
Yashvanth Kondi Divya Ravi

Separating Broadcast
from Cheater Identification

This Talk
• Introduction to Secure Multiparty Computation (MPC) with Identifiable Abort

(IA)

• Problem: Most known IA protocols employ broadcast (BC), which is expensive.
Is this cost inherent?

• Our results:
- Formulate BC-IA by teasing out the exact requirements on BC in IA setting
- Impossibility in the dishonest majority setting
- Simple 2-round BC-IA in honest majority setting
- General compiler: MPC-IA using BC BC-IA p2p
- Concrete real-world application: threshold ECDSA signing

r × → (r + 1) × → 2(r + 1)

x0

x1
x2

x3

x4

P0

P4

P1

P3

P2

y = f(⃗x)
⃗x = (x0, ⋯, x4)

Secure Multiparty Computation (MPC)

y

Secure Multiparty Computation (MPC)

x0

x1
x2

x3

x4

P0

P4

P1

P3

P2

f

y

Secure Multiparty Computation (MPC)

x0

x1
x2

x3

x4

P0

P4

P1

P3

P2

f

x0

x1
x2

x3

x4

P0

P4

P1

P3

P2

Secure Multiparty Computation (MPC)

x0

x1
x2

x3

x4

P0

P4

P1

P3

P2

Secure Multiparty Computation (MPC)

x0

x1
x2

x3

x4

P0

P4

P1

P3

P2

Secure Multiparty Computation (MPC)

x0

x1
x2

x3

x4

y = f(⃗x)
OUTPUT

P0

P4

P1

P3

P2

Secure Multiparty Computation (MPC)

MPC: Active Security

x0

x1
x2

x3

x4

y = f(⃗x)
OUTPUT

P0

P4

P1

P3

P2

MPC: Active Security

x0

x1
x2

x3

x4

???
OUTPUT

P0

P4

P1

P3

P2

Grades of Active Security

Security with Abort

Guaranteed Output

Fairness

P0 x3x4 P4 P3

x1x2 P2 P1

Grades of Active Security

Security with Abort

Guaranteed Output

Fairness

y = f(⃗x) ⊥

P0 x3x4 P4 P3

x1x2 P2 P1

OUTPUT

y = f(⃗x)

⊥

y = f(⃗x)𝖢𝖺𝗌𝖾 𝟣 :

⊥𝖢𝖺𝗌𝖾 𝟤 :

y = f(⃗x) y = f(⃗x)

Grades of Active Security

Security with Abort

Guaranteed Output

Fairness

y = f(⃗x) ⊥

P0 x3x4 P4 P3

x1x2 P2 P1

OUTPUT

y = f(⃗x)

⊥

y = f(⃗x)𝖢𝖺𝗌𝖾 𝟣 :

⊥𝖢𝖺𝗌𝖾 𝟤 :

y = f(⃗x) y = f(⃗x)

Grades of Active Security

Security with Abort

Guaranteed Output

Fairness

y = f(⃗x) ⊥

P0 x3x4 P4 P3

x1x2 P2 P1

OUTPUT

y = f(⃗x)

⊥

y = f(⃗x)𝖢𝖺𝗌𝖾 𝟣 :

⊥𝖢𝖺𝗌𝖾 𝟤 :

y = f(⃗x) y = f(⃗x)

Grades of Active Security

Security with Abort

Guaranteed Output

Fairness

y = f(⃗x) ⊥

P0 x3x4 P4 P3

x1x2 P2 P1

OUTPUT

y = f(⃗x)

⊥

y = f(⃗x)𝖢𝖺𝗌𝖾 𝟣 :

⊥𝖢𝖺𝗌𝖾 𝟤 :

y = f(⃗x) y = f(⃗x)

Grades of Active Security

Security with Abort

Guaranteed Output

Fairness

y = f(⃗x) ⊥

P0 x3x4 P4 P3

x1x2 P2 P1

OUTPUT

y = f(⃗x)

⊥

y = f(⃗x)𝖢𝖺𝗌𝖾 𝟣 :

⊥𝖢𝖺𝗌𝖾 𝟤 :

y = f(⃗x) y = f(⃗x)
DoS-resistant

Grades of Active Security

Security with Abort

Guaranteed Output

Fairness

y = f(⃗x) ⊥

P0 x3x4 P4 P3

x1x2 P2 P1

OUTPUT

y = f(⃗x)

⊥

y = f(⃗x)𝖢𝖺𝗌𝖾 𝟣 :

⊥𝖢𝖺𝗌𝖾 𝟤 :

y = f(⃗x) y = f(⃗x)

always

protected

x1, x2, x3, x4

Privacy

DoS-resistant

DoS-resistant

Grades of Active Security

Security with Abort

Identifiable Abort

Guaranteed Output

Fairness

y = f(⃗x) ⊥

P0 x3x4 P4 P3

x1x2 P2 P1

y = f(⃗x) =P0

OUTPUT

! CHEATER FOUND !

y = f(⃗x)

⊥

y = f(⃗x)

⊥

𝖢𝖺𝗌𝖾 𝟣 :

𝖢𝖺𝗌𝖾 𝟤 :

y = f(⃗x) y = f(⃗x)

always

protected

x1, x2, x3, x4

Privacy

DoS-resistant

Grades of Active Security

Security with Abort

Identifiable Abort

Guaranteed Output

Fairness

y = f(⃗x) ⊥

P0 x3x4 P4 P3

x1x2 P2 P1

y = f(⃗x) =P0

OUTPUT

! CHEATER FOUND !

y = f(⃗x)

⊥

y = f(⃗x)

⊥

𝖢𝖺𝗌𝖾 𝟣 :

𝖢𝖺𝗌𝖾 𝟤 :

y = f(⃗x) y = f(⃗x)

always

protected

x1, x2, x3, x4

Privacy

What’s the Tradeoff?

• Security with Abort and Identifiable Abort are feasible (under standard
cryptographic assumptions) even if only one party is honest [GMW87]
a.k.a. setting

• Fairness and Guaranteed Output for general functions are only feasible when a
majority of parties are honest [Cleve86]

• For the same corruption threshold, known constructions for stronger security
typically incur a substantial penalty in complexity/performance
(not a tight statement)

• IA typically studied as a “compromise” when GOD is infeasible

t < n

x0 x1 x2 x3 x4

P0 P1 P2 P3 P4

Guaranteed Output vs. Identifiable Abort

x

x0 x1 x2 x3 x4

P0 P1 P2 P3 P4

Guaranteed Output vs. Identifiable Abort

x𝖲𝖾𝖼𝗋𝖾𝗍𝖲𝗁𝖺𝗋𝖾() ↦

x0 x1 x2 x3 x4

P0 P1 P2 P3 P4

Guaranteed Output vs. Identifiable Abort

x𝖲𝖾𝖼𝗋𝖾𝗍𝖲𝗁𝖺𝗋𝖾() ↦

Guaranteed Output vs. Identifiable Abort

x0 x1 x2 x3 x4

P0 P1 P2 P3 P4

Guaranteed Output vs. Identifiable Abort

𝖤𝗏𝖺𝗅(f, ⋅)

x0 x1 x2 x3 x4

P0 P1 P2 P3 P4

Guaranteed Output vs. Identifiable Abort

𝖤𝗏𝖺𝗅(f, ⋅)

x0 x1 x2 x3 x4

P0 P1 P2 P3 P4

Guaranteed Output vs. Identifiable Abort

𝖤𝗏𝖺𝗅(f, ⋅)

f(x)

x0 x1 x2 x3 x4

P0 P1 P2 P3 P4

Guaranteed Output vs. Identifiable Abort

𝖤𝗏𝖺𝗅(f, ⋅)

f(x)

x0 x1 x2 x3 x4

P0 P1 P2 P3 P4

x0 x1 x2 x3 x4

P0 P1 P2 P3 P4

Guaranteed Output vs. Identifiable Abort

x0 x1 x2 x3 x4

P0 P1 P2 P3 P4

MPC Initiated

Guaranteed Output vs. Identifiable Abort

x0 x1 x2 x3 x4

P0 P1 P2 P3 P4

MPC Initiated

System under active attack!
At least one node has been
compromised.
Unclear which one(s).

TIME SENSITIVE

Guaranteed Output vs. Identifiable Abort

x0 x1 x2 x3 x4

P0 P1 P2 P3 P4

MPC Initiated

Anyway, here is . Enjoy!f(x)

System under active attack!
At least one node has been
compromised.
Unclear which one(s).

TIME SENSITIVE

Guaranteed Output vs. Identifiable Abort

x0 x1 x2 x3 x4

P0 P1 P2 P3 P4

MPC Initiated

Anyway, here is . Enjoy!f(x)

System under active attack!
At least one node has been
compromised.
Unclear which one(s).

TIME SENSITIVE

MPC Initiated

Guaranteed Output vs. Identifiable Abort

x0 x1 x2 x3 x4

P0 P1 P2 P3 P4

MPC Initiated

Anyway, here is . Enjoy!f(x)

System under active attack!
At least one node has been
compromised.
Unclear which one(s).

TIME SENSITIVE

MPC Initiated

MPC failed to deliver output.
Node P1 deviated from the
protocol.

TIME SENSITIVE

Guaranteed Output vs. Identifiable Abort

Practical Application: Re-staking

• Re-staking TLDR:
- Operators buy into the protocol (service/AVS) with “re-staked” assets
- In case of malicious behaviour, this stake can be “slashed”
- Economic security: protocol deviations are disincentivized

• Identifiable Abort is a natural fit for this setting
- Cheating parties can be identified and slashed
- DoS resistant MPC via economic incentives

• Hope: complexity of IA closer to Sec w. Abort than Guaranteed Output Delivery

Identification Mechanisms
• Cheater could be found through out of band methods.

• We want certifiable protocol mechanism to identify who crashed the protocol
 each party either gets output, or identity of cheating party + cert. of cheat

• Two ways to crash protocol:

1. Malformed protocol message 2. No message at all

⇒
Note: no consensus on identity

Anatomy of MPC-IA

Baseline security-with-abort protocol

Anatomy of MPC-IA

Baseline security-with-abort protocol

Mechanism to guarantee
wellformedness of every sent message

Anatomy of MPC-IA

Baseline security-with-abort protocol

Mechanism to guarantee
wellformedness of every sent message

Mechanism to guarantee
each party sends some message every round

Anatomy of MPC-IA

Baseline security-with-abort protocol

Mechanism to guarantee
wellformedness of every sent message

Mechanism to guarantee
each party sends some message every round

ZK proofs,
carefully open

secrets

[GMW87]…
…[IOZ14]…
[BMRS24]
[CDKs24]

Anatomy of MPC-IA

Baseline security-with-abort protocol

Mechanism to guarantee
wellformedness of every sent message

Mechanism to guarantee
each party sends some message every round

ZK proofs,
carefully open

secrets

Send all
messages over

broadcast

[GMW87]…
…[IOZ14]…
[BMRS24]
[CDKs24]

Anatomy of MPC-IA

Baseline security-with-abort protocol

Mechanism to guarantee
wellformedness of every sent message

Mechanism to guarantee
each party sends some message every round

ZK proofs,
carefully open

secrets

Send all
messages over

broadcast

Can of worms

[GMW87]…
…[IOZ14]…
[BMRS24]
[CDKs24]

“Broadcast”?
• Engineering Anecdata:

 “Do I really need to implement broadcast?”
 “yes”
 “Is it just for some theoretical proof nonsense?”
 “no, it’s to catch parties that don’t send messages for example”
 “That seems unnecessary, I can just <insert heuristic>”

• In some settings [Lin22]: coordinator routes all messages
 reasonable in sec. w. abort. setting, very strong assumption for IA

• Other settings [GMPS21, GKM+22, ZYP23]: use a blockchain
 expensive, slow, introduces external dependencies

⇒

⇒

Broadcast Protocols
• [Cohen Lindell 14] MPC-IA implies broadcast: compute with IA

• Assuming PKI (+synchrony), broadcast is feasible [Dolev Strong 83]
…but round complexity is an issue: deterministic, or expected
randomized with large constants
[Katz Koo 06][Abraham Devadas Dolev Nayak Ren 19]

• This is straightforward in the security with abort setting, via simple echo
broadcast [Goldwasser Lindell 02]

• Can we construct a simple instantiation of BC as suitable for IA?
Goal: MPC-IA protocols that are easy to deploy over p2p channels

ℱ𝖯𝖪𝖨

O(t) O(1)

BC-IA Properties

• Consistency: All honest parties that output a valid (dealer signed) message will
be in agreement

• If the sender is corrupt, an honest party alternatively obtains a certificate:

- (An attempt to) violate consistency, yields a certificate of cheating

- If the sender sends nothing, yields a certificate of non-responsiveness

• vs. : Definite misbehaviour vs. potential network fault—different penalties

• Defamation-freeness: Honest party can’t be framed with or

Ω

ω

Ω ω

Ω ω

Anatomy of MPC-IA

Baseline security-with-abort protocol

Mechanism to guarantee
wellformedness of every sent message

Mechanism to guarantee
each party sends some message every round

• Impossible w. dishonest majority
• 2-round honest-majority protocol

Anatomy of MPC-IA

Baseline security-with-abort protocol

Mechanism to guarantee
wellformedness of every sent message

Mechanism to guarantee
each party sends some message every round

This work: define “Broadcast-IA”

Broadcast-IA is Impossible with Dishonest Majority

P0

P1

P2

[This work]

Broadcast-IA is Impossible with Dishonest Majority

P0

P1

P2

Attack to
frame P0

[This work]

Attack to
frame P0

Broadcast-IA is Impossible with Dishonest Majority

P0

P1

P2

[This work]

Attack to
frame P0

Broadcast-IA is Impossible with Dishonest Majority

P0

P1

P2

[This work]

Attack to
frame P0

Broadcast-IA is Impossible with Dishonest Majority

P0

P1

P2

P0

P1

P2

[This work]

Attack to
frame P0

Broadcast-IA is Impossible with Dishonest Majority

P0

P1

P2

P0

P1

P2

[This work]

Attack to
frame P0

Broadcast-IA is Impossible with Dishonest Majority

P0

P1

P2

P0

P1

P2

[This work]

Attack to
frame P0

Broadcast-IA is Impossible with Dishonest Majority

P0

P1

P2

P0

P1

P2

: “ offline”ω P0

OUTPUT

[This work]

Attack to
frame P0

Broadcast-IA is Impossible with Dishonest Majority

P0

P1

P2

P0

P1

P2

: “ offline”ω P0

OUTPUT

[This work]

Attack to
frame P0

Broadcast-IA is Impossible with Dishonest Majority

P0

P1

P2

P0

P1

P2

: “ offline”ω P0

OUTPUT

[This work]

Broadcast-IA is Impossible with Dishonest Majority

Attack to
frame P0

P0

P1

P2

P0

P1

P2

: “ offline”ω P0

OUTPUT

[This work]

Broadcast-IA is Impossible with Dishonest Majority

Attack to
frame P0

P0

P1

P2

: “ offline”ω P0

OUTPUT

P0

P1

P2

: “ offline”ω P0

OUTPUT

[This work]

Broadcast-IA with Honest Majority

 wishes to broadcast P0 m

P0 P1 P2 P3 P4

𝗉𝗄0 𝗉𝗄1 𝗉𝗄2 𝗉𝗄3 𝗉𝗄4

[This work]

Broadcast-IA with Honest Majority

Round 1 Round 2 Output

[This work]

Broadcast-IA with Honest Majority

Round 1 Round 2 Output

P0 Pi

m

Sign ,
Send to all

m

[This work]

Broadcast-IA with Honest Majority

Round 1 Round 2 Output

P0 Pi

m

Sign ,
Send to all

m

[This work]

Broadcast-IA with Honest Majority

Round 1 Round 2 Output

P0 Pi

m

Sign ,
Send to all

m

Pi
Pj

m

⊥

if valid

else

Echo
or signed

m
⊥

[This work]

Broadcast-IA with Honest Majority

Round 1 Round 2 Output

P0 Pi

m

Sign ,
Send to all

m

Pi
Pj

m

⊥

if valid

else

Echo
or signed

m
⊥

[This work]

Broadcast-IA with Honest Majority

Round 1 Round 2 Output

P0 Pi

m

Sign ,
Send to all

m

Pi
Pj

m

⊥

if valid

else

Echo
or signed

m
⊥ PiEach :

1. Check for potential
certificates of cheating:

Ω m m*

ω ⊥ ⊥ ⊥

2. If no found,
output

Ω, ω
m

[This work]

Broadcast-IA with Honest Majority

Round 1 Round 2 Output

P0 Pi

m

Sign ,
Send to all

m

Pi
Pj

m

⊥

if valid

else

Echo
or signed

m
⊥ PiEach :

1. Check for potential
certificates of cheating:

Ω m m*

ω ⊥ ⊥ ⊥

2. If no found,
output

Ω, ω
m

[This work]

Broadcast-IA: Analysis
• Honest : Complete, defamation-free

- No : Will not sending conflicting
- No : At most corrupt parties will echo not enough sigs

• Corrupt : Consistent
- If any honest parties receive yields
- If withheld from all honest parties yields
- Send to any honest party committed as output

• Notes on output :
1. Accompanied by sig() from : proves sent to
2. producing sig() DOES NOT prove that some also output

P0
Ω m, m*
ω t ⊥ ⇒

P0
m, m* ⇒ Ω

m ⇒ ω
m ⇒ m

m
m P0 P0 m Pi

Pi m Pj m

Synchrony
• Protocol assumes a well-defined network time-out (i.e. synchrony)

• Inherent: Identifiable Abort not well-defined in p2p asynchronous setting
- Honest parties w. bad network indistinguishable from corrupt

• Important to reason about what happens when network goes bad:
- Honest parties may be certified non-responsive ()
 Very bad idea to take drastic action based on non-responsiveness alone
- Liveness may be violated
- Cheat () remains attributable to corrupt parties only
 Higher level protocols can still maintain safety/privacy of secrets

ω
⇒

Ω
⇒

Anatomy of MPC-IA

Baseline security-with-abort protocol

Mechanism to guarantee
wellformedness of every sent message

Mechanism to guarantee
each party sends some message every round

[This work]
2-round honest majority BC-IA

Anatomy of MPC-IA

Baseline security-with-abort protocol

Mechanism to guarantee
wellformedness of every sent message

Mechanism to guarantee
each party sends some message every round

Informal Theorem
If is a protocol that realizes

 using Ideal Broadcasts, then
 realizes using

BC-IA instances
 p2p rounds

Π𝖡𝖢

ℱf
𝖨𝖠 r

Π𝖡𝖢-𝖨𝖠 ℱf
𝖨𝖠* (r + 1)

⇒ 2(r + 1)

[This work]
2-round honest majority BC-IA

Our Compiler

Ideal

Real

P0 P1

P2

f

P0 P1P2

Broadcast 1

Broadcast 2

Broadcast r

⋮Π𝖡𝖢

Our Compiler

Ideal

Real

P0 P1

P2

f

P0 P1P2

Broadcast 1

Broadcast 2

Broadcast r

⋮Π𝖡𝖢

Our Compiler

Ideal

Real

P0 P1

P2

f

cheated .P0

cheated .P0

P0 P1P2

Broadcast 1

Broadcast 2

Broadcast r

⋮Π𝖡𝖢

Our Compiler

Ideal

Real

P0 P1

P2

f

cheated .P0

cheated .P0

P0 P1P2

Broadcast 1

Broadcast 2

Broadcast r

⋮

𝖡𝖢-𝖨𝖠 1

P0 P1

P2

f

cheated .P0

f(x)

𝗉𝗋𝗈𝗈𝖿

P0 P1P2

⋮
𝖡𝖢-𝖨𝖠 2

𝖡𝖢-𝖨𝖠 r+1
Π𝖡𝖢 Π𝖡𝖢-𝖨𝖠

Anatomy of MPC-IA

Baseline security-with-abort protocol

Mechanism to guarantee
wellformedness of every sent message

Mechanism to guarantee
each party sends some message every round

(Increasingly) well studied in the
dishonest majority () setting

[Ishai Ostrovsky Zikas 14][Baum Orsini
Scholl Soria-Vazquez 20][Cohen Doerner K

shelat 24][Baum Melissaris Rachuri Scholl 24]

t < n

[This work]
2-round honest majority BC-IA

Which to plug in?Π𝖡𝖢

Anatomy of MPC-IA

Baseline security-with-abort protocol

Mechanism to guarantee
wellformedness of every sent message

Mechanism to guarantee
each party sends some message every round

(Increasingly) well studied in the
dishonest majority () setting

[Ishai Ostrovsky Zikas 14][Baum Orsini
Scholl Soria-Vazquez 20][Cohen Doerner K

shelat 24][Baum Melissaris Rachuri Scholl 24]

t < n

[This work]
2-round honest majority BC-IA

inherent

Which to plug in?Π𝖡𝖢

Anatomy of MPC-IA

Baseline security-with-abort protocol

Mechanism to guarantee
wellformedness of every sent message

Mechanism to guarantee
each party sends some message every round

(Increasingly) well studied in the
dishonest majority () setting

[Ishai Ostrovsky Zikas 14][Baum Orsini
Scholl Soria-Vazquez 20][Cohen Doerner K

shelat 24][Baum Melissaris Rachuri Scholl 24]

t < n

[This work]
2-round honest majority BC-IA

Understudied in settingt < n/2

inherent

Which to plug in?Π𝖡𝖢

Real-World Application: Threshold ECDSA

Baseline security-with-abort protocol

Mechanism to guarantee
wellformedness of every sent message

Mechanism to guarantee
each party sends some message every round

[This work]
2-round honest majority BC-IA

inherent

3-BC-round honest-majority
ECDSA signing à la [DKLs23]

Light ZK proofs in
+ verifiable complaints

𝔾

This work: Instantiate ECDSA-IA

Threshold Signing

Laptop hacked funds gone⇒

Signing key stored on laptop

Spend by signing transactions

Threshold Signing

Threshold Signing

Threshold Signing
x0 x1 x2 x3 x4

P0 P1 P2 P3 P4

Threshold Signing

𝖲𝗂𝗀𝗇(m, ⋅)

x0 x1 x2 x3 x4

P0 P1 P2 P3 P4

σ

x0 x1 x2 x3 x4

P0 P1 P2 P3 P4
𝖲𝗂𝗀𝗇(m, ⋅)

Threshold Signing

Distributed Risk: Attacker will need
to compromise multiple devices

ECDSA
• Elliptic Curve Digital Signature Algorithm

• Devised by Scott Vanstone in 1992, standardised by NIST

• Widespread adoption across the internet

• Natural target for threshold signing

Threshold ECDSA: Structure

ECDSASign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R)

Threshold ECDSA: Structure

ECDSASign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R)

x-coordinate of R (not secret)rx

ry

R = (rx, ry)

Threshold ECDSA: Structure

ECDSASign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R)

x-coordinate of R (not secret)rx

ry

R = (rx, ry)

Threshold ECDSA: Structure

ECDSASign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R)

Multiplication of
secret values

x-coordinate of R (not secret)rx

ry

R = (rx, ry)

Threshold ECDSA: Structure

ECDSASign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R)

Multiplication of
secret values

Division (Modular inverse)

x-coordinate of R (not secret)rx

ry

R = (rx, ry)

Threshold ECDSA: Structure

ECDSASign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(m)

s =
e+𝗌𝗄 ⋅ rx

k
output σ = (s, R)

Multiplication of
secret values

Division (Modular inverse)

x-coordinate of R (not secret)rx

ry

R = (rx, ry)
Coin tossing:

commit+release

b’cast shares

2 mults: Ver. Secret
sharing + NIZK

Overall: 3 rounds 6 p2p rounds𝖡𝖢-𝖨𝖠 ⇒

ECDSA-IA: Efficiency
• Envisioned mode of operation:

- Run [DKLs23] (sec w. abort) by default
- Fall back to this protocol if too many aborts observed

• Worst case execution path most relevant to measuring efficiency
- : ~500ms compute time on standard hardware
 Relative to dishonest majority
 noticeably slower than (s.w.a.) OT-based ECDSA [DKLs23]
 order of magnitude faster than Paillier-based ECDSA-IA [CGGMP20]

• Actual worst-case performance depends on network conditions
- Up to Network Timeout

(t, n) = (10,21)

6 ×

In Conclusion
• Identifiable Abort can offer meaningful DoS-resistance

(sometimes more desirable than Guaranteed Output)
- IA requires some form of broadcast (tricky to instantiate)

• We define Broadcast-IA to certify cheaters: silent parties and protocol deviations
- Prove impossible w. dishonest majority
- 2-round construction over p2p channels (synchrony + PKI)

• Use this tool to instantiate Threshold ECDSA-IA over p2p channels
- Simpler, more efficient than Guaranteed Output
- Ongoing research: General Secure Function Evaluation with IA

t < n/2

Thanks!
eprint coming soon, (pre)preprint on ykondi.net

Thanks Eysa Lee for

http://ykondi.net

[k][𝗌𝗄] [ϕ] [ϕ ⋅ k] [ϕ ⋅ 𝗌𝗄]

Signing from
[Abram Nof Orlandi Scholl Shlomovits 22]

Reveal
and
α = e ⋅ [ϕ] + rx ⋅ [ϕ ⋅ 𝗌𝗄]

β = [ϕ ⋅ k]

𝖮𝗎𝗍𝗉𝗎𝗍 (s = α/β, R)

Round 3

Round 1
Establish R = [k] ⋅ G

Round 2

ECDSA Tuples

[k][𝗌𝗄] [ϕ] [ϕ ⋅ k] [ϕ ⋅ 𝗌𝗄]

Sampling

Round 1
Establish R = [k] ⋅ G

Round 2

ECDSA Tuples

[k][𝗌𝗄] [ϕ] [ϕ ⋅ k] [ϕ ⋅ 𝗌𝗄]

Sampling

𝖮𝗎𝗍𝗉𝗎𝗍 (s = α/β, R)

BC-IA 1

BC-IA 2

ECDSA Tuples

Pedersen VSS: public deg- poly
Each (should) hold s.t.

t 𝖢 ∈ 𝔾[X]
Pi f(i), h(i) ∈ ℤq

f(i)G1 + h(i)G2 = C(i)

DKG: Prise apart and : use , discard
 b’casts , and PoK

f h f h
Pi F(i) = f(i)G1 H(i) = h(i)G2

if didn’t get output, b’casts proof of cheat Pi

Random string: unknown DLog G1, G2 ∈ 𝔾

[k][𝗌𝗄] [ϕ] [ϕ ⋅ k] [ϕ ⋅ 𝗌𝗄]

Sampling

𝖮𝗎𝗍𝗉𝗎𝗍 (s = α/β, R)

BC-IA 1

BC-IA 2

ECDSA Tuples

Pedersen VSS: public deg- poly
Each (should) hold s.t.

t 𝖢 ∈ 𝔾[X]
Pi f(i), h(i) ∈ ℤq

f(i)G1 + h(i)G2 = C(i)

DKG: Prise apart and : use , discard
 b’casts , and PoK

f h f h
Pi F(i) = f(i)G1 H(i) = h(i)G2

if didn’t get output, b’casts proof of cheat Pi

Random string: unknown DLog G1, G2 ∈ 𝔾

VSSDKG Local mult + rerandomize

[k][𝗌𝗄] [ϕ] [ϕ ⋅ k] [ϕ ⋅ 𝗌𝗄]

Reveal
and
α = e ⋅ [ϕ] + rx ⋅ [ϕ ⋅ 𝗌𝗄]

β = [ϕ ⋅ k]

𝖮𝗎𝗍𝗉𝗎𝗍 (s = α/β, R)

BC-IA 3

BC-IA 2

f(i)G1 + h(i)G2 = C(i)

DKG: Prise apart and : use , discard
 b’casts , and PoK

f h f h
Pi F(i) = f(i)G1 H(i) = h(i)G2

if didn’t get output, b’casts proof of cheat Pi

VSSDKG Local mult + rerandomize

[k][𝗌𝗄] [ϕ] [ϕ ⋅ k] [ϕ ⋅ 𝗌𝗄]

Reveal
and
α = e ⋅ [ϕ] + rx ⋅ [ϕ ⋅ 𝗌𝗄]

β = [ϕ ⋅ k]

𝖮𝗎𝗍𝗉𝗎𝗍 (s = α/β, R)

BC-IA 3

BC-IA 2

f(i)G1 + h(i)G2 = C(i)

DKG: Prise apart and : use , discard
 b’casts , and PoK

f h f h
Pi F(i) = f(i)G1 H(i) = h(i)G2

if didn’t get output, b’casts proof of cheat Pi

VSSDKG Local mult + rerandomize

’s publicly
committed share

Pi

[k][𝗌𝗄] [ϕ] [ϕ ⋅ k] [ϕ ⋅ 𝗌𝗄]

Reveal
and
α = e ⋅ [ϕ] + rx ⋅ [ϕ ⋅ 𝗌𝗄]

β = [ϕ ⋅ k]

𝖮𝗎𝗍𝗉𝗎𝗍 (s = α/β, R)

BC-IA 3

BC-IA 2

f(i)G1 + h(i)G2 = C(i)

DKG: Prise apart and : use , discard
 b’casts , and PoK

f h f h
Pi F(i) = f(i)G1 H(i) = h(i)G2

if didn’t get output, b’casts proof of cheat Pi

VSSDKG Local mult + rerandomize

𝗉𝗄i, Ri’s publicly
committed share

Pi

[k][𝗌𝗄] [ϕ] [ϕ ⋅ k] [ϕ ⋅ 𝗌𝗄]

Reveal
and
α = e ⋅ [ϕ] + rx ⋅ [ϕ ⋅ 𝗌𝗄]

β = [ϕ ⋅ k]

𝖮𝗎𝗍𝗉𝗎𝗍 (s = α/β, R)

BC-IA 3

BC-IA 2

f(i)G1 + h(i)G2 = C(i)

DKG: Prise apart and : use , discard
 b’casts , and PoK

f h f h
Pi F(i) = f(i)G1 H(i) = h(i)G2

if didn’t get output, b’casts proof of cheat Pi

VSSDKG Local mult + rerandomize

𝗉𝗄i, Ri 𝖢𝗈𝗆(ϕi)’s publicly
committed share

Pi

[k][𝗌𝗄] [ϕ] [ϕ ⋅ k] [ϕ ⋅ 𝗌𝗄]

Reveal
and
α = e ⋅ [ϕ] + rx ⋅ [ϕ ⋅ 𝗌𝗄]

β = [ϕ ⋅ k]

𝖮𝗎𝗍𝗉𝗎𝗍 (s = α/β, R)

BC-IA 3

BC-IA 2

f(i)G1 + h(i)G2 = C(i)

DKG: Prise apart and : use , discard
 b’casts , and PoK

f h f h
Pi F(i) = f(i)G1 H(i) = h(i)G2

if didn’t get output, b’casts proof of cheat Pi

VSSDKG Local mult + rerandomize

𝗉𝗄i, Ri 𝖢𝗈𝗆(ϕi)’s publicly
committed share

Pi implies , αi, βi Ci
ϕ𝗌𝗄 Ci

ϕk

[k][𝗌𝗄] [ϕ] [ϕ ⋅ k] [ϕ ⋅ 𝗌𝗄]

Reveal
and
α = e ⋅ [ϕ] + rx ⋅ [ϕ ⋅ 𝗌𝗄]

β = [ϕ ⋅ k]

𝖮𝗎𝗍𝗉𝗎𝗍 (s = α/β, R)

BC-IA 3

BC-IA 2

f(i)G1 + h(i)G2 = C(i)

DKG: Prise apart and : use , discard
 b’casts , and PoK

f h f h
Pi F(i) = f(i)G1 H(i) = h(i)G2

if didn’t get output, b’casts proof of cheat Pi

VSSDKG Local mult + rerandomize

𝗉𝗄i, Ri 𝖢𝗈𝗆(ϕi)’s publicly
committed share

Pi implies , αi, βi Ci
ϕ𝗌𝗄 Ci

ϕk

+ NIZK proving
,

𝗉𝗄i, Ri, 𝖢𝗈𝗆(ϕi)

Ci
ϕk, Ci

ϕ𝗌𝗄

