Threshold ECDSA
with ldentifiable Abort:
the case for Honest Majority

Yashvanth Kondi Divya Ravi
S) L ENCE Wl UNIVERSITY
p ABORATORIES X OF AMSTERDAM

Threshold Signing

Threshold Signing

Threshold Signing

Threshold Signing

Threshold Signing

Threshold Signing

Threshold Signing

Threshold Signing

/ J/
Distributed Risk: Attacker will need 99
to compromise multiple devices E -

This Talk

This Talk

Setting

This Talk

Setting

Identifiable Abort: What, why, and how

This Talk

Setting

Identifiable Abort: What, why, and how

This work: Broadcast for Identifiable Abort

This Talk

Setting

Identifiable Abort: What, why, and how

This work: Broadcast for Identifiable Abort

ECDSA-IA

This Talk

Setting

Running example: network of nodes managing shares

Identifiable Abort: What, why, and how

This work: Broadcast for Identifiable Abort

ECDSA-IA

This Talk

Setting

Running example: network of nodes managing shares

Identifiable Abort: What, why, and how

Mitigating Denial of Service attacks

This work: Broadcast for Identifiable Abort

ECDSA-IA

This Talk

Setting

Running example: network of nodes managing shares

Identifiable Abort: What, why, and how

Mitigating Denial of Service attacks
Anatomy of an ECDSA-IA protocol

This work: Broadcast for Identifiable Abort

ECDSA-IA

This Talk

Setting

Running example: network of nodes managing shares

Identifiable Abort: What, why, and how

Mitigating Denial of Service attacks
Anatomy of an ECDSA-IA protocol

This work: Broadcast for Identifiable Abort

Existing works assume secure broadcast (hard/expensive)

ECDSA-IA

This Talk

Setting

Running example: network of nodes managing shares

Identifiable Abort: What, why, and how

Mitigating Denial of Service attacks
Anatomy of an ECDSA-IA protocol

This work: Broadcast for Identifiable Abort

Existing works assume secure broadcast (hard/expensive)
We define Broadcast-IA: impossible for ¢ < n, simple for t < n/2

ECDSA-IA

This Talk

Setting

Running example: network of nodes managing shares

Identifiable Abort: What, why, and how

Mitigating Denial of Service attacks
Anatomy of an ECDSA-IA protocol

This work: Broadcast for Identifiable Abort

Existing works assume secure broadcast (hard/expensive)
We define Broadcast-IA: impossible for ¢ < n, simple for t < n/2

ECDSA-IA
Clean honest majority ECDSA-IA protocol

The case for honest majority

«Many settings have a global
honest majority anyway

«HM is necessary for
fundamental IA building block
- when using p2p channels only

«Clean ECDSA protocol
- MPC is easier with HM
(no OT/Paillier necessary)

This Talk

Setting

Running example: network of nodes managing shares

Identifiable Abort: What, why, and how

Mitigating Denial of Service attacks
Anatomy of an ECDSA-IA protocol

This work: Broadcast for Identifiable Abort

Existing works assume secure broadcast (hard/expensive)
We define Broadcast-IA: impossible for ¢ < n, simple for t < n/2

ECDSA-IA
Clean honest majority ECDSA-IA protocol

Threshold Signing >

N N\
Distributed Risk: Attacker will need ' E /
7

to compromise multiple nodes

(3,n) Signing

N\
Distributed Risk: Attacker will need ' E /
o

v

'. '.

to compromise multiple nodes

(3,n) Signing

Distributed Risk: Attacker will need ' . '.

to compromise multiple nodes

v

'. '.

(3,n) Slgnmg e
E ' El
Distributed Risk: Attacker will need ' . '.

to compromise multiple nodes

(3,n) Slgnmg e
ll g B
Distributed Risk: Attacker will need ' . '.

to compromise multiple nodes

(3,n) Signing

aud
N\

Distributed Risk: Attacker will need
to compromise multiple nodes

(3,n) Signing

(3,n) Signing

Best Possible Security: Protection against 2 corruptions

(3,n) Signing

Best Possible Security: Protection against 2 corruptions

...out of five parties

“Global” honest majority

Necessary to retrieve &\ in case of a fault

(3,n) Signing

Best Possible Security: Protection against 2 corruptions

/ Threshold signing via

"Dishonest majority”
MPC protocol

(3,n) Signing

Best Possible Security: Protection against 2 corruptions

Threshold signing via

"Dishonest majority”
MPC protocol

(3,n) Signing

Best Possible Security: Protection against 2 corruptions

@ystill safe!

Threshold signing via

"Dishonest majority”
MPC protocol

(3,n) Signing

Best Possible Security: Protection against 2 corruptions

@ystill safe!

But, MPC tails
— no sig (DoS)

“security w. abort”

Threshold signing via

"Dishonest majority”
MPC protocol

(3,n) Signing

Best Possible Security: Protection against 2 corruptions

%till safe!

But, MPC {ails
— no sig (DoS)

“security w. abort”

Folklore remedy:

Identifiable Abort Threshold signing via

"Dishonest majority”
MPC protocol

(3,n) Signing

Best Possible Security: Protection against 2 corruptions

%till safe!

But, MPC tails
— no sig (DoS)

“security w. abort”

Folklore remedy:
Identifiable Abort

(3,n) Signing

Q%till safe!

But, MPC tails
— no sig (DoS)

“security w. abort”

Folklore remedy:
Identifiable Abort

(3,n) Signing

@ystill safe!

But, MPC tails
— no sig (DoS)

“security w. abort”

Folklore remedy: honest majority

Identifiable Abort

(3,n) Signing

Best Possible Security: Protection against 2 corruptions

@ystill safe!

But, MPC tails
— no sig (DoS)

“security w. abort”

Folklore remedy:
Identifiable Abort

(3,n) Signing

Best Possible Security: Protection against 2 corruptions

Q%till safe!

But, MPC tails
— no sig (DoS)

“security w. abort”

Folklore remedy:
Identifiable Abort

W CHEATER !

(3,n) Signing

Best Possible Security: Protection against 2 corruptions

%till safe!

But, MPC tails
— no sig (DoS)

“security w. abort”

Folklore remedy:
Identifiable Abort

Recipe for Identifiable Abort

o Cheater could be found through out of band methods.

o We want certifiable protocol mechanism to identity who crashed the protocol
= each party either gets output, or identity of cheating party + cert. of cheat

o Two ways to crash protocol:

1. Malformed protocol message 2. No message at all

Anatomy of MPC-ECDSA w. IA

Anatomy of MPC-ECDSA w. IA

Anatomy of MPC-ECDSA w. IA

Mechanism to guarantee
each party sends some message every round

Anatomy of MPC-ECDSA w. [IA

Mechanism to guarantee
wellformedness of every sent message

Baseline security-with-abort protocol

Mechanism to guarantee
each party sends some message every round

Anatomy of MPC-ECDSA w. [IA

Mechanism to guarantee
wellformedness of every sent message

Baseline security-with-abort protocol

Mechanism to guarantee
each party sends some message every round

Anatomy of MPC-ECDSA w. [IA

Standard .
e Mechanism to guarantee
mitigation:
wellformedness of every sent message
ZK proofs
[GMWS87], massananansssnnnnnns,
[CGGMP20] = -

Baseline security-with-abort protocol

Mechanism to guarantee
each party sends some message every round

Anatomy of MPC-ECDSA w. [IA

Standard .
e Mechanism to guarantee
mitigation:
wellformedness of every sent message
ZK proofs
[GMWS87], massananansssnnnnnns,
[CGGMP20] = -

Baseline security-with-abort protocol

Existing works:
all messages
over broadcast

Mechanism to guarantee
each party sends some message every round

Anatomy of MPC-ECDSA w. [IA

Standard .
e Mechanism to guarantee
mitigation:
wellformedness of every sent message
ZK proofs
[GMWS87], massananansssnnnnnns,
[CGGMP20] = -

Baseline security-with-abort protocol

Existing works:
all messages
over broadcast

Mechanism to guarantee
each party sends some message every round

external trust assumptions, can be expensive

Anatomy of MPC-ECDSA w. [IA

Mechanism to guarantee
wellformedness of every sent message

Baseline security-with-abort protocol

Mechanism to guarantee This work: define "Broadcast-IA

each party sends some message every round

Anatomy of MPC-ECDSA w. [IA

Mechanism to guarantee
wellformedness of every sent message

Baseline security-with-abort protocol

Mechanism to guarantee This work: define "Broadcast-IA

each party sends some message every round | Impossible w. dishonest majority

2. Simple honest-majority protocol

Anatomy of MPC-ECDSA w. [IA

Mechanism to guarantee
wellformedness of every sent message

Simple honest-majority protocol

Baseline security-with-abort protocol [DKLs23]

Mechanism to guarantee This work: define "Broadcast-IA

each party sends some message every round | Impossible w. dishonest majority

2. Simple honest-majority protocol

Anatomy of MPC-ECDSA w. [IA

Mechanism to guarantee
wellformedness of every sent message

Baseline security-with-abort protocol

Mechanism to guarantee
each party sends some message every round

Light (Schnorr-like) ZK proofs
+ verifiable complaints

Simple honest-majority protocol
[DKLs23]

This work: define “Broadcast-IA”

1. Impossible w. dishonest majority
2. Simple honest-majority protocol

Broadcast and (Identifiable) Abort

Basic broadcast guarantee, Consistency: Malicious sender can't trick honest
receivers into accepting conflicting messages m, m*

In the security with abort setting, consistency is trivial via simple echoing [GL05]

In our IA setting, if the sender cheats, each honest party obtains a certificate:
- (An attempt to) violate consistency, yields a certificate of cheating (2

- If the sender sends nothing, yields a certificate of non-responsiveness w

QQ vs. w: Definite corruption vs. potential network fault—difterent penalties

Broadcast-IA is Impossible with Dishonest Majority

[This work]

Broadcast-IA is Impossible with Dishonest Majority

[This work]

Broadcast-IA is Impossible with Dishonest Majority

[This work]

Attack to
frame P,

Broadcast-IA is Impossible with Dishonest Majority
['This work]

Broadcast-IA is Impossible with Dishonest Majority
| This work]

Broadcast-IA is Impossible with Dishonest Majority
| This work]

Broadcast-IA is Impossible with Dishonest Majority
| This work]

Broadcast-IA is Impossible with Dishonest Majority
| This work]

Broadcast-IA is Impossible with Dishonest Majority
| This work]

Broadcast-IA is Impossible with Dishonest Majority
| This work]

Broadcast-IA is Impossible with Dishonest Majority
| This work]

Broadcast-IA is Impossible with Dishonest Majority
| This work]

Broadcast-IA is Impossible with Dishonest Majority
| This work]

OUTPUT

w: " Py offline”

Broadcast-IA is Impossible with Dishonest Majority

[This work]

Broadcast-IA is Impossible with Dishonest Majority

[This work]

Broadcast-IA with Honest Majority

| This work]

Recall: Global honest majority

Use it proactively

Broadcast-IA with Honest Majority

| This work]

P, wishes to broadcast m

Broadcast-IA with Honest Majority

[This work]
Round 1 Round 2 Output

Broadcast-IA with Honest Majority

[This work]
Round 1 Round 2 Output
Sign m, : :
Send to all

P

Broadcast-IA with Honest Majority

[This work]
Round 1 Round 2 Output
Sign m, : :
Send to all

P

Broadcast-IA with Honest Majority

[This work]
Round 1 Round 2 Output
Sign m, f Echo m :
Send to all f or signed L

1“::? l

Broadcast-IA with Honest Majority

[This work]
Round 1 Round 2 Output
Sign m, f Echo m :
Send to all : or Slgned |

P,
if Vahd
else

Broadcast-IA with Honest Majority

[This work]
Round 1 Round 2 Output
Sign m, f Echo m f
Send to all or Slgned | Each P @ :

1. Check for potential

I 0] ; P i :
N N KT\ ifvali d certificates of cheating:
_’ B —= l ﬂ
else
a)

2. If no Q, w found,

output

Broadcast-IA with Honest Majority

[This work]
Round 1 Round 2 Output
Sign m, f Echo m f
Send to all or Slgned | Each P @ :

1. Check for potential

P 0 l P i :
Fyali d certificates of cheatmg:
w8 B Q2 ' e
. else ’\ ’\
n s
a)

2. If no Q, w found,

output

Broadcast-IA: Analysis

e Honest P
- No Q: Will not sending conflicting m, m*
- No w: At most 2 corrupt parties will echo L = not enough sigs

o Corrupt P
- If any honest parties receive m, m* = yields €2
- If m withheld from all honest parties = yields w
Therefore, each honest party outputs either €2, @, or consistent m

e Notes on output m:
1. Accompanied by sig(m) from P,: proves P, sent m to P;
2. P; producing sig(m) DOES NOT prove that some P; also output m

Building ECDSA-IA

o Baseline ECDSA protocol: Honest Majority variant of [DKLs23]
- hm-[DKLs23]: One broadcast round on top of VSS + DKG
- This work: one broadcast + Schnorr-like NIZK, on top of VSS-IA + DKG-IA

Building ECDSA-IA

o Baseline ECDSA protocol: Honest Majority variant of [DKLs23]
- hm-[DKLs23]: One broadcast round on top of VSS + DKG
- This work: one broadcast + Schnorr-like NIZK, on top of VSS-IA + DKG-IA

Message consistency layer

Building ECDSA-IA

Baseline ECDSA protocol: Honest Majority variant of [DKLs23]
- hm-[DKLs23]: One broadcast round on top of VSS + DKG
- This work: one broadcast + Schnorr-like NIZK, on top of VSS-IA + DKG-IA

Message consistency layer

VSS-IA: Pedersen-style VSS over broadcast.

- Success: Samples a Pedersen commit of secret uniform value
- Fail: Only in case of malformed ciphertext P; - P;. Then P; computes {2 as an

opening to that ciphertext.
DKG-IA: Run VSS-IA, unmask Pedersen commitment (w. Schnorr NIZK)

Overall, 3 broadcast-IA rounds, no Paillier/OT in honest-majority setting

In Conclusion

Dishonest majority protocols are inherently DoS-susceptible
- Can get around this with secure broadcast = extra assumptions

We define Broadcast-IA to detect cheaters: silent parties and protocol deviations
- Provably impossible w. dishonest majority
- Simple construction over p2p channels w. honest majority

We build VSS-IA — DKG-IA — ECDSA-IA with simple honest majority protocols
- Leverage global honest majority
- Orders of magnitude lighter than dishonest majority

Forthcoming: Benchmarks, full paper

Thanks!

