
Threshold ECDSA
with Identifiable Abort:

the case for Honest Majority

Yashvanth Kondi Divya Ravi

Threshold Signing

Threshold Signing

Threshold Signing

Threshold Signing

Threshold Signing

Threshold Signing

Threshold Signing

Distributed Risk: Attacker will need
to compromise multiple devices

Threshold Signing

This Talk

This Talk
Setting

This Talk
Setting

Identifiable Abort: What, why, and how

This Talk
Setting

Identifiable Abort: What, why, and how

This work: Broadcast for Identifiable Abort

This Talk
Setting

Identifiable Abort: What, why, and how

This work: Broadcast for Identifiable Abort

ECDSA-IA

This Talk
Setting

Identifiable Abort: What, why, and how

This work: Broadcast for Identifiable Abort

ECDSA-IA

Running example: network of nodes managing shares

This Talk
Setting

Identifiable Abort: What, why, and how

This work: Broadcast for Identifiable Abort

ECDSA-IA

Running example: network of nodes managing shares

Mitigating Denial of Service attacks

This Talk
Setting

Identifiable Abort: What, why, and how

This work: Broadcast for Identifiable Abort

ECDSA-IA

Running example: network of nodes managing shares

Mitigating Denial of Service attacks
Anatomy of an ECDSA-IA protocol

This Talk
Setting

Identifiable Abort: What, why, and how

This work: Broadcast for Identifiable Abort

ECDSA-IA

Running example: network of nodes managing shares

Mitigating Denial of Service attacks
Anatomy of an ECDSA-IA protocol

Existing works assume secure broadcast (hard/expensive)

This Talk
Setting

Identifiable Abort: What, why, and how

This work: Broadcast for Identifiable Abort

ECDSA-IA

Running example: network of nodes managing shares

Mitigating Denial of Service attacks
Anatomy of an ECDSA-IA protocol

Existing works assume secure broadcast (hard/expensive)
We define Broadcast-IA: impossible for , simple for t < n t < n/2

This Talk
Setting

Identifiable Abort: What, why, and how

This work: Broadcast for Identifiable Abort

ECDSA-IA

Running example: network of nodes managing shares

Mitigating Denial of Service attacks
Anatomy of an ECDSA-IA protocol

Existing works assume secure broadcast (hard/expensive)
We define Broadcast-IA: impossible for , simple for t < n t < n/2

Clean honest majority ECDSA-IA protocol

This Talk
Setting

Identifiable Abort: What, why, and how

This work: Broadcast for Identifiable Abort

ECDSA-IA

Running example: network of nodes managing shares

Mitigating Denial of Service attacks
Anatomy of an ECDSA-IA protocol

Existing works assume secure broadcast (hard/expensive)
We define Broadcast-IA: impossible for , simple for t < n t < n/2

Clean honest majority ECDSA-IA protocol

The case for honest majority

•Many settings have a global
honest majority anyway

•HM is necessary for
fundamental IA building block
- when using p2p channels only

•Clean ECDSA protocol
- MPC is easier with HM
 (no OT/Paillier necessary)

Distributed Risk: Attacker will need
to compromise multiple nodes

Threshold Signing

Distributed Risk: Attacker will need
to compromise multiple nodes

 Signing(3,n)

Distributed Risk: Attacker will need
to compromise multiple nodes

 Signing(3,n)

Distributed Risk: Attacker will need
to compromise multiple nodes

 Signing(3,n)

Distributed Risk: Attacker will need
to compromise multiple nodes

 Signing(3,n)

Distributed Risk: Attacker will need
to compromise multiple nodes

 Signing(3,n)

 Signing(3,n)

 Signing(3,n)
Best Possible Security: Protection against 2 corruptions

 Signing(3,n)
Best Possible Security: Protection against 2 corruptions

…out of five parties

“Global” honest majority

Necessary to retrieve in case of a fault

 Signing(3,n)
Best Possible Security: Protection against 2 corruptions

Threshold signing via
“Dishonest majority”

MPC protocol

“Global” honest majority

 Signing(3,n)
Best Possible Security: Protection against 2 corruptions

Threshold signing via
“Dishonest majority”

MPC protocol

“Global” honest majority

 Signing(3,n)
Best Possible Security: Protection against 2 corruptions

Threshold signing via
“Dishonest majority”

MPC protocol

still safe!

“Global” honest majority

 Signing(3,n)
Best Possible Security: Protection against 2 corruptions

Threshold signing via
“Dishonest majority”

MPC protocol

still safe!

But, MPC fails
 no sig (DoS)

“security w. abort”
→

“Global” honest majority

 Signing(3,n)
Best Possible Security: Protection against 2 corruptions

Threshold signing via
“Dishonest majority”

MPC protocol

still safe!

But, MPC fails
 no sig (DoS)

“security w. abort”
→

Folklore remedy:
Identifiable Abort

“Global” honest majority

 Signing(3,n)
Best Possible Security: Protection against 2 corruptions

still safe!

But, MPC fails
 no sig (DoS)

“security w. abort”
→

Folklore remedy:
Identifiable Abort

“Global”
honest majority

 Signing(3,n)
Best Possible Security: Protection against 2 corruptions

still safe!

But, MPC fails
 no sig (DoS)

“security w. abort”
→

Folklore remedy:
Identifiable Abort

!!! CHEATER !!! “Global”
honest majority

 Signing(3,n)
Best Possible Security: Protection against 2 corruptions

still safe!

But, MPC fails
 no sig (DoS)

“security w. abort”
→

Folklore remedy:
Identifiable Abort

!!! CHEATER !!! “Global”
honest majority

 Signing(3,n)
Best Possible Security: Protection against 2 corruptions

still safe!

But, MPC fails
 no sig (DoS)

“security w. abort”
→

Folklore remedy:
Identifiable Abort

!!! CHEATER !!!

 Signing(3,n)
Best Possible Security: Protection against 2 corruptions

still safe!

But, MPC fails
 no sig (DoS)

“security w. abort”
→

Folklore remedy:
Identifiable Abort

!!! CHEATER !!!

 Signing(3,n)
Best Possible Security: Protection against 2 corruptions

still safe!

But, MPC fails
 no sig (DoS)

“security w. abort”
→

Folklore remedy:
Identifiable Abort

Recipe for Identifiable Abort
• Cheater could be found through out of band methods.

• We want certifiable protocol mechanism to identify who crashed the protocol
 each party either gets output, or identity of cheating party + cert. of cheat

• Two ways to crash protocol:

1. Malformed protocol message 2. No message at all

⇒

Anatomy of MPC-ECDSA w. IA

Anatomy of MPC-ECDSA w. IA

Baseline security-with-abort protocol

Anatomy of MPC-ECDSA w. IA

Baseline security-with-abort protocol

Mechanism to guarantee
each party sends some message every round

Anatomy of MPC-ECDSA w. IA

Baseline security-with-abort protocol

Mechanism to guarantee
wellformedness of every sent message

Mechanism to guarantee
each party sends some message every round

Anatomy of MPC-ECDSA w. IA

Baseline security-with-abort protocol

Mechanism to guarantee
wellformedness of every sent message

Mechanism to guarantee
each party sends some message every round

Anatomy of MPC-ECDSA w. IA

Baseline security-with-abort protocol

Mechanism to guarantee
wellformedness of every sent message

Mechanism to guarantee
each party sends some message every round

Standard
mitigation:
ZK proofs

[GMW87],
[CGGMP20]

Anatomy of MPC-ECDSA w. IA

Baseline security-with-abort protocol

Mechanism to guarantee
wellformedness of every sent message

Mechanism to guarantee
each party sends some message every round

Standard
mitigation:
ZK proofs

Existing works:
all messages

over broadcast

[GMW87],
[CGGMP20]

Anatomy of MPC-ECDSA w. IA

Baseline security-with-abort protocol

Mechanism to guarantee
wellformedness of every sent message

Mechanism to guarantee
each party sends some message every round

Standard
mitigation:
ZK proofs

Existing works:
all messages

over broadcast

[GMW87],
[CGGMP20]

external trust assumptions, can be expensive

Anatomy of MPC-ECDSA w. IA

Baseline security-with-abort protocol

Mechanism to guarantee
wellformedness of every sent message

Mechanism to guarantee
each party sends some message every round

This work: define “Broadcast-IA”

1. Impossible w. dishonest majority
2. Simple honest-majority protocol

Anatomy of MPC-ECDSA w. IA

Baseline security-with-abort protocol

Mechanism to guarantee
wellformedness of every sent message

Mechanism to guarantee
each party sends some message every round

This work: define “Broadcast-IA”

1. Impossible w. dishonest majority
2. Simple honest-majority protocol

Anatomy of MPC-ECDSA w. IA

Baseline security-with-abort protocol

Mechanism to guarantee
wellformedness of every sent message

Mechanism to guarantee
each party sends some message every round

This work: define “Broadcast-IA”

Simple honest-majority protocol
[DKLs23]

1. Impossible w. dishonest majority
2. Simple honest-majority protocol

Anatomy of MPC-ECDSA w. IA

Baseline security-with-abort protocol

Mechanism to guarantee
wellformedness of every sent message

Mechanism to guarantee
each party sends some message every round

This work: define “Broadcast-IA”

Simple honest-majority protocol
[DKLs23]

Light (Schnorr-like) ZK proofs
+ verifiable complaints

Broadcast and (Identifiable) Abort

• Basic broadcast guarantee, Consistency: Malicious sender can’t trick honest
receivers into accepting conflicting messages

• In the security with abort setting, consistency is trivial via simple echoing [GL05]

• In our IA setting, if the sender cheats, each honest party obtains a certificate:

- (An attempt to) violate consistency, yields a certificate of cheating

- If the sender sends nothing, yields a certificate of non-responsiveness

• vs. : Definite corruption vs. potential network fault—different penalties

m, m*

Ω

ω

Ω ω

Broadcast-IA is Impossible with Dishonest Majority
[This work]

Broadcast-IA is Impossible with Dishonest Majority
[This work]

P0

P1

P2

Broadcast-IA is Impossible with Dishonest Majority
[This work]

P0

P1

P2

Attack to
frame P0

Attack to
frame P0

Broadcast-IA is Impossible with Dishonest Majority

P0

P1

P2

[This work]

Attack to
frame P0

Broadcast-IA is Impossible with Dishonest Majority

P0

P1

P2

[This work]

Attack to
frame P0

Broadcast-IA is Impossible with Dishonest Majority

P0

P1

P2

[This work]

P0

P1

P2

Attack to
frame P0

Broadcast-IA is Impossible with Dishonest Majority

P0

P1

P2

[This work]

P0

P1

P2

Attack to
frame P0

Broadcast-IA is Impossible with Dishonest Majority

P0

P1

P2

[This work]

P0

P1

P2

Attack to
frame P0

Broadcast-IA is Impossible with Dishonest Majority

P0

P1

P2

[This work]

P0

P1

P2

: “ offline”ω P0

OUTPUT

Attack to
frame P0

Broadcast-IA is Impossible with Dishonest Majority

P0

P1

P2

[This work]

P0

P1

P2

: “ offline”ω P0

OUTPUT

Attack to
frame P0

Broadcast-IA is Impossible with Dishonest Majority

P0

P1

P2

[This work]

P0

P1

P2

: “ offline”ω P0

OUTPUT

Broadcast-IA is Impossible with Dishonest Majority

Attack to
frame P0

P0

P1

P2

[This work]

P0

P1

P2

: “ offline”ω P0

OUTPUT

Broadcast-IA is Impossible with Dishonest Majority

Attack to
frame P0

P0

P1

P2

[This work]

: “ offline”ω P0

OUTPUT

P0

P1

P2

: “ offline”ω P0

OUTPUT

[This work]

Broadcast-IA is Impossible with Dishonest Majority

[This work]

Broadcast-IA is Impossible with Dishonest Majority

Broadcast-IA with Honest Majority
[This work]

Recall: Global honest majority
Use it proactively

Broadcast-IA with Honest Majority
[This work]

 wishes to broadcast P0 m

P0 P1 P2 P3 P4

𝗉𝗄0 𝗉𝗄1 𝗉𝗄2 𝗉𝗄3 𝗉𝗄4

Broadcast-IA with Honest Majority
[This work]

Round 1 Round 2 Output

Broadcast-IA with Honest Majority
[This work]

Round 1 Round 2 Output

P0 Pi

m

Sign ,
Send to all

m

Broadcast-IA with Honest Majority
[This work]

Round 1 Round 2 Output

P0 Pi

m

Sign ,
Send to all

m

Broadcast-IA with Honest Majority
[This work]

Round 1 Round 2 Output

P0 Pi

m

Sign ,
Send to all

m

Pi
Pj

m

⊥

if valid

else

Echo
or signed

m
⊥

Broadcast-IA with Honest Majority
[This work]

Round 1 Round 2 Output

P0 Pi

m

Sign ,
Send to all

m

Pi
Pj

m

⊥

if valid

else

Echo
or signed

m
⊥

Broadcast-IA with Honest Majority
[This work]

Round 1 Round 2 Output

P0 Pi

m

Sign ,
Send to all

m

Pi
Pj

m

⊥

if valid

else

Echo
or signed

m
⊥ PiEach :

1. Check for potential
certificates of cheating:

Ω m m*

ω ⊥ ⊥ ⊥

2. If no found,
output

Ω, ω
m

Broadcast-IA with Honest Majority
[This work]

Round 1 Round 2 Output

P0 Pi

m

Sign ,
Send to all

m

Pi
Pj

m

⊥

if valid

else

Echo
or signed

m
⊥ PiEach :

1. Check for potential
certificates of cheating:

Ω m m*

ω ⊥ ⊥ ⊥

2. If no found,
output

Ω, ω
m

Broadcast-IA: Analysis
• Honest :

- No : Will not sending conflicting
- No : At most 2 corrupt parties will echo not enough sigs

• Corrupt :
- If any honest parties receive yields
- If withheld from all honest parties yields
Therefore, each honest party outputs either , or consistent

• Notes on output :
1. Accompanied by sig() from : proves sent to
2. producing sig() DOES NOT prove that some also output

P0
Ω m, m*
ω ⊥ ⇒

P0
m, m* ⇒ Ω

m ⇒ ω
Ω, ω m

m
m P0 P0 m Pi

Pi m Pj m

Building ECDSA-IA
• Baseline ECDSA protocol: Honest Majority variant of [DKLs23]

- hm-[DKLs23]: One broadcast round on top of VSS + DKG
- This work: one broadcast + Schnorr-like NIZK, on top of VSS-IA + DKG-IA

• VSS-IA: Pedersen-style VSS over broadcast.
- Success: Samples a Pedersen commit of secret uniform value
- Fail: Only in case of malformed ciphertext . Then computes as an
opening to that ciphertext.

• DKG-IA: Run VSS-IA, unmask Pedersen commitment (w. Schnorr NIZK)

• Overall, 3 broadcast-IA rounds, no Paillier/OT in honest-majority setting

Pi → Pj Pj Ω

Building ECDSA-IA
• Baseline ECDSA protocol: Honest Majority variant of [DKLs23]

- hm-[DKLs23]: One broadcast round on top of VSS + DKG
- This work: one broadcast + Schnorr-like NIZK, on top of VSS-IA + DKG-IA

• VSS-IA: Pedersen-style VSS over broadcast.
- Success: Samples a Pedersen commit of secret uniform value
- Fail: Only in case of malformed ciphertext . Then computes as an
opening to that ciphertext.

• DKG-IA: Run VSS-IA, unmask Pedersen commitment (w. Schnorr NIZK)

• Overall, 3 broadcast-IA rounds, no Paillier/OT in honest-majority setting

Pi → Pj Pj Ω

Message consistency layer

Building ECDSA-IA
• Baseline ECDSA protocol: Honest Majority variant of [DKLs23]

- hm-[DKLs23]: One broadcast round on top of VSS + DKG
- This work: one broadcast + Schnorr-like NIZK, on top of VSS-IA + DKG-IA

• VSS-IA: Pedersen-style VSS over broadcast.
- Success: Samples a Pedersen commit of secret uniform value
- Fail: Only in case of malformed ciphertext . Then computes as an
opening to that ciphertext.

• DKG-IA: Run VSS-IA, unmask Pedersen commitment (w. Schnorr NIZK)

• Overall, 3 broadcast-IA rounds, no Paillier/OT in honest-majority setting

Pi → Pj Pj Ω

Message consistency layer

In Conclusion
• Dishonest majority protocols are inherently DoS-susceptible

- Can get around this with secure broadcast extra assumptions

• We define Broadcast-IA to detect cheaters: silent parties and protocol deviations
- Provably impossible w. dishonest majority
- Simple construction over p2p channels w. honest majority

• We build VSS-IA DKG-IA ECDSA-IA with simple honest majority protocols
- Leverage global honest majority
- Orders of magnitude lighter than dishonest majority

• Forthcoming: Benchmarks, full paper

⇒

→ →

Thanks!

