DoS)

“security w. abort”

Folklore remedy:
Identifiable Abort

W CHEATER !



(3,n) Signing

Best Possible Security: Protection against 2 corruptions

%till safe!

But, MPC tails
— no sig (DoS)

“security w. abort”

Folklore remedy:
Identifiable Abort




Identification Mechanisms

o Cheater could be found through out of band methods.

o We want certifiable protocol mechanism to identity who crashed the protocol
= each party either gets output, or identity of cheating party + cert. of cheat

Note: no consensus on identity

o Two ways to crash protocol:

1. Malformed protocol message 2. No message at all




Anatomy of MPC-ECDSA w. IA



Anatomy of MPC-ECDSA w. IA

Mechanism to guarantee
wellformedness of every sent message



Anatomy of MPC-ECDSA w. IA

Mitigate via
ZK proofs,
opening mput

Mechanism to guarantee
wellformedness of every sent message

[Canetti Gennaro GOldfeder: lllllllllllllllllllllllllllllllllllllllllllllllllllllllll :
Makriyannis Peled 20], -

|Cohen Doerner

K shelat 24 Baseline security-with-abort protocol



Anatomy of MPC-ECDSA w. [IA

Mitigate via
ZK proofs,
opening input

Mechanism to guarantee
wellformedness of every sent message

[Canetti Gennaro Goldfeder: lllllllllllllllllllllllllllllllllllllllllllllllllllllllll :
Makriyannis Peled 20], -

|Cohen Doerner

K shelat 24 Baseline security-with-abort protocol

Mechanism to guarantee
each party sends some message every round



Anatomy of MPC-ECDSA w. [IA

Mitigate via
ZK proofs,
opening input

Mechanism to guarantee
wellformedness of every sent message

[Canetti Gennaro Goldfeder: lllllllllllllllllllllllllllllllllllllllllllllllllllllllll :
Makriyannis Peled 20], -

|Cohen Doerner

K shelat 24 Baseline security-with-abort protocol

Send all

messages over
broadcast

Mechanism to guarantee
each party sends some message every round



Anatomy of MPC-ECDSA w. [IA

Mitigate via
ZK proofs,
opening mput

Mechanism to guarantee
wellformedness of every sent message

[Canetti Gennaro Goldfeder: lllllllllllllllllllllllllllllllllllllllllllllllllllllllll :
Makriyannis Peled 20], -

|Cohen Doerner

K shelat 24 Baseline security-with-abort protocol

Send all |
messear;ej over Mechanism to guarantee
broadcast each party sends some message every round

Can of worms



“Broadcast”?

o Engineering Anecdata:
"Do I really need to implement broadcast?”

¢ )

yes
“Is it just for some theoretical proof nonsense?”

“no, it’s to catch parties that don’t send messages for example”
“That seems unnecessary, I can just scan the network logs”

o In some settings: coordinator routes all messages
= implicit single point of failure

o Other settings: use external broadcast channel like a blockchain
= expensive, slow, introduces external dependencies



Broadcast Protocols

|Cohen Lindell 14] MPC-IA implies broadcast: compute & p; with IA

PKI already available (+synchrony), broadcast is feasible [Dolev Strong 83]
...but round complexity is an issue: O(¢) deterministic, or expected O(1)

randomized with large constants [Katz Koo 06][Abraham Devadas Dolev
Nayak Ren 19]

This is straightforward in the security with abort setting, via simple echo
broadcast [Goldwasser Lindell 02]

Can we construct a simple instantiation of BC as suitable for IA?
Goal: an ECDSA-IA protocol that is easy to deploy over p2p channels




BC-IA Properties

Consistency: All honest parties that output a valid (dealer signed) message will
be in agreement

If the sender is corrupt, an honest party alternatively obtains a certificate:
- (An attempt to) violate consistency, yields a certificate of cheating €2

- If the sender sends nothing, yields a certificate of non-responsiveness @
Q2 vs. w: Definite misbehaviour vs. potential network fault—different penalties

Defamation-freeness: Honest party can't be framed with € or w




Anatomy of MPC-ECDSA w. [IA

Mechanism to guarantee
wellformedness of every sent message

Baseline security-with-abort protocol

Mechanism to guarantee
each party sends some message every round



Anatomy of MPC-ECDSA w. [IA

Mechanism to guarantee
wellformedness of every sent message

Baseline security-with-abort protocol

Mechanism to guarantee This work: define "Broadcast-IA

each party sends some message every round



Anatomy of MPC-ECDSA w. [IA

Mechanism to guarantee
wellformedness of every sent message

Baseline security-with-abort protocol

Mechanism to guarantee This work: define "Broadcast-IA

each party sends some message every round Impossible w. dishonest majority

e 2-round honest-majority protocol



Anatomy of MPC-ECDSA w. [IA

Mechanism to guarantee
wellformedness of every sent message

Baseline security-with-abort protocol Simple honest-majority ECDSA

Mechanism to guarantee This work: define "Broadcast-IA

each party sends some message every round Impossible w. dishonest majority

e 2-round honest-majority protocol



Anatomy of MPC-ECDSA w. [IA

Mechanism to guarantee
wellformedness of every sent message

Baseline security-with-abort protocol

Mechanism to guarantee
each party sends some message every round

Light ZK proofs in (3
+ verifiable complaints

Simple honest-majority ECDSA

This work: define “Broadcast-IA”

Impossible w. dishonest majority
2-round honest-majority protocol



Broadcast-IA is Impossible with Dishonest Majority

[ This work]




Broadcast-IA is Impossible with Dishonest Majority

[ This work]




Broadcast-IA is Impossible with Dishonest Majority

[ This work]

Attack to
frame P,




Broadcast-IA is Impossible with Dishonest Majority
['This work]




Broadcast-IA is Impossible with Dishonest Majority
| This work]



Broadcast-IA is Impossible with Dishonest Majority
| This work]




Broadcast-IA is Impossible with Dishonest Majority
| This work]




Broadcast-IA is Impossible with Dishonest Majority
| This work]




Broadcast-IA is Impossible with Dishonest Majority
| This work]




Broadcast-IA is Impossible with Dishonest Majority
| This work]




Broadcast-IA is Impossible with Dishonest Majority
| This work]




Broadcast-IA is Impossible with Dishonest Majority
| This work]




Broadcast-IA is Impossible with Dishonest Majority
| This work]

OUTPUT

w: " Py offline”



Broadcast-IA is Impossible with Dishonest Majority

[ This work]




Broadcast-IA is Impossible with Dishonest Majority

[ This work]




Broadcast-IA with Honest Majority

| This work]

Recall: Global honest majority

Use it proactively



Broadcast-IA with Honest Majority

| This work]

P, wishes to broadcast m




Broadcast-IA with Honest Majority

[ This work]
Round 1 Round 2 Output



Broadcast-IA with Honest Majority

[ This work]
Round 1 Round 2 Output
Sign m, : :
Send to all

P



Broadcast-IA with Honest Majority

[ This work]
Round 1 Round 2 Output
Sign m, : :
Send to all

P



Broadcast-IA with Honest Majority

[ This work]
Round 1 Round 2 Output
Sign m, f Echo m :
Send to all f or signed L

1“::? l




Broadcast-IA with Honest Majority

[ This work]
Round 1 Round 2 Output
Sign m, f Echo m :
Send to all : or Slgned |

P,
if Vahd
else



Broadcast-IA with Honest Majority

[ This work]
Round 1 Round 2 Output
Sign m, f Echo m f
Send to all or Slgned | Each P @ :

1. Check for potential

I 0 ] ; P i :
N N KT\ ifvali d certificates of cheating:
_’ B —= l ﬂ
else
a)

2. If no Q, w found,

output




Broadcast-IA with Honest Majority

[ This work]
Round 1 Round 2 Output
Sign m, f Echo m f
Send to all or Slgned | Each P @ :

1. Check for potential

P 0 l P i :
Fyali d certificates of cheatmg:
w8 B Q2 ' e
. else ’\ ’\
n s
a)

2. If no Q, w found,

output




Broadcast-IA: Analysis

Honest P,: Complete, defamation-free
- No Q: Will not sending conflicting m, m*
- No w: At most ¢ corrupt parties will echo L = not enough sigs

Corrupt P,: Consistent

- If any honest parties receive m, m* = yields €2

- If m withheld from all honest parties = yields w

- Send m to any honest party = m committed as output

Notes on output m:
1. Accompanied by sig(m) from P,: proves P, sent m to P;
2. P; producing sig(m) DOES NOT prove that some P; also output m




Signing from ECDSA Tuples

(Recall from Jack’s talk) [Abram Nof Orlandi Scholl Shlomovits 22}
[Sk] (k] (@] 1o - k] 1o - sk]
Round1 |
Establish R=[L]- G
Round2z
Round 3 Reveal a =e - [¢p]+r,. - [ - sk]

and f = [¢ - K]

Output (s = a/pf, R)



Sampling ECDSA Tuples

Round 1

Round 2

[sk] [&] [@] 1@ - k] 1¢p - sk]



Sampling ECDSA Tuples

Random string: G, G, € G unknown DLog

. Pedersen VSS: public deg- poly C € G[X]
BC-1a1 | Each P;(should) hold i), h(i) € Z, st

)G, + h(i)G, = C(i)

BC-IA 2 DKG: Prise apart f and A: use f, discard i
P, beasts F(i) = )Gy, H(i) = h())G, and PoK |

[sk] [&] [@] 1@ - k] 1¢p - sK]



Sampling ECDSA Tuples

Random string: G, G, € G unknown DLog

. Pedersen VSS: public deg- poly C € G[X]
BC-1a1 | Each P;(should) hold i), h(i) € Z, st

)G, + h(i)G, = C(i)

BC-IA 2 DKG: Prise apart f and A: use f, discard i
P, beasts F(i) = )Gy, H(i) = h())G, and PoK |

[sk] [k] [@] [¢ - k] 1@ - sk]

DKG VSS  Local mult + rerandomize




BC-IA 2 DKG: Prise apart f and h: use f, discard i
-~ P;beasts F(i) = ()G, H(i) = h())G, and PoK

[Sk] [k] (@] [¢ - k] 1@ - sK]

VSS  Local mult + rerandomize

Reveal a =e - [¢p]+r,. - [ - sk]

BC-IA 3 and B (6.

Output (s = a/pf, R)



BC-IA2 | DKG: Prise apart fand A: use f, discard A 5
-~ P;beasts F(i) = ()G, H(i) = h())G, and PoK

[Sk] [k] (@] [¢ - k] 1@ - sK]

VSS  Local mult + rerandomize

P;’s publicly
committed share

Reveal a =e - [¢p]+r,. - [ - sk]

BC-IA 3 and B (6.

Output (s = a/pf, R)



BC-IA2 | DKG: Prise apart fand A: use f, discard A 5
-~ P;beasts F(i) = ()G, H(i) = h())G, and PoK

[Sk] [k] (@] [¢ - k] 1@ - sK]

VSS  Local mult + rerandomize

P;’s publicly pkl., Rl-
committed share

Reveal a =e - [¢p]+r,. - [ - sk]

BC-IA 3 and B (6.

Output (s = a/pf, R)



BC-IA2 | DKG: Prise apart fand A: use f, discard A 5
-~ P;beasts F(i) = ()G, H(i) = h())G, and PoK

[Sk] [k] (@] [¢ - k] 1@ - sK]

VSS  Local mult + rerandomize

Pl-,S pUbllCly pki’ Ri Com(¢i)
committed share

Reveal a =e - [¢p]+r,. - [ - sk]

BC-IA 3 and B (6.

Output (s = a/pf, R)



BC-IA2 | DKG: Prise apart fand A: use f, discard A 5
-~ P;beasts F(i) = ()G, H(i) = h())G, and PoK

[Sk] [k] (@] [¢ - k] 1@ - sK]

VSS  Local mult + rerandomize

P.’s publicly pkl., Rl- Com(p,) Q; p; implies C q’bsk C! bk
committed share

Reveal a =e - [+, - [ - sk]

BC-IA 3 and B[

Output (s = a/pf, R)



BC-IA 2 DKG: Prise apart f and h: use f, discard i
-~ P;beasts F(i) = ()G, H(i) = h())G, and PoK

[Sk] [k] (@] [¢ - k] 1@ - sK]

VSS  Local mult + rerandomize

P.’s publicly pkl., Rl- Com(p,) Q; p; implies C q’bsk C (;5k
committed share

Reveal a =e - [¢] + ry - [¢ ° Sk] + NIZK proving
Cék Cglbsk

Output (s = a/pf, R)



Efficiency

o Envisioned mode of operation:

- Run [DKLs23] (sec w. abort) by default
- Fall back to this protocol if too many aborts observed

o Worst case execution path most relevant to measuring efficiency

- (t,n) = (10,21) : ~500ms compute time on standard hardware
Relative to dishonest majority

noticeably slower than (s.w.a.) OT-based ECDSA [DKLs23]
order of magnitude faster than Paillier-based ECDSA-IA [CGGMP20]

o Actual worst-case performance depends on network conditions
- Up to 6 X Network Timeout



In Conclusion

Cheater identification requires some form of broadcast
- Broadcast protocols are expensive
- Tempting to resort to heuristics, external channels

We define Broadcast-IA to certity cheaters: silent parties and protocol deviations
- Prove impossible w. dishonest majority
- 2-round 7 < n/2 construction over p2p channels (synchrony + PKI)

We build VSS-IA — DKG-IA — ECDSA-IA with ¢ < n/2
- Leverage global honest majority

Thanks!

eprint coming soon, (pre)preprint on ykondi.net

Thanks Eysa Lee for

V2

£


http://ykondi.net

